
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Sheng Xu,
Jiangsu University of Science and
Technology, China

REVIEWED BY

Zhenkui Wang,
Zhejiang University, China
Dong Wang,
Shanghai Jiao Tong University, China
Wang Yikun,
Hubei University of Arts and
Science, China

*CORRESPONDENCE

Dapeng Zhang
zhangdapeng@gdou.edu.cn

SPECIALTY SECTION

This article was submitted to
Ocean Solutions,
a section of the journal
Frontiers in Marine Science

RECEIVED 30 June 2022
ACCEPTED 16 September 2022

PUBLISHED 13 October 2022

CITATION

Luo Y and Zhang D (2022) Dynamic
analysis of an axially moving
underwater pipe conveying
pulsating fluid.
Front. Mar. Sci. 9:982374.
doi: 10.3389/fmars.2022.982374

COPYRIGHT

© 2022 Luo and Zhang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply
with these terms.

TYPE Original Research
PUBLISHED 13 October 2022

DOI 10.3389/fmars.2022.982374
Dynamic analysis of an axially
moving underwater pipe
conveying pulsating fluid

Yangyang Luo1,2 and Dapeng Zhang1,2*

1Ship and Maritime College, Guangdong Ocean University, Zhanjiang, China,
2Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
In this paper, both linear and non-linear dynamics of a slender and uniform pipe

conveying pulsating fluid, which is axially moving in an incompressible fluid, are

comprehensively studied. The vibration equations of the system are established

by considering various factors, including a coordinate conversion system, an

“axial added mass coefficient” describing the additional inertia forces caused by

the external fluid, the Kelvin–Voigt viscoelastic damping, a kind of non-linear

additional axial tension, and the pulsating internal fluid. The vibration equations

are discretized by the Galerkin procedure and solved by the Runge–Kutta

approach, and the validity of the solution procedure is carefully checked. After

that, the linear and non-linear responses of the system are studied when the

internal flow velocity and the axially moving speed of the pipe are small. For

linear responses, the Kelvin–Voigt viscoelastic damping has great influences on

the second and third modes of the system. For the non-linear dynamic, the

results are rich and changeful, including the first and second principal

parametric resonances, the secondary resonance, the combination

resonance, period-1 motion, quasi-periodic motion, and chaotic motion.

Finally, the influence of several key system parameters on the non-linear

responses is analyzed.

KEYWORDS

pipe conveying pulsating fluid, axially moving underwater pipe, additional axial
tension, non-linear dynamics, parametric resonance
1 Introduction

The linear and non-linear dynamics of a pipe conveying fluid have been widely

researched decades before. Paїdoussis (Païdoussis and Li, 1993; Païdoussis, 1998;

Païdoussis, 2003) made extensive reviews about the early works on these subjects.

These reviews discussed various aspects on the dynamics of the pipe conveying fluid,

such as mathematical modeling, solution methodology, the mechanisms of instabilities,

and the linear and non-linear and chaotic dynamics. In these reviews, the impact of
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various parameters on the system dynamics is also discussed,

such as boundary conditions, steady or unsteady internal flow,

fluid friction effects, elastic constraints or motion-limiting

constraints, and elastic foundation. Paїdoussis pointed out

that, although the model of the pipe conveying fluid was

simple, the motion equation of it contained not only the

general dynamic characteristics of the bar and beam system

but also gyroscopic force caused by the internal fluid, so that the

pipe conveying fluid revealed more extensive dynamic behaviors

and became a new paradigm to study fluid–structure

interactions that refer to slender structures and axial flows.

In some cases, the in-pipe flow velocity may contain

harmonic components, i.e., pulsating fluid, and the harmonic

components may lead to parametric instability. In the early

research studies, notably done by Ginsberg, 1973 and Païdoussis

and Issid (1974), linearized analytical models and numerical

methods were adopted to reveal the parametric instability of

simply supported straight pipes. In the subsequent research

studies, various non-linear models were introduced to further

study the system under different kinds of parametric resonance,

notably by Namachchivaya and Tien (Namachchivaya, 1989;

Namachchivaya and Tien, 1989a; Namachchivaya and Tien,

1989b), Jayaraman and Narayanan (1996), Öz (Öz and Boyaci,

2000; Öz et al., 2001), Jin and Song (2005), Panda and Kar

(Panda and Kar, 2007; Panda and Kar, 2008), Wang (Wang,

2009; Wang, 2010), and Ni et al. (2014). These works showed

that a pipe conveying pulsating fluid performed abundant non-

linear dynamical phenomena.

In the above studies, the pipe systems were fixed. However,

in some engineering devices, the systems may have axial

movement, such as robotic systems, underwater towed cables,

and conveyor belts. The axial movement of these systems can

significantly impact on the transverse vibration of the systems.

Hence, the dynamic behaviors of axially moving flexible bodies

had been widely studied. Notable contributions in these works

were by Balakrishnan (1985); Kane et al., 1987; Du et al., 1992;

Shabana, 1997; Hyun and Yoo, 1999; Liu et al., 2007; Yoo et al.,

2009 and Gerstmayr (2013).
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If an axially moving structure is surrounded by fluid, then

the influences of the external fluid cannot be ignored. For

example, in the aircraft in-flight refueling process, after the

refueling pipeline is connected, the refueling plane and the

receiving plane keep at a static flight state relative to each

other. In this case, the surrounding air will have an axial

relative velocity to the pipeline, which will affect the stability

of the pipeline. The underwater towing slender structure is

another typical example. Dynamics and stability of an

underwater axially extending cantilever beam are first studied

by Taleb and Misra (2012). However, in the recent work, –

provided a more accurate model, containing an “axial added

mass coefficient”, for better calculating the external fluid

dynamic forces. After that, the dynamic behaviors of an axially

moving underwater beam constrained by torsion springs are

investigated by Wang and Ni (2008). Most recently, Ni and Li

(Ni and Li, 2014; Li et al., 2015) studied the dynamic behaviors of

an underwater moving beam with different boundary

conditions. Dynamics of an axially moving and extending

cantilever beam as well as a sliding pipe conveying fluid are

intensively studied by Yan (Yan et al., 2016; Yan et al., 2018; Yan

et al., 2020). Huo and Wang (2016) studied the dynamic

behaviors of a vertically stretching cantilevered pipe with

internal fluid but without external fluid. In the author’s

previous research, linear dynamics of an axially moving

underwater pipe conveying fluid are analyzed (Ni et al., 2017).

In the latest research, Zhou and Dai (Zhou et al., 2022) designed

an underwater bio-inspired robot based on a cantilevered pipe,

as shown in Figure 1. By changing the velocity of the internal

fluid of the pipe, the vibration response of the pipe can be

adjusted to control the movement of the robot. In summary, the

axially moving pipe structure has a wide range of applications in

engineering, especially in the control of the underwater moving

structure. However, there are few studies on these structures, and

existing research studies mainly focus on the linear dynamics.

The non-linear dynamics of these structures, especially the non-

linear dynamics under internal pulsating fluid, need to be

further studied.
FIGURE 1

The underwater bio-inspired robot designed by Zhou and Dai (Zhou et al., 2022).
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In this paper, both linear and non-linear dynamic

behaviors of a slender and uniform pipe conveying pulsating

fluid, which is axially moving in an incompressible fluid, are

comprehensively studied. The content of this paper is arranged

as follows. In Section 2, the vibration equations of the system

are established by considering various factors. In Section 3, the

vibration equations are discretized by the Galerkin procedure

and solved by the Runge–Kutta approach. In Section 4, the

validity of the solution procedure is carefully checked. In

Section 5, the linear and non-linear responses of the system

are studied as follows: First, the linear dynamic of the pipe

system are studied; second, the non-linear dynamic responses

are studied considering the non-linear additional pipe axial

force while the pulsating component of the internal flow is

neglected; third, the non-linear dynamic responses of the

system under pulsating internal flow are investigated; last,

the influence of several key system parameters on the non-

linear responses is analyzed. The parameter instability region

diagram of the system is obtained according to the Floquet

theory. Furthermore, some typical system motions are

identified by the bifurcation diagram, time history curve,

power spectral density (PSD), phase trajectory, and Poincaré

map. The conclusions are shown in Section 6.
2 Systematic formulation and
theoretical derivation

The analysis system is shown in Figure 2. Consider a uniform

simply supported pipe of outer diameter D, length l, internal

perimeter S, mass per unit length mp, flexural rigidity EI, internal

cross-sectional area Ai, and conveying fluid of mass per unit length

mf, with axial flow velocity V relative to the pipe, the fluid pressure

pi. The pipe is axially moving at a speed L(t). The whole system is

surrounded by incompressible fluid of density r, and the effect of

the boundaries can be neglected. In the present study, it is further

assumed that there no separation occurs in the cross-flow, and the

fluid forces acting on a pipe element are the same as those acting on
Frontiers in Marine Science 03
a corresponding element of a long undeformed pipe of the same

cross-sectional area and inclination.

For better description of the motion of the pipe system, two

coordinate frames are set up on the basis of the previous studies

(Ni and Li, 2014; Li et al., 2015): the absolute coordinate frame

(x,z) and the moving coordinate frame (�x, �z) relative to the

supports. In the absolute coordinate frame (x,z), the motions of

the pipe can be separated into two parts: axial displacement v(x,

t) and the transverse displacement w(x,t). The axial displacement

of the pipe includes the axial deformation and the axial motion.

The axial deformation of the pipe is quite small compared to the

transverse displacement and can be neglected, so the axial

displacement of the pipe can be expressed as:

v = vtranslation = L(t) (1)

The moving coordinate frame is defined as:

�x = x − L(t);       �z = z;       �t = t (2)

In addition, the relationship of derivative between two

coordinates is expressed as:

∂
∂ x =

∂
∂ �x ,

∂
∂ t =

∂
∂�t +

∂
∂ �x

∂ �x
∂ t =

∂
∂�t −

_L ∂
∂ �x =

∂
∂�t −

_L ∂
∂ x

(
(3)

Utilizing the Newton approach and the relationship of

derivative between two coordinates, the equations of motion in

the moving coordinate have been obtained in the previous work

[Equation (32) in the work by Ni and Luo (Ni et al., 2017), and

details of the derivation can also be found in it]:

EI
∂4 w
∂ �x4

mf V
2 +M½(b − 1) _L�2 − Tl + mf

_V + (mf +mp + bM)€L +
1
2
CT

M
D

� �
_L2 +

∂ po
∂ �x

Ao

� �
(l − �x)

� �
∂2 w
∂ �x2

−

∂ po
∂ �x

Ao + (mf +mp +M)€L

� �
∂w
∂ �x

+ 2½mf V +M(b − 1) _L� ∂2 w
∂ �x ∂�t

+

1
2

M
D

� �
( _LCN + ~CN )

∂w
∂�t

+ (mf +mp +M)
∂2 w
∂�t2

= 0

(4)

where po and Ao are the hydrostatic pressure and the area of

the cross-section of the beam; Tl is the linear axial tension; M is

the lateral direction virtual mass per unit length; b is an “axially
FIGURE 2

The analysis system and the corresponding coordinates.
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added mass coefficient” presented by Gosselin et al. (2007); and

CN, ~CN and CT can be derived from the normal and tangential

drag coefficients by Taylor (1952).

When the direction of gravity and the x-axis are orthogonal,

the gradient of the external pressure along the x-direction can be

neglected, namely,

∂ po
∂ x

= 0 (5)

In this paper, the internal dissipation model of the Kelvin–

Voigt type is introduced to improve the equations of motion. By

introducing Equation (5), the equations of motion [Equation

(4)] can be rewritten as follows:

EI
∂4 w
∂ �x4

+ E*I
∂5 w
∂ �x4 ∂�t

+ mf V
2 +M½(b − 1) _L�2 − Tl + mf

_V +
1
2
CT

M
D

� �
_L2 + (mf +mp + bM)€L

� �
(l − �x)

� �
∂2 w
∂ �x2

− (mf +mp +M)€L
∂w
∂ �x

+ 2½mfV +M(b − 1) _L� ∂2 w
∂ �x ∂�t

+
1
2

M
D

� �
( _LCN + ~CN )

∂w
∂�t

+ (mf +mp +M)
∂2 w
∂�t2

= 0

(6)

where E* is the coefficient of the Kelvin–Voigt

viscoelastic damping.

For further studying the non-linearity of the system, the

linear axial tension Tl is replaced by a non-linear additional axial

tension �T , which can be expressed as follows:

�T = E + E*
∂

∂�t

� �
Ao

2l

Z l

0

∂w
∂ �x

� �2

d�x (7)

Then, the dimensionless equations of motion can be derived

as follows:
∂4 h
∂ x4

+ a
∂5 h

∂ x4 ∂ t

+ u2 + (b − 1)2υ2 − k
Z 1

0

∂h
∂ x

� �2

dx − 2ak
Z 1

0

∂h
∂ x

∂2 h
∂ x ∂ t

dx + b1=2
1 _u +

1
2
CTϵυ

2 + (1 − b3 + bb3)b
−1=2
3 _υ

� �
(1 − x)

� �
∂2 h
∂ x2

− b−1=2
3 _υ

∂h
∂ x

+ 2½b1=2
1 u + (b − 1)b1=2

3 υ� ∂2 h
∂ x ∂ t

+
1
2
ϵ(b1=2

3 υCN + b3�CN )
∂h
∂ t

+
∂2 h
∂ t2

= 0

(8)

The dimensionless parameters are defined as follows:

h =
w
l
, x =

�x
l
, t =

EI
mf +mp +M

 !1=2
�t
l2
= s�t, u

=
mf

EI

� 	1=2
lV , υ =

M
EI

� �1=2

l _L, b1 =
mf

mf +mp +M
, b2

=
mp

mf +mp +M
, b3 =

M
mf +mp +M

= 1 − b1 − b2, ϵ

=
l
D
, �CN =

~CN

s l
, k =

Al2

2I
,a =

I
E(mf +mp +M)

" #1=2
E*

l2
(9)

For simple support, the boundary conditions can be

obtained as follows:

h(x = 0, t) = h(x = 1, t) = 0,   
∂2 h
∂ x2

jx=0 =
∂2 h
∂ x2

jx=1 = 0 (10)
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where h, x and t denote the dimensionless transverse

displacement, axial coordinates, and time, respectively.

Moreover, the internal fluid flow is assumed to be subjected

to a small sinusoidal fluctuation

u = u0½1 + m sin (wpt)�,    _u = u0mwp cos (wpt) (11)

where m is the perturbation amplitude assumed to be small,

wp is the pulsating frequency, and u0 is the mean flow velocity.
3 Numerical solution

Because of the complexity of the equation, especially the

non-linear terms, it is hard to solve Equation (8) directly.

The chosen solution method in this paper is the Galerkin

method. The Galerkin method can easily solve the partial

differential equation (PDE) by transforming the PDE into a

series of ordinary differential equations (ODEs) and has been

proved to be effective in solving the vibration equation of the

pipe conveying fluid system (Païdoussis and Li, 1993;

Païdoussis, 1998; Païdoussis, 2003). On the basis of the

Galerkin procedure, the solution of Equation (8) can be

expressed as:

h(x, t) =o
N

j=1
jj(x)qj(t) (12)

where fj(x) is the comparison function that satisfies the

boundary conditions. For the simply supported pipe in this

paper, fj(x) can be chosen as the normalized eigenfunctions of

the simply supported beam

jj(x) =
ffiffiffi
2

p
sin (jpx) (13)

Utilizing Equation (12), Equation (8) can be rewritten as the

matrix form

M€q + C _q + Kq + Hðq, _qÞ ¼ 0 (14)

where q, _q and €q are the structural displacement, velocity,

and acceleration vectors, respectively; and M, C and K are the

mass, damping, and stiffness matrices of the structure,

respectively. Moreover, H(q, _q) represents the vector associated

with the non-linear term. The elements of the matrices and the

vectors can be obtained as follows:

Mij = eij,

Cij = aaij +2dij b
1=2
1 u+ b −1ð Þb1=2

3 υ
h i

+ 1
2 eijϵ υCNb

1=2
3 +b3�CN

� 	
,

Kij = aij + bij u
2 + b − 1ð Þ2υ2 + �Q

� �
− cij �Q − dijb

−1=2
3 _υ

8>>><>>>:
(15)
Hðq, _qÞ ¼ kðqTbqbq + 2aqTb _qbqÞ (16)
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in which

aij =
Z 1

0
jij

(4)
j dx, bij =

Z 1

0
jij

(2)
j dx = −

Z 1

0
j(1)
i j(1)

j dx; 

cij =
Z 1

0
xjij

2
J dx, dij =

Z 1

0
jij

(1)
j dx, eij =

Z 1

0
jijjdx

(17)

�Q = b1=2
1 _u +

1
2
CTϵυ

2 + (1 − b3 + bb3)b
−1=2
3 _υ (18)

By introducing the state vector y={q1,⋯,qn, _q1,⋯, _qn}
T ,

Equation (14) can be rewritten as:

_y¼ Ay +Q (19)

where

A =
0 I

−M−1K −M−1C

" #
, Q =

0

−M−1H

" #
(20)

Equation (19) can be easily solved by using a fourth-order

Runge–Kutta approach through proper initial conditions. The

fourth-order Runge–Kutta approach is a high-precision

algorithm for solving non-linear ODEs of complex systems

and is widely used in engineering (Li et al., 2015; Yan et al.,

2018; Liu et al., 2021; Wang et al., 2021; Wang et al., 2022; Wang

et al., 2022; Zhou et al., 2022).

In this paper, the axially moving speed of the pipe (hereafter

referred to moving speed for short) is considered in the range of

[0, 20]. Other system parameters are set on the basis of the

previous work (Ni et al., 2017), unless otherwise stated, as follows:

qj = −0:001, j = 1 e 4, qj = 0, j = 5, 6… N ;

_qj = −0:001, j = 1, 2… N ;

b1 = 0:4, b2 = 0:4, b3 = 0:2, b = 0:2,

e = 50, _υ = 0, m = 0:4, k = 5000,a = 0:005,

CN = CT = 0:02,  �CN = 0:002

8>>>>>>>><>>>>>>>>:
(21)

To display the dynamical behaviors of the system, the

bifurcation diagram is constructed. In the bifurcation diagram,

the horizontal axis displays the control parameter (moving

speed, internal mean flow velocity, pulsating frequency, etc.);

the vertical coordinates display the stationary solutions of the

midpoint displacement amplitude of the pipe, namely,

h(0:5, t) =o
N

j=1
j(0:5)qj(t) (22)

where t is sufficient large, so the transient solutions can

be ignored.
Frontiers in Marine Science 05
4 Solution validation
4.1 Convergence of the
Galerkin procedure

For accurate numerical computation, a proper Galerkin

truncation number N of Equation (12) needs to be

determinate first. Consider the case of large moving speed and

internal mean flow velocity, namely, υ=8, u0 = 4.5, and take

pulsating frequency wp as the control parameter, the bifurcation

diagrams under different Galerkin truncations are shown in

Figure 3. According to Figure 3, the bifurcation diagrams are

nearly the same under different Galerkin truncations. Thus, in

this paper, to consume less time, the Galerkin truncation of

Equation (12) is chosen as N=4.
4.2 Solution procedure validation

4.2.1 Simplified modelI: The pipe has no
axial motion

In this part, the simplified model is introduced to further

verify the solution procedure. First, consider that the pipe has no

axial motion, namely, υ = 0, _υ = 0. Utilizing almost the same

system parameters by Ni et al. (2014), i.e.,

b1 = 0.64, b2 = 0.36, b3 = b = 0, u0 = 4.5, and taking

pulsat ing frequency as the control parameter , the

bifurcation diagram result is obtained and shown in

Figure 4. Comparing Figure 4A with a figure in the

previous work [Figure 2 in the work of Ni et al. (2014)],

the results are nearly the same: The main difference lies in

the magnitude of the displacement, which may be caused by

the different damping values.
4.2.2 Simplified modelII: Axially moving pipe
but no internal fluid

Then, consider that there is no internal fluid, namely, u=0,
_u=0, the pipe system is degenerated to the corresponding

beam system. Utilize the same system parameters and

the initial conditions by Li and Ni (Li et al., 2015), i.e., qj =

0.001, j = 1 ∼ 4; qj = 0, j = 5,6…N; _qj = 0, j = 1,2…N; b1 = 0, b2 =
b3 = 0.5, b = 0.2, k = 20000 where the Galerkin truncation N = 8.

Taking moving speed as the control parameter, the bifurcation

diagram result is obtained and shown in Figure 5. Comparing

Figure 5A with a figure in the previous work [Figure 8A in the

work of Li and Ni (Li et al., 2015)], the results are totally

the same.
frontiersin.org

https://doi.org/10.3389/fmars.2022.982374
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Luo and Zhang 10.3389/fmars.2022.982374
A B

C

FIGURE 3

The bifurcation diagrams for the midpoint of the pipe, under different Galerkin truncations N (in which υ=8, u0 = 4.5 and the control parameter
is wp): (A) N=4; (B) N=6; (C) N=8.
A

B

FIGURE 4

The bifurcation diagrams for the midpoint of the pipe with static supports: (A) the present work; (B) Figure 2 in the work of Ni et al. (2014).
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5 Results

5.1 Linear dynamic

In this part, the effect of non-linear additional pipe axial

force and pulsating internal flow is not considered; the linear

dynamic of the system is studied first. For linear dynamic, the

matrix form of Equation (8) is degraded into

M€q + C _q + Kq ¼ 0 (23)

Then, the solution of Equation (23) can be expressed as:

q ¼�q exp (wt) (24)

wherew is the non-dimensional frequency. Substituting Equation

(24) into Equation (23), for non-trivial solution of the equation, the

determinant of the coefficient matrix should be zero, that is,
Frontiers in Marine Science 07
det (w2M + wC + K) = 0 (25)

By solving Equation (25), the eigenvalues of system can be

obtained, where the imaginary part of the eigenvalues represents

the natural frequencies and the real part is associated with

the damping.

Before results are presented, several kinds of critical value

need to be introduced (Ni et al., 2017).

υBi, uBi: the bifurcation critical value of the ith mode. The

imaginary part of eigenvalue (i.e., natural frequency) of the ith

mode is reduced to zero completely at this critical speed while

the bifurcation of the real parts of eigenvalue occurs.

υDi, uDi: the divergence critical value of the ith mode. Both

the imaginary part and the real part (if the bifurcation has been

occurred, we say one branch of the real parts) of the ith mode are

equal to zero at this critical speed and static buckling of the mode

occurs in this case.
A

B

FIGURE 5

The bifurcation diagrams for the midpoint of the pipe, irrespective of the internal fluid: (A) the present work; (B) Figure 2 in the work of Li and Ni
(Li et al., 2015).
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υFi, uFi: the flutter critical value of the ith mode. The system

loses stability via flutter if the moving speed exceeds this

critical speed.

First, let the internal fluid velocity be a constant value, i.e.,

u = 2; the influences of the moving speed on the first three

eigenvalues (denoted as wi, i = 1, 2, 3) are investigated, and the

results are shown in Figure 6. As can be seen in Figure 6, in the

first mode, as the moving speed increases, the system is first

stable, then loses stability by divergence, and, finally, loses

stability by flutter; in the second mode, the system goes

through a process like stable-bifurcation-divergence-flutter; in

the third mode, the system is always stable. These processes are

different from that in the previous work [Figures 7G, H in (Ni

et al., 2017)], attributed to the Kelvin–Voigt viscoelastic

damping. These show that the Kelvin–Voigt viscoelastic

damping has great influence on the second and third modes

but has little influence on the first mode.

Several critical speeds of the system are listed as follows: In

the first mode, the bifurcation critical speed υB1 ≈ 2.559, the

divergence critical speed υD1 ≈ 2.565, and the flutter critical

speed υF1 ≈ 11.93; in the second mode, the bifurcation critical

speed υB2 ≈ 6.256, the divergence critical speed υD2 ≈ 9.788, and

the flutter critical speed υF2 ≈ 14.96.

Then, let the moving speed be a constant value, i.e., υ = 2; the

influences of the internal fluid velocity on the first three

eigenvalues are investigated, and the results are shown in

Figure 7. Comparing Figure 6 with Figure 7, it is easy to find

that the influences of the internal fluid velocity are similar to the

moving speed. Several critical velocities are listed as follows: In

the first mode, the bifurcation critical velocity uB1 ≈ 2.507, the

divergence critical velocity uD1 ≈ 2.51, and the flutter critical

velocity uF1 ≈ 6.12; in the second mode, the bifurcation critical

velocity uB2 ≈ 8.878, the divergence critical velocity uD2 ≈ 9.234,

and the flutter critical velocity uF2 ≈ 13.06.
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5.2 Dynamic responses without pulsating
internal flow

In this part, the influence of the non-linear additional axial

tension on the dynamic response, for the midpoint of the pipe, is

investigated. The pulsating component of the internal flow is

neglected in this part, i.e., u = u0. First, consider the internal flow

velocity below the divergence critical velocity, i.e., u = 2< uB1 ≈

2.507, and take moving speed υ as control parameter, the

bifurcation diagram for the midpoint of the pipe is presented

in Figure 8. As can be seen in Figure 8, when the moving speed is

small, υ ≤ 2.55, the system is stable at the equilibrium position; as

the moving speed increases, 2.55< υ< 10.95, the system motion

becomes stable around the first bucking mode; as the moving

speed goes higher, 10.95 ≤ υ, the system motion becomes

symmetric limit cycle motion. Comparing Figure 8 with

Figure 7, it is not hard to find that, in most of time, the

system motions are quite similar; the difference is that the

complicated motions, such as quasi-periodic motion and

chaotic motion, do not show up in this part.

Furthermore, time histories and phase portraits of several

typical motions are represented in Figure 9. Figures 9A, B

represent the equilibrium position; Figures 9C, D represent the

bucking mode; Figure 9E, F represent the symmetric limit

cycle motion.

Then, consider the case of the moving speed below the

divergence critical velocity, i.e., υ = 2< υB1 ≈ 2.559. Take internal

flow velocity u as control parameter, the bifurcation diagram for

the midpoint of the pipe is presented in Figure 10. As can be seen

in Figure 10, the bifurcation diagram is similar to the first case;

when the internal flow velocity is small, u ≤ 2.51, the system is

stable at the equilibrium position; as the internal flow velocity

increases, the system motion becomes stable around the first

bucking mode.
A B

FIGURE 6

Variations of the non-dimensional frequency w with the moving speed υ, for the first three modes of pinned-pinned pipe with internal fluid
velocity u = 2: (A) the imaginary parts; (B) the real parts.
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5.3 Dynamic responses with pulsating
internal flow

5.3.1 Parametric resonance region
According to the analysis in Section 5.1, for linear dynamic,

when the internal fluid velocity is taken as u = 2, the divergence

critical speed for the first mode is υD1 ≈ 2.565; when the moving

speed is taken as υ = 2, the divergence critical velocity is uD1 ≈

2.51. Therefore, to investigate the influence of the pulsating

internal flow, we consider the case with both internal fluid

velocity and the moving speed below the divergence critical

value, i.e., u = 2 υ = 2. In this case, the first four natural

frequencies of the system are listed as follows:
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w1 = 4:73,   w2 = 35:3,   w3 = 82:64,   w4 = 141:11 (26)

The parameter resonance region of the system with pulsating

internal flow is analyzed according to the Floquet theory. Taking

the effect of pulsating internal flow into account while neglecting

the non-linear axial force, the matrix form of Equation (8)

degrades into the form like that in the linear dynamic case, i.e.,

M€q + C _q + Kq ¼ 0 (27)

Using the state vector

y = fq, _qgT , Equation (27) can be transformed into the

following form:

_y¼ Ay (28)
A B

FIGURE 7

Variations of the non-dimensional frequency w with the internal fluid velocities u, for the first three modes of pinned-pinned pipe with moving
speed υ = 2: (A) the imaginary parts; (B) the real parts.
FIGURE 8

The bifurcation diagram for the midpoint of the pipe (in which u = 2 and the control parameter is the moving speed υ).
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where

A =
0 I

−M−1K −M−1C

" #
(29)

After considering the effect of pulsating internal flow, the

matrix A will be periodic, i.e., A(t) = A(t + T), where T

represents the period of the pulsating internal flow and T =

2p/wp T. Assuming that �y(t) is one solution of Equation (28),

because of the periodic of the matrix A, �y(t+T) should be

another solution of Equation (28), and there exists the

following relationship:

�y(t + T) = A ̄(t)�y(t) (30)
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where Ā(t) can be obtained by solving Equation (28)

through certain initial conditions as

�y1 tð Þ, �y2 tð Þ,⋯, �y2n tð Þ½ � =

1 0 ⋯ 0

0 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

2666664

3777775
2n�2n

(31)

Then, the parameter resonance region of the system can be

investigated through the eigenvalue analysis of the matrix Ā(t) :
If the absolute value of all the eigenvalues is less than 1, then the

system is stable; otherwise, the parameter resonance instability

may occur.
A B

D

E F

C

FIGURE 9

Time histories and phase portraits of several typical motions (in which u = 2). (A, B) υ = 2; (C, D) υ = 4.5; (E, F) υ = 12.
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The parameter instability region diagram of the system is

shown in Figure 11, in which the abscissa is the pulsating

excitation frequency, the ordinate is the pulsating excitation

amplitude, and the shadow part in the figure is the area where

the system parameter instability occurs. As can be seen in

Figure 11, when the pulsating amplitude is small, i.e., m ≤ 0.1,

the system is stable; as the pulsating amplitude increases, when

the pulsating frequency is twice the first natural frequency (wp ≈

2w1), the first principal parametric resonance occurs; as the

pulsating amplitude increases further, when m ≈ 0.23, the
Frontiers in Marine Science 11
secondary resonance occurs when the pulsating frequency is

close to the first natural frequency (wp ≈ w1); when m ≈ 0.34, the

second principal parametric resonance occurs (wp ≈ 2w2); when

m ≈ 0.57, the combination resonance occurs (wp ≈ w1 + w2).

5.3.2 Non-linear dynamic response
In this section, the non-linear dynamic responses of the

system are further studied by considering the additional axial

tension. In the case where u = 2, υ = 2, the bifurcation diagrams

for the midpoint of the pipe with different pulsating amplitudes
FIGURE 10

The bifurcation diagram for the midpoint of the pipe (in which υ = 2 and the control parameter is the internal flow velocity u).
FIGURE 11

The parameter instability region diagram of the system.
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A

B

C

FIGURE 12

The bifurcation diagrams for the midpoint of the pipe with different pulsating amplitudes (in which u = 2, υ = 2, and the control parameter is the
pulsating frequency wp). (A) m = 0.2; (B) m = 0.4; (C) m = 0.6.
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are shown in Figure 12. When the pulsating amplitude is small,

i.e., m = 0.2, the bifurcation diagram for the midpoint of the pipe

is simple, which can be seen in Figure 12A. In most of pulsating

frequencies, the system is stable; when wp = 7.4, the Hopf

bifurcation occurs, and in the range of 7.4 ≤ wp ≤ 11.4, the

system undergoes period-1 motion, which is caused by the first

principal parametric resonance (wp ≈ 2w1). When m = 0.4, the

bifurcation diagram for the system becomes complex, and the

non-linear responses of the system can be denoted as three

regions, which can be seen in Figure 12B. Region I indicates the

early state of the bifurcation diagram. In region I, the system

motions are complicated: When wp< 2.75, multiple periodic

motion and chaotic motion occur, and these may be caused by

low frequency resonance; when 2.75 ≤ wp ≤5, period-1 motion

occurs due to the secondary resonance (wp ≈ w1). Region II

represents that the system is dominated by the first principal

parametric resonance, and the system undergoes period-1

motion. Region III represents that the system is dominated by

the second principal parametric resonance (wp ≈ w1), and the

system motion is also period-1 motion. When m = 0.6, the

bifurcation diagram for the system is more complicated. When

pulsating frequency is small, the system goes from chaotic

motion to period-1 motion, but the Hopf bifurcation does not

show up between region I and region II. The reason is that the

secondary resonance region may be merged with the first

principal parametric resonance region. When 37.8 ≤ wp ≤41, a

new region shows up, the Hopf bifurcation occurs due to the

combination resonance (wp ≈ w1 + w2), and this region is

denoted as region IV. As the pulsating frequency increases,

region III and the Hopf bifurcation show up again due to the

second principal parametric resonance. The range of region III

with m = 0.6 is much larger than that with m = 0.4.

Because the dynamic behavior of the system is abundant

when the pulsating amplitude is large, i.e., m = 0.6, the

displacement and velocity responses of the midpoint of the

pipe, when the motion state is stable, are obtained to further

analyze the dynamic behavior of the system. Several typical time

history and PSD maps of the midpoint of the pipe at different

pulsating frequencies are shown in Figure 13. It is noted that the

PSD map is unilateral spectrum, where the x-coordinate is the

unilateral frequency f = wp/2p, where f1 and f2 represent the first

two order unilateral natural frequencies of the system,

respectively. Corresponding phase trajectory maps and

Poincaré maps of the system at different pulsating frequencies

are shown in Figure 14. As can be seen in Figures 13A, and 14A,

when wp = 8, the system may undergo chaotic motions: The

displacement time curve presents strong randomness; the PSD

map shows broadband and noise characteristics; the phase

trajectory is a set of curves; the Poincaré map presents a series

of dense points with fractal structure. As can be seen in

Figures 13B, 14B, when wp = 10, the system undergoes period-

1 motion: The displacement time curve is simply periodic;

the PSD shows clearly narrow-band characteristics and the
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peaks are near the odd number of natural frequencies

corresponding to the first principal resonance (f1, 3f1, 5 f1); the

phase trajectory is a single closed curve; the Poincaré map only

has two points. As can be seen in Figures 13D, 14D, when wp =

70, the system motion characteristics are similar to the case

when wp = 10, and the main difference is that the former system

is affected by the second principal parametric resonance; thus,

the peaks of PSD are near the frequencies corresponding to the

second principal resonance (f2, 3f2, 5 f2). As can be seen in

Figures 13C, 14C, when wp = 39, the system undergoes quasi-

periodic motion: The composition of the displacement time

curve and the PSD map are complicated because of the

combination resonance (f1 +f2); the phase trajectory is a series

of closed curves; the Poincaré map presents a closed curve

constituted by a series of dense points.
5.3.3 Parametric analysis
In this section, the influence of several key system

parameters on the non-linear responses is analyzed, including

the axially added mass coefficient, the non-linear axial force

parameters, and the system motion parameters. For better

studying the influence of the system parameters on the non-

linear responses, the values of the internal fluid velocity, the

moving speed, and the pulsating amplitude are chosen as u = 2,

υ = 2 and m = 0.6, respectively, and the other system parameters

are set on the basis of Equation (21), unless otherwise stated.
5.3.4 The axially added mass coefficient

The influence of the axially added mass coefficient b on the

bifurcation diagram for the midpoint of the pipe is shown in

Figure 15. As can be seen in Figure 15, the variation of the system

motion regions shows great differences. As the axially added

mass coefficient b increases, for region I, the displacement

amplitude decreases; for region II, the displacement amplitude

and the range of the region increase; for region III, the whole

region moves a little to the right; for the region IV, the

displacement amplitude increases.
5.3.5 The non-linear axial force parameter

The non-linear axial force parameters include the non-linear

axial force coefficient ҡ and the Kelvin–Voigt damping a. The
influence of the non-linear axial force coefficient ҡ on the

bifurcation diagram for the midpoint of the pipe is shown in

Figure 16. As can be seen in Figure 16, with the increase of the

coefficient ҡ, the overall shapes of the bifurcation diagrams do

not change much, the displacement amplitudes of all the four

regions decrease, and the range of region III increases a little.

The influence of the Kelvin–Voigt damping a on the

bifurcation diagram for the midpoint of the pipe is shown in

Figure 17. As can be seen in Figure 17, with the increase of the

Kelvin–Voigt damping a, regions I and II do not change a lot,

but regions III, IV, and V show great variations. When a = 0.002,
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A

B

D

C

FIGURE 13

Time history (left) and power spectral density map (right) of the midpoint of the pipe at different pulsating frequencies (when m = 0.6). (A) wp =
8; (B) wp = 10; (C) wp = 39; (D) wp = 70.
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A

B

D

C

FIGURE 14

Phase trajectory map (left) and Poincaré map (right) of the system at different pulsating frequencies (when m = 0.6). (A) wp = 8; (B) wp = 10; (C)
wp = 39; (D) wp = 70.
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in region III, a new sub-region appears over a narrow frequency

range (58.5 ≤ wp ≤ 63), which is denoted as region V. In region

V, the system undergoes period-2 motion. When a = 0.004, the

range of regions III and IV decreases a little. When a = 0.006,

regions IV and V both disappear, and the range of region III

decreases; when a = 0.008, the range and the displacement

amplitude of region III decrease further.

5.3.6 System motion parameters

The system motion parameters include the internal fluid

velocity u and the moving speed υ. In the cases above, we

consider the case of both the internal fluid velocity and the

moving speed below the divergence critical value, i.e., u = 2 and

υ = 2, respectively. In this subsection, we will first discuss the case

that the moving speed is higher than the divergent critical velocity,

and the bifurcation diagram is shown in Figure 18. As can be seen

in Figure 18, the system motions are very complex: When the

pulsation frequency is small (0< wp<11), the system motion is

periodic, but its equilibrium position is the buckling mode; this

kind of motion is so-called the asymmetric periodic motion; then,

the system experiences chaotic motion and period-1 motion

alternately (11< wp<22), where the chaotic motion only occurs a

little while; after that, the system undergoes chaotic motion in a
Frontiers in Marine Science 16
long region (22< wp<29.5); as the pulsation frequency increases

further (wp<30), the system returns to asymmetric periodic motion.

Then, the case that the internal fluid velocity is higher than the

divergent critical velocity is also discussed, and the bifurcation

diagram is shown in Figure 19. As can be seen in Figure 19, the

system motions are more complex: When the pulsation frequency

is small (0< wp<12), the system undergoes asymmetric periodic

motion briefly; then, the system experiences chaotic motion and

period-1 motion alternately; this region is similar to the early

region in Figure 18; after that, the system undergoes period-1

motion in a long region (12< wp<38); then, the system undergoes

chaotic motion, multiple periodic motion, and quasi-periodic

motion (39< wp<60); these two regions are quite similar to the

corresponding regions (12< wp<60) in Figure 4; as the pulsation

frequency increases further (wp<65), the system goes through

multiple periodic motion and period-1 motion and finally returns

to asymmetric periodic motion.
6 Conclusion

In this paper, both linear and non-linear dynamics of a slender

and uniform pipe conveying pulsating fluid, which is axially
A B

DC

FIGURE 15

The bifurcation diagram for the midpoint of the pipe with axially added mass coefficient b (in which u = 2, υ = 2, m = 0.6, and the control
parameter is the pulsating frequency wp). (A) b = 0.01; (B) b = 0.03; (C) b = 0.05; (D) b = 0.07.
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moving in an incompressible fluid, are comprehensively studied.

The vibration equations of the system are established by

considering various factors, including a coordinate conversion

system, an “axial added mass coefficient” describing the additional

inertia forces caused by the external fluid, the Kelvin–Voigt

viscoelastic damping, a kind of non-linear additional axial

tension, and the pulsating internal fluid. The vibration

equations are discretized by the Galerkin procedure and solved

by the Runge–Kutta approach, and the validity of the solution

procedure is carefully checked. After that, the linear and non-

linear responses of the system are studied deeply, especially the

non-linear responses of the system under the pulsating internal

flow. The results of this paper reveal many new phenomena.
Fron
First, the linear response of the system is studied without

considering the non-linear additional pipe axial force

and the pulsating internal flow. The variations of the

first three eigenvalues under varied moving speeds and

internal fluid velocities are investigated, respectively.

The critical velocities of the system are obtained as

well. Moreover, the results show that the Kelvin–Voigt
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viscoelastic damping has greater influences on the

second and third modes than that on the first mode.

Second, the non-linear dynamic response is studied

considering the non-linear additional pipe axial force

while the pulsating component of the internal flow is

neglected. The results show that the bifurcation diagram

of the system is simple compared with that in the previous

study (Li et al., 2015); the complicated motions, such as

quasi-periodic motion and chaotic motion, do not show up.

Third, the non-linear dynamic responses of the system

under pulsating internal flow are studied. The

parameter instability region diagram of the system is

obtained on the basis of the Floquet theory, and the

system motions in the corresponding regions are

investigated by bifurcation diagram, time history

curve, PSD, phase trajectory, and Poincaré map. The

results show that, as the pulsating amplitude increases,

the system will experience the first and second principal

parametric resonances, the secondary resonance, and

the combination resonance. Moreover, abundant system

motions can be observed, including period-1 motion,
A B

DC

FIGURE 16

The bifurcation diagrams for the midpoint of the pipe with different non-linear axial force coefficient ҡ (in which u = 2, υ = 2, m = 0.6, and the
control parameter is the pulsating frequency wp). (A) ҡ = 10,000; (B) ҡ = 20,000; (C) ҡ = 30,000; (D) ҡ = 50,000.
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A B

DC

FIGURE 17

The bifurcation diagrams for the midpoint of the pipe with different Kelvin–Voigt damping a (in which u = 2, υ = 2, m = 0.6, and the control
parameter is the pulsating frequency wp). (A) a = 0.002; (B) a = 0.004; (C) a = 0.006; (D) a = 0.008.
FIGURE 18

The bifurcation diagram for the midpoint of the pipe when the moving speed is higher than the divergent critical velocity (in which m = 0.6, u = 2, υ =
4.5, and the control parameter is the pulsating frequency wp).
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Fron
quasi-periodic motion, and chaotic motion. Finally, the

influence of several key system parameters on the non-

linear responses is analyzed.
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FIGURE 19

The bifurcation diagram for the midpoint of the pipe when the internal fluid velocity is higher than the divergent critical velocity (in which m =
0.6, u = 4.5, υ = 2, and the control parameter is the pulsating frequency wp).
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