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Regional patterns in demersal
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Regional patterns of fish diversity, abundance, distribution, and assemblage

composition are driven by a combination of biotic and abiotic conditions in the

marine environment, but these conditions can be altered through anthropogenic

activities, such as those associated with oil and gas extraction. The present study

utilises data on fish relative abundance and diversity obtained from 1546 baited

remote underwater video deployments conducted between 2004 – 2019 in

depths of 9 – 170 m across 2000 km of coastline in north-west Australia on

natural habitats and subsea pipelines to understand the influence of oil and gas

infrastructure on fish assemblages. A total of 450 fish taxa from 56 families was

observed, with populations dominated by generalist and invertebrate carnivore

taxa. At the regional scale, subsea pipelines had lower diversity (lower taxonomic

richness) than natural environments, but possessed a higher abundance of

piscivorous and herbivorous fish taxa. Clear patterns in fish assemblage

composition were observed in multivariate analyses, reflecting the proximity of

oceanic shoals and banks, depth, and to a lesser extent, oil and gas infrastructure.

Shallow-water and close to shoals assemblages were characterised by a diversity

of site-attached (e.g., wrasses, tuskfish), reef-associated taxa (e.g., emperors).

Mesophotic fish assemblages were characterised by commercially important

(e.g., goldband snapper), wide-ranging (e.g., sharks) and sand-affiliated (e.g.,

toadfish, threadfin bream) taxa. Proximity to pipelines and platforms ranked low

as predictors in the multivariate analyses suggesting a negligible regional influence

of these structures on fish communities in comparison to depth and shoal habitats.

Local-scale influences of subsea infrastructure, however, may be important for

some fish species (infrastructure vs. immediate surrounds). Our study highlights the

influence of abiotic factors on regional-scale patterns in fish assemblage structure

across north-west Australia.

KEYWORDS

multivariate regression trees (MRT), subsea oil and gas infrastructure, decommissioning,
north-west Australia, species richness
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Introduction

Fish-habitat relationships can govern assemblage structure

and vary spatially, with such variability manifesting in

contrasting patterns of ecosystem functioning and values

across a region (Underwood et al., 2000; Bradley et al., 2021).

This can lead to diverging perceptions of the importance of

different habitats for fish and the impact that their loss or

modification may have on species survival and community

maintenance (Zanini et al., 2009; Randin et al., 2020). While

the underlying mechanisms for variation in fish assemblage

structure are often unclear (Bradley et al., 2021), at fine spatial

scales, they likely reflect population processes (e.g. competition,

predation, settlement, recruitment mortality; Hyndes et al., 1996;

Hyndes et al., 2003; Willis & Anderson, 2003; Almany, 2004;

Hixon & Jones, 2005; Galaiduk et al., 2013) and at broader

spatial scales may reflect environmental factors (e.g. depth,

temperature, complexity; Gratwicke & Speight, 2005; Tuya

et al., 2011; Langlois et al., 2012; Galaiduk et al., 2017a;

Bradley et al., 2021). Understanding the processes that

influence fish assemblage structure from fine scale to those

that occur across seascapes is required to disaggregate

population processes and environmental drivers, with this

information also key to informing conservation and

resource management.

A challenge for fisheries and conservation managers is to

understand the status and trend of fish assemblages, not only

considering population processes and environmental drivers,

but the multiple natural and anthropogenic pressures that fish

assemblages may face such as climate change (Pratchett et al.,

2011) and cyclones (Gilmour et al., 2019). Another type of

anthropogenic influence in the marine environment globally, is

the presence and operation of offshore oil and gas (O&G)

infrastructure. These structures are placed strategically on

continental shelfs (Claisse et al., 2014; Fujii, 2015) where crude

oil and natural gas pockets are identified (van Elden et al., 2019)

and typically comprise pipelines, wells, platforms or floating

facilities with substantial additional subsea infrastructure (e.g.

umbilicals, flowlines, etc) deployed to support these activities.

The addition and subsequent removal (e.g., through the

decommissioning of O&G infrastructure) of this prominent

artificial habitat is likely to have a substantial impact on

marine communities (Meyer-Gutbrod et al., 2019), including

fish (Claisse et al., 2015), yet such impact assessment research is

missing from published literature (but see Coolen et al., 2020;

Meyer-Gutbrod et al., 2020).

The fish assemblages of natural shallow marine ecosystems

across north-west (NW) Australia have been relatively well

studied (Wilson et al., 2012; Evans et al., 2014; McLean et al.,

2016), particularly in comparison to those present in mesophotic

depths and beyond (Currey-Randall et al., 2021; Saunders et al.,

2021; Wellington et al., 2021). Unique and diverse fish
Frontiers in Marine Science 02
communities exist across the inshore shallow coral reefs,

offshore emergent oceanic reefs, oceanic banks and shoals of

the region (Heyward et al., 2012; Moore et al., 2014; Wilson

et al., 2014; Moore et al., 2017) with lower fish diversity in sand-

dominated regions offshore (Currey-Randall et al., 2021;

McLean et al., 2021). The NW supports a number of

commercial finfish fishery operations such as Northern

Demersal Scalefish Managed Fishery, Pilbara Demersal

Scalefish Fisheries and Northern Territory Demersal fishery as

well as several others throughout this region (Newman et al.,

2020; Gaughan & Santoro, 2021). Habitat, depth and latitude

have a strong influence on fish assemblage structure across this

region (McLean et al., 2016) and fish species richness declines

with increasing latitude (Wellington et al., 2021). In recent years,

research into fish-habitat relationships in the NW has extended

to O&G infrastructure with the goal of quantifying communities

that exist on previously unstudied structures. This region

possesses a significant O&G precinct valued at $37 billion

(DMIRS, 2021) wi th construct ion , operat ion and

decommissioning activities all potentially interacting with

diverse marine ecosystems in this region. A diversity of fish

assemblages have been observed to associate with subsea wells

(Cummings et al., 2011; Fowler et al., 2015; McLean et al., 2018),

pipelines (McLean et al., 2017; Bond et al., 2018a; Bond et al.,

2018b; McLean et al., 2020) and platforms (Pradella et al., 2014;

McLean et al., 2019; Thomson et al., 2021). Few studies have

compared local fish assemblages on subsea structures to those in

natural ecosystems (Bond et al., 2018a; Bond et al., 2018b;

McLean et al., 2021; Schramm et al., 2021), with a lack of

comparable data from infrastructure and natural ecosystems

remaining one of the biggest drawbacks to understanding the

influence of O&G structures on marine communities.

The present study represents the first large-scale

investigation of the relative influence of environmental

predictors including O&G infrastructure in structuring fish

assemblages in NW Australia. Utilising comparable data from

subsea pipelines and natural habitats, we aimed to: i) compare

fish abundance and species richness on subsea pipelines to those

observed in neighbouring natural seabed environments, ii)

investigate the relative influence of environmental predictors

in structuring fish assemblages in NW Australia and, iii)

understand how proximity to oil and gas infrastructure

(platform jackets and pipelines) may influence these

fish assemblages.
Methods

Study locations

The study focussed on three subsea pipelines (Griffin, Echo

Yodel and Bayu-Undan) located within natural habitats in
frontiersin.org
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Australia’s NW marine estate (Figure 1). Data for pipelines and

surrounding ecosystems were contributed by three independent

studies, namely Bond et al., 2018a (Griffin), Bond et al., 2018b

(Echo Yodel) and McLean et al., 2021 (Bayu-Undan), which was

combined with historical data collected by the Australian

Institute of Marine Science (AIMS) on the fish faunas

occupying a range of natural habitats across the NW

shelf (Table 1).
Frontiers in Marine Science 03
Fish surveys

All surveys used baited remote underwater video systems

(BRUVs) to sample fish communities according to standard

protocols (Langlois et al., 2020). This included daytime surveys

(one hour after sunrise to one hour before sunset), spacing of

neighbouring deployments by at least 400 m, seabed filming

times of 60 minutes and the use of ~1 kg of crushed pilchards
A

B

C

FIGURE 1

Location of individual BRUV deployments for which data were included in the present study from (A) across the region, (B) in the north and
including the Bayu-Undan pipeline and, (C) in the north-west including Griffin and Echo Yodel pipelines and from historical AIMS BRUVs
deployments in natural habitats. The studies for which the BRUVs data were collected are documented in Table 1. Depth raster sourced from
Geoscience Australia 250 m bathymetry grid (Whiteway, 2009).
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(Sardinops sp.) as bait. EventMeasure software (www.seagis.com.

au) was used to annotate individual fish within 8 m from the

camera system, identify each fish to the finest taxonomic unit

possible, and to obtain measures of relative abundance which

was expressed as MaxN (the greatest abundance of each

taxonomic unit record in a single frame of a deployment;

Priede et al., 1994). Where fish could not be identified reliably

to species level, they were recorded to the next lowest taxonomic

level possible (typically genus or family, e.g., Nemipterus spp.).

Use of BRUVs provides information on carnivorous fish species

without precluding sampling of herbivores or prey species, yet

tends to under-sample (as do other visual methods) very cryptic

and small-bodied fishes such as Gobiidae (Watson et al., 2005;

Harvey et al., 2007). Fishery target species were defined as those

that are retained by commercial fisheries that operate in the NW

region (Gaughan and Santoro, 2021). An additional range of fish

metrics was recorded to facilitate investigation of how the

trophic roles of species and assemblages compared across

different habitats in the region. All species were assigned to

feeding guilds based on dietary information obtained from

Fishbase (Froese and Pauly, 2021a; Froese and Pauly, 2021b).
Environmental predictors

A range of environmental predictors considered to be

potential ecological drivers for fish diversity and abundance

were measured in order to examine their potential to predict

the observed patterns in the fish assemblage structure across

NW Australia.

Distance to natural and artificial features
We calculated proximity in metres between individual

BRUV deployments and each of the nearest neighbour of a

range of natural and artificial features: i) inshore shallow coral

reefs (hereinafter reef; Kordi et al., 2016; UNEP-WCMC et al.,

2021), ii) emergent oceanic reefs, oceanic banks, and oceanic

shoals (hereinafter shoal; Moore et al., 2017; Heyward &

Radford, 2019), as well as oil and gas iii) platform and iv)

pipeline using the Euclidean distance tool in ArcGIS Pro 2.8.

Sea surface temperature
Daily sea surface temperature (SST) data were acquired for

all BRUV deployments from Modis Aqua Level 3 product

satellite imagery with a spatial resolution of 500 m. The

average SST for each historical campaign is indicated in

Table 1. The nearest neighbour pixel extraction approach was

used for deployments where SST data were not directly available

using the NASA Appears application programming interface.

This was necessary because data may not be available for a

myriad of reasons (e.g., clouds, refraction and reflection, etc).

The Level 3 product is geometrically and radiometrically
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corrected and cleaned to remove cloud artefacts with the SST

calculated from surface reflectance bands using the algorithm

outlined in Brown et al. (1999). Daily SST values from the time-

series (2004-2019) were then averaged for each BRUV

deployment location.

Depth and geomorphology gradients
Seafloor depth and structural complexity were extracted and

estimated for each BRUV deployment. Structural complexity

variables (such as the mean or slope) were calculated from a

250 m resolution bathymetry raster (Whiteway, 2009) using

ArcGIS Pro 2.8, custom-written code in Python, and terrain

analysis techniques (Holmes et al., 2008). These techniques

quantify the relationships among depth values in small

neighbourhoods to reveal textural differences. Calculations are

run on a small number of neighbourhood cells surrounding each

pixel and the value assigned to the central cell in the output, thus

creating a derivative dataset (see Cure et al., 2021; Currey-

Randall et al., 2021; McLean et al., 2021) for additional

information on secondary rasters). This produced a set of 23

secondary rasters that describe the structure and complexity of

the seafloor (Supplementary Data Table S1). We then used a

principal component analysis (PCA; Fung & LeDrew, 1987) and

a geomorphic gradient isoclassification (Isoclass; Richards & Jia,

2006) to reduce the dimensionality of the secondary rasters and

combine them into geomorphic clusters based on increasing

levels of seafloor complexity (see Galaiduk et al., 2019; McLean

et al., 2021 for additional details on geomorphic gradient

analysis). We classified the seafloor complexity into three

categories: ‘pipeline’, to represent the pipeline artificial habitat

which was assigned based on a priori allocation of BRUV

deployment locations from the sampling designs for each

study; ‘low complexity off pipeline’ which consisted of the

bottom two geomorphic clusters from the Isoclass analysis

derived for natural habitats; and ‘high complexity off pipeline’

which included the top two geomorphic clusters of the natural

seafloor complexity from the Isoclass analysis (hereafter

pipeline, low and high complexity, respectively). All ‘off

pipeline’ deployments are those >400 m away from subsea

pipelines while ‘pipeline’ deployments were those specifically

targeted at pipelines via either vessel’s echo sounder, GPS

coordinates or visual observation in the camera systems, often

with high accuracy (see Bond et al., 2018a; Bond et al., 2018b;

McLean et al., 2021).
Data analyses

To test for differences among seafloor complexity categories

and the relative abundance of feeding guilds of fish (summed

MaxN’s for each deployment into six feeding guilds) we used a

one way PERMANOVA analysis in PRIMER 7 with
frontiersin.org
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PERMANOVA extension (Anderson et al., 2008). We applied

dispersion-based weighting first on the raw MaxN data to down

weight the effects of highly abundant, schooling and clustered

species (Clarke et al., 2006). We subsequently performed the

PERMANOVA analysis which accounts for an unbalanced

design (Anderson et al., 2008) using unrestricted permutation

of the down-weighted data based on Bray-Curtis distance matrix

with 9999 permutation and type III sum of squares. A post-hoc

pairwise comparison was completed to investigate significant

statistical results of the PERMANOVA. In addition, we ran

individual PERMANOVA tests on each feeding guild separately

(using the same method described above) to investigate guild-

specific patterns.

To examine whether variation in fish assemblage

composition could be predicted by a range of environmental

variables, we performed two different tests, 1) distance-based

linear model (DISTLM; McArdle and Anderson, 2001) and 2)

multivariate regression tree (MRT) analysis (De’ath, 2002;

Ouellette et al., 2012).

Distance-based linear model
A DISTLM was used to partition multivariate variability in

fish abundance that is explained by the environmental predictors

included in the model (seafloor complexity, depth, mean SST,

distance to platform, distance to pipeline, distance to shoal,

distance to reef), with the best model visualised via distance-

based redundancy analysis (dbRDA; McArdle & Anderson,

2001; Anderson et al., 2008) using the PRIMER-E statistical

software package. Seafloor complexity was a categorical variable

in the analysis and therefore assigned numerical values with 1 =

low, 2 = high and 3 = pipe. Prior to undertaking the DISTLM
Frontiers in Marine Science 05
analysis , a draftsman plot was produced to detect

multicollinearity. This resulted in the removal of latitude and

longitude from the analysis as each was unsurprisingly

correlated with mean SST. The best model was selected using

a stepwise procedure in which the relative contribution of each

predictor in explaining fish abundance was assessed for 1)

statistical significance using marginal tests (from 9999

permutations) and 2) percentage contribution of the variance

explained (R2) of each set of variables (Anderson et al., 2008).

Adjusted R2 was used as the selection criterion as it considers

predictor variables with different numbers of levels.

Multivariate regression tree
MRT is a type of constrained clustering that recursively

partitions the dataset into homogenous clusters using

explanatory environmental variables, is robust to the co-

variation in explanatory variables and is well-suited for

modelling complex linear and nonlinear relationships (De’ath

& Fabricius, 2000; De’ath, 2002). After excluding rare species

(those that occurred less than five times in the dataset), fourth

root transformed MaxN fish abundance was the response

variable in the MRT with all available environmental variables,

including the seafloor complexity variables (low, high, pipe),

used as predictors. Rare species tend to amplify the importance

of rare habitat types and so by removing them we avoided

biasing results based on a shared common absence of rare

species, instead concentrating specifically on common

conditions found throughout the region (Gust et al., 2001).

In each split of the MRT, the machine learning algorithm

considered all explanatory variables and selected the variable

that maximised the reduction in group heterogeneity. The most
TABLE 1 A description of BRUVs data used and its source.

Data Survey year # BRUV deployments Depth range (m) Mean SST
(°C)

Reference

Griffin pipeline & surrounds Mar-Apr 2017 269 9-135 25.85 ± 0.01 Bond et al., 2018a

Echo Yodel pipeline & adjacent Apr 2017 69 108-140 26.98 ± 0.002 Bond et al., 2018b

Bayu-Undan pipeline & surrounds Sept-Oct 2019 198 22-121 29.03 ± 0.005 McLean et al., 2021

Historical AIMS data

Oceanic Shoals: biodiversity
assessment

Jan-Feb 2004 192 21-120 28.94 ± 0.05 Unpublished AIMS data

ATSEA Timor Sea shoals Jun-Jul 2011 84 19-43 29.01 ± 0.01 Da Silva & Luis Pereira, 2011

NERP: Oceanic shoals CMR Sep-Oct 2012 47 31-76 28.94 ± 0.04 Nichol et al., 2013; Przeslawski et al.,
2013

Rankin Bank & Glomar shoal Nov 2013 142 19-90 26.96 ± 0.02 AIMS, 2014

NW shoals May 2014 76 23-158 28.86 ± 0.04 Heyward et al., 2015

Barossa environmental program Sep-Oct 2015 95 16-88 28.54 ± 0.02 Heyward et al., 2017

Rankin GWF Nov-Jan 2017 211 19-91 26.96 ± 0.02 Currey-Randall et al., 2019

Conoco Barossa environmental study Sep-Oct 2017 63 27-77 28.74 ± 0.09 AIMS, 2016

Ancient coastline KEF May-Oct 2019 100 62-170 26.86 ± 0.63 Currey-Randall et al., 2021

Range/total 2004-2019 1546 9-170 25.8-29
Bold text refers to range/total of the column. SST refers to sea surface temperature.
frontiersin.org

https://doi.org/10.3389/fmars.2022.979987
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Galaiduk et al. 10.3389/fmars.2022.979987
parsimonious tree (i.e. the simplest possible tree given the data)

was selected using cross-validation and the 1-SE rule (De’ath &

Fabricius, 2000). To identify representative species in each

community derived from the MRT, Dufrê ne-Legendre index

(DLI) values were calculated for all species across all leaves of the

tree (Dufrene and Legendre, 1997). Each species was assigned to

the terminal node (leaf) of the tree where its DLI value was

highest. Species with the highest DLI values are considered

representative of that assemblage, and the spatial extent of the

assemblage indicated the region where the species was

predominantly found (DeVantier et al., 2006). This analysis

was performed in R statistical software (R Core Team, 2019),

using the packagesmvpart (De’ath, 2011), vegan (Oksanen et al.,

2013) and labdsv (Roberts & Roberts, 2016).

Species diversity on pipelines and in natural
habitats

To make a broad comparison of alpha diversity (i.e., species

richness) between fish communities on pipelines and those

observed in natural habitats, individual BRUV deployments

were grouped by habitat type (low/high complexity

seafloor and pipeline). We derived species rarefaction and

extrapolation sampling curves for the observed species

richness in each habitat type using iNEXT package in R

(Hsieh et al., 2016). The species richness was calculated based

on observed cumulative number of individuals and unique

species for the three habitat types. This approach allowed for

an unbiased comparison of species richness across assemblages

irrespective of sample size or sampling effort (Colwell et al.,

2012; Chao et al., 2014).
Results

The 1546 BRUV deployments detected a total of 90,435

individual fishes from 450 taxa spanning 56 families. The most

ubiquitous taxa across the region were Nemipterus spp.

(threadfin bream; present on 37% of BRUV deployments),

Abalistes stellatus (starry triggerfish; 28% of BRUVs),

Carangoides coeruleopinnatus (onion trevally; 27%), Lethrinus

rubrioperculatus (spotcheek emperor; 27%) and Sufflamen

fraenatum (bridled triggerfish; 25%) (Supplementary Data

Table S2). The most numerically abundant fishes were

Parupeneus heptacanthus (opalescent goatfish; n = 5253),

Nemipterus spp. (n = 3015), Scarus dimidiatus (bluebridled

parrotfish; n = 2712), Pomacentrus nagasakiensis (blue-scribble

damsel; n = 2598), Caranx sexfasciatus (bigeye trevally; n =

2315) and Lutjanus fulviflamma (blackspot snapper; n = 2083)

(Supplementary Data Table S2). The most abundant and

commonly observed feeding guild of fishes was generalist

carnivores (n = 30,238 individuals on 99% BRUVs) followed

by invertebrate carnivores (n = 24,754 on 80% BRUVs). While

zooplanktivores were the next most abundant (n = 23,053 on
Frontiers in Marine Science 06
40% BRUVs), piscivores were the third most ubiquitous feeding

guild across the samples (n = 2329 on 51% of BRUVs)

(Supplementary Data Table S2).

Mean abundance of specific feeding guilds varied

significantly among seafloor complexi ty categories

(PERMANOVA: MS = 4734.9, Pseudo-F = 9.85, P(perm) =

0.0001), but not for zooplanktivores, invertebrate carnivores,

and generalist carnivores (P(pairwise) = 0.12, 0.85, 0.35,

respectively). The mean abundance of piscivores differed

between all seafloor complexities (all t > 2.4, all P(pairwise) <

0.02), largely due to being most abundant on pipelines and least

abundant on low complexity seafloor (Figure 2). Piscivores (see

Supplementary Data Table S2) typically included large-bodied

taxa such as sharks, barracuda, groupers, and tuna. The

abundance of algae/invertebrate consumers was greater on

high complexity seafloor than low complexity (t = 2.46, P

(pairwise) = 0.016) (Figure 2). Herbivore abundance was similar

on low and high complexity seafloor (P(pairwise)= 0.95) but higher

on pipelines (both t > 3.9, P(pairwise) < 0.001) with this group

represented by many parrotfish and surgeonfish species.

Marginal tests from DISTLM suggested a significant

relationship between the variation in fish assemblages (all p <

0.01) and all the potential environmental predictors. Depth

explained the greatest amount of variation in fish abundance

(5%). The variables that increased the value of adjusted R2 after

depth were distance to shoal (3%, 8% cumulative), mean SST

(2%, 10% cumulative), distance to pipeline (2%, 11.9%

cumulative), distance to platform (1%, 13% cumulative),

distance to reef (0.8%, 13.8% cumulative) and then seafloor

complexity (0.7%, 14.6% cumulative). All conditional tests

associated with these sequential additions were significant (p <

0.01). The best solution in the stepwise model included all seven

variables and explained 14% of the variation in fish relative

abundance (Figure 3). The first two dbRDA axes captured

~63.5% of the variability in the fitted model (primarily along

axis 1 - horizontal) and 9.2% of total variation in the data

(Figure 3). The dbRDA plot clearly illustrates separation in fish

assemblages across the sampling region (north = offshore

Broome, Darwin; south = Pilbara, Dampier; Figure 1),

reflecting these relationships with depth, distance to shoals,

mean SST and other factors, with patterns across the different

habitats (structural complexity of seafloor) less clear.

Fish communities in the southern end of the sampling

region were distinct from those in the north, but there was

little distinction between fish communities according to seafloor

complexity (Figure 3A). The spread of data in the DISTLM plot

suggests the fish community is more variable on low and high

seafloor complexities and more uniform on pipelines. A number

of sand-affiliated taxa were associated with deep BRUV

deployments, including Saurida undosquamis (largescale

saury), Lagocephalus lunaris (rough golden toadfish), Argyrops

notialis (Australian soldierbream) and an important fishery

species Pristipomoides multidens (goldband snapper;
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Figures 3B, C). A range of fish taxa were most abundant in

shallow depths including Oxychelinus digramma (violetline

Maori wrasse), Lethrinus semisinctus (blackspot emperor) and

Balistapus undulatus (orangestripe triggerfish). Also abundant

in the shallows but close to shoals and pipelines were several

triggerfish (S. fraenatum, Pseudobalistes fuscus) and some fishery

target generalist/invertebrate carnivores (Variola louti,

L. rubrioperculatus, Lethrinus atkinsoni), in addition to

triggerfish (P. fuscus, S. fraenatum) and the pigfish Bodianus

bilunulatus (Figures 3B, C).

The MRT explained approximately 13% of the variation in

fish abundance data with the most parsimonious community

structure defined by five terminal nodes (where membership to

each group is as ‘pure’ as possible given the data variation) and

constrained by three environmental predictors with distance to

shoal and depth as primary predictors (Figure 4). The primary

split in the MRT separated fish communities far from shoals

(≥11.6 km) from those located closer to shoals. Subsequently, the

fish community was split by depth with a terminal node

identifying a shallow-water assemblage (depth <18.7 m) and

mesophotic assemblage (depth ≥ 18.7 m). The shallow water

assemblage occurred primarily offshore of Onslow in the
Frontiers in Marine Science 07
southern Pilbara with a small number of sites west of Tiwi

Islands attributed to this assemblage (Figures 5A–C). This

assemblage included many invertebrate and generalist

carnivore taxa, dominated by indicator taxa within the families

Labridae (wrasses, tuskfish), Nemipteridae (monocle breams,

threadfin bream) and Lethrinidae (emperors) (Table 2). It was

characterised by the second lowest proportion of BRUV

deployments (6.7%) but had the third highest proportion of

indicator taxa (15.5% of DLI taxa).

The mesophotic fish assemblage (Figure 4) occurred both in

the southern (offshore Pilbara; Figures 5A, C, D) and the

northern (west of Tiwi Islands and offshore from Darwin;

Figures 5A, B) parts of the NW region. This assemblage was

characterised by the highest proportion of BRUV deployments

(n = 592 or 38.3%) and second lowest proportion of indicator

taxa (8.2%) with a majority of high DLI taxa being generalist

carnivore taxa from the ubiquitous Nemipteridae and

Carcharhinidae (requiem sharks) families (Table 2). This

assemblage also had a high proportion of taxa listed on the

IUCN threatened species list (IUCN, 2021), especially sharks

from the genus Carcharhinus and critically endangered

scalloped hammerhead shark (Sphyrna lewini).
FIGURE 2

Mean (± SE) abundance fish per BRUV deployment for fish six feeding guilds represented on the vertical axis and between seafloor complexities:
pipelines, low complexity natural habitat and high complexity natural habitat. Statistically similar means are indicated by the same letter (e.g., a/
b/c).
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The near-shoal branch of the MRT was further split by depth

(≥38 m) with a terminal node identifying a shoal mesophotic

assemblage (Figure 4). This assemblage occurred in the northern

part of the study region (Figures 5A, B, D) and was also

prominent offshore from Dampier (Figures 5A, D). It was

characterised by the second highest proportion of BRUV

deployments (36%) yet lowest proportion of indicator taxa

(7.1%) which were primarily commercially targeted generalist

carnivores from Carangidae (jacks) and Lethrinidae (emperors)

families (Table 2).

The shallow, near-shoal branch was further split by distance

to pipeline with one terminal node at the shallow shoal

assemblage (distance to pipeline ≥34.5 km) and another at the

shallow shoal near pipeline assemblage (distance to pipeline

<34.5 km; Figure 4). The shallow shoal assemblage was only

characteristic of shoals offshore from Darwin (Figures 5A, B)

and was characterised by the third lowest proportion of BRUV

deployments (14.2%) and second highest proportion of DLI taxa

(33.9%; Table 2). It was primarily dominated by invertebrate

carnivore taxa from Labridae (wrasses) family with relatively low

DLI values (≤47) for all indicator taxa in this assemblage. It had

several near threatened and vulnerable taxa from the IUCN Red

List particularly from Dasyatidae family (stingrays) and

Plectropomus species (coral trout; Table 2). The shallow shoal

near pipeline assemblage only occurred offshore from Dampier

(Figures 5A, D). This assemblage was characterised by the lowest

proportion of BRUV deployments (4.7%) yet the highest
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proportion of DLI taxa (35.3%; Table 2). The indicator taxa

were roughly equally split between invertebrate carnivores e.g.,

Labridae and Chaetodontidae families, and generalist carnivores

e.g., Lethrinidae family, followed by roughly equal numbers of

herbivores and algae/invertebrate consumers (Table 2). In

addition, it had several taxa from the IUCN Red List including

two commercially targeted Epinephelus (grouper) species and

two members of Carcharhinidae family (Table 2).

Individual-based and sample-based rarefaction curves and

associated confidence bands made for the three types of seafloor

complexity indicated that taxonomic richness on the pipelines

was substantially lower than in both types of natural habitat

(Figure 6). The three curves overlapped at lower cumulative

abundance of individuals (< 150 individuals) then diverged with

the curve for pipelines reaching asymptote approximately

around 300 taxa whereas the other two curves and their 95%

confidence bands remained closely overlapping and did not

reach asymptote (Figure 6A).

Similarly, the sample-size based curves grew quickly at initial

parts and overlapped at small sample sizes (< 50 BRUV sites) but

quickly diverged afterwards with the pipeline-associated curve

reaching asymptote at approximately 250 taxa. Fish taxonomic

richness on low and high seafloor complexity diverge with

increased sampling effort with both curves approaching

asymptote at maximum number of samples. Overall, the

curves for low and high seafloor complexity and their

confidence bands mostly overlapped with increased sampling
A B

C

FIGURE 3

(A) dbRDA ordination plot displaying relationships between predictor variables and fish relative abundance data (MaxN of all species). Colours
represent seafloor complexity (low & high refer to seafloor complexity; pipe = pipeline) while symbols represent regions along the coast of NW
Australia (south = Pilbara and Dampier, north = Broome and Darwin). (B) Vectors indicate the direction of the relationship, and their length
indicates the strength of their effect on fish abundance. (C) Fish species with Pearson correlations of |R| ≥ 0.30 to either axis are overlaid with
vectors in the bottom right indicating the strength and direction of this association, i.e. how these fish species correlate with seafloor
complexity categories and regions and predictor variables.
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effort indicating that the taxonomic richness were roughly

similar (Figure 6B).
Discussion

Our regional study spanned almost 2000 km of coastline to

demonstrate overarching influences from oceanic shoal

environments (presented as distance to shoals in our study)

and depth on the composition of demersal fish assemblages

across the NW region, with O&G infrastructure playing a

relatively minor role in explaining the observed regional

patterns in fish assemblage composition. The diversity of fishes

on pipelines (in terms of taxonomic richness) was substantially

lower in comparison to the diversity observed on natural

habitats (both low and high seafloor complexity). The

abundance of most fish feeding guilds was equal across natural

and artificial habitats, except for piscivore and herbivore taxa

that were more abundant on pipelines.

Submerged oceanic banks and shoals of the NW region are

known hotspots of fish diversity where fish abundance and

richness can exceed those recorded on similar features of the

Great Barrier Reef (Nichol et al., 2013; Heyward et al., 2017;

Moore et al., 2017; Heyward & Radford, 2019). Proximity to

these features was the primary split in the MRT analysis,

followed by depth, with strong alignment in patterns observed

by the MRT with DISTLM analyses. Depth is often among the

most common predictors of fish distributions (Moore et al.,

2009; Monk et al., 2010; Galaiduk et al., 2017b), assemblage
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composition (Cappo et al., 2007; Moore et al., 2010; Harvey

et al., 2013) and fish species richness (Young & Carr, 2015;

McLean et al., 2021; Currey-Randall et al., 2021). Proximity

to infrastructure, such as platform jackets and/or pipelines,

featured in both statistical analyses but were ranked low as

predictors each explaining <2% of variation in the fish

abundance data in both instances. This suggests that while

infrastructure can have a strong influence on fish assemblage

composition at a local scale (i.e. Bond et al., 2018a; Bond et al.,

2018b; McLean et al., 2021; Schramm et al., 2021), the influence

of natural features (e.g., oceanic shoals) and broader scale

environmental gradients (e.g., depth) are stronger factors at a

regional scale.

This study represents the first quantitative bioregional scale

analysis that includes O&G infrastructure among a set of

environmental predictors commonly found to be important in

explaining fish diversity and distributions (Pittman et al., 2007;

Pittman et al., 2009; Chatfield et al., 2010; Costa et al., 2014;

Galaiduk et al., 2017a; Moore et al., 2017). The relatively low

explanatory performance of the MRT and DISTLM models is

expected, given the high alpha diversity (taxonomic richness;

450 taxa) of the BRUV abundance data and vast span of the

study area. It is likely that key variables (such as oceanographic

covariates e.g., chlorophyll concentration or wave exposure) that

could improve the explanatory performance and ecological

realism of these analyses (Elith and Leathwick, 2009) are

missing. Inclusion of additional data such as substrate type,

could also provide further insights, but would require re-

examination of imagery from >1500 BRUV deployments and
FIGURE 4

Pruned (1 SE) multivariate regression tree (MRT) defining assemblage composition of demersal fishes (n=1546 BRUV deployments) on the NW
Shelf constrained by environmental predictors. The terminal nodes identified five distinct assemblages (see Table 2) with breaks labelled with the
environmental predictor that best split the data into the most homogenous groups possible and the value of each predictor that best
distinguished them. The number of BRUV deployments within each terminal node is also indicated (n). Top indicator taxa with highest values of
Dufrene-Legendre index (DLI) are shown for each terminal node.
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was beyond the scope of this study. Further, processes affecting

fish population size and dynamics (e.g., competition, predation)

and behaviour (e.g., attraction to O&G infrastructure to access

encrusting invertebrates as a food source) are likely to have a

significant influence on fish abundance and distribution, yet

such population processes and behaviours require dedicated

research programs to indicate their relative strength for

different taxa, data which is not yet available for this region.

Regardless, the results here align with previous bioregional

studies on fish communities that demonstrated strong regional

trends and varying scales of influence of environmental

predictors (Travers et al., 2010; Galaiduk et al., 2017a;

Wellington et al., 2021).

Both mesophotic fish assemblages were characterised by

fishes associating with sand and hard substrata, with almost

75% of all BRUV deployments attributed to these two

assemblages. This highlighting the presence of mixed habitat

communities within these depths (Currey-Randall et al., 2019;

Currey-Randall et al., 2021). Indeed, an assemblage

characterised by Synodontidae (lizardfish), Tetraodontidae

(toadfish) and Nemipteridae (threadfin bream) is typical of

those ecosystems dominated by sand including those observed
Frontiers in Marine Science 10
in impacted areas (historically trawled; Sainsbury et al., 1997;

Travers et al., 2012). An indicator species for monitoring and

assessment for the commercial fishery in the region and also for

the mesophotic assemblage identified here was Pristipomoides

multidens (goldband snapper), a vagile species (able to disperse

widely) known to associate with hard bottom areas in depths of

60 to at least 180 m (Ovenden et al., 2002; Ovenden et al., 2004).

Both mesophotic assemblages were characterised by a higher

number of vagile taxa such as Carangidae (trevallies) and

Carcharhinidae (whaler shark) species which were indicated by

the relatively low DLI values of indicator taxa in those

assemblages (Table 2). The association of trevallies and whaler

species with mesophotic depths supports previous research

findings in Australia for these typically wide-ranging species

(e.g. Stevens and Wiley, 1986; Harry et al., 2019). Cosmopolitan

distributions, conservative life-histories, and susceptibility to

overfishing are primarily reasons that most of the indicator

shark species surveyed in this study are found on the threatened

species list (McAuley et al., 2007; Dulvy et al., 2014; Geraghty

et al., 2015). Major declines in apex predator population can

alter entire food webs (Estes et al., 2011). However, some

practical tools such as fishing area closure, reduced fishing
FIGURE 5

Spatial distribution of five fish assemblages obtained from the MRT analysis of BRUVs data from three pipelines and historical AIMS surveys in
NW Australia. (A) A regional setting of the NW Australia with the five assemblages mapped. (B) The northern part of the study region west of Tiwi
Islands and offshore from Darwin. (C) The southern part of the study region, southern Pilbara offshore from Onslow and north of Exmouth. (D)
The southern part of the study region, mid-coast Pilbara and offshore from Dampier.
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TABLE 2 Summary of indicator taxa in the five fish assemblages of the multivariate regression tree (MRT; Figure 4).

Assemblage
name

# ofDLI
species in
assemblage

Proportion
of DLI

species in
assemblage

(%)

Number of
BRUV

deployments
allocated to
an assem-
blage

Proportion
of BRUV

deployments
in assem-
blage (%)

DLI (%)
generalist carnivore (GC), invertebrate carnivore (IC),
piscivore (P), zooplanktivore (Z), algae/invertebrate

consumer (AI), herbivore (H)

Mesophotic
assemblage

29 8.2 592 38.3 GC: Nemipterus spp (42)*, Pristipomoides multidens (26)*, Carangoides
chrysophrys (18)*, Lagocephalus lunaris (14), Caranx papuensis (11)*,
Saurida undosquamis (10), Lutjanus vitta (9)*, Carcharhinus sorrah
(8)NT, Carcharhinus sp (8)VU, Lutjanus russellii (8)*, Seriola dumerili (7)
*, Carcharhinus plumbeus (6)EN, Caranx bucculentus (4)*, Carcharhinus
obscurus (4)EN, Carcharhinus limbatus (3)VU, Epinephelus chlorostigma
(3)*, Sphyrna lewini (3)CR, Carangoides equula (2)*, Carcharhinus
macloti (2)NT, Pentapodus paradiseus (2)
IC: Netuma thalassina (11), Terapon spp (8), Upeneus moluccensis (4),
Pomadasys kaakan (2)
P: Argyrops notialis (20)*, Lutjanus malabaricus (16), Sphyraena sp (2)*
Z: Decapterus spp (12), Selar spp (3)

Shallow-water
assemblage

55 15.5 103 6.7 IC: Pentapodus porosus (79), Choerodon cauteroma (39)*, Parapercis
nebulosa (27), Scolopsis monogramma (23), Paramonacanthus
choirocephalus (19), Chaetodontoplus duboulayi (18), Upeneus tragula
(18), Parupeneus heptacanthus (17)*, Choerodon cephalotes (16)*,
Choerodon cyanodus (15)*, Parupeneus barberinoides (15), Chelmon
marginalis (14), Pentapodus emeryii (13), Pentapodus vitta (13),
Parupeneus indicus (12)*, Parupeneus spilurus (12)*, Choerodon
schoenleinii (9)NT*, Choerodon vitta (9), Halichoeres nebulosus (8),
Chaetodon aureofasciatus (7), Chaetodontoplus personifer (7), Leptojulis
cyanopleura (6), Canthigaster valentini (5), Parupeneus chrysopleuron
(5), Abudefduf bengalensis (4), Anampses lennardi (4), Stethojulis
interrupta (4), Apogonidae spp (3), Iniistius pavo (3), Bothidae spp (2)*
GC: Scomberomorus spp (39)*, Lethrinus genivittatus (32)*, Lethrinus
punctulatus (19)*, Gnathanodon speciosus (15)*, Lethrinus laticaudis
(11)*, Epinephelus fasciatus (10)*, Atule mate (9), Lethrinus variegatus
(9)*, Lethrinus nebulosus (8)*, Lethrinus miniatus (7)*, Lagocephalus
sceleratus (6), Pristotis obtusirostris (5), Carangoides hedlandensis (4)*,
Carcharhinus melanopterus (4)VU, Stegostoma tigrinum (4)EN, Lutjanus
carponotatus (3)*
AI: Naso annulatus (9), Chaetodon assarius (9), Monacanthus chinensis
(4), Pomacentrus nagasakiensis (3)
Z: Selaroides leptolepis (53), Pterocaesio chrysozona (2)
H: Siganus fuscescens (21), Siganus doliatus (4)
P: Plagiotremus tapeinosoma (5)

Shoal mesophotic
assemblage

25 7.1 558 36 GC: Carangoides coeruleopinnatus (26)*, Gymnocranius grandoculis (21)
*, Lethrinus ravus (14)*, Carangoides gymnostethus (14)*, Lutjanus
sebae (14)*, Symphorus nematophorus (13)*, Carangoides fulvoguttatus
(9)*, Pristipomoides typus (7)*, Carangoides orthogrammus (6)*,
Epinephelus multinotatus (6)*, Epinephelus areolatus (5)*, Loxodon
macrorhinus (5), Oxycheilinus orientalis (5), Seriola rivoliana (4)*,
Aphareus rutilans (3)*, Pristipomoides filamentosus (3), Hemitriakis
falcata (2), Wattsia mossambica (2)*
IC: Abalistes stellatus (18)*, Pentapodus nagasakiensis (8), Abalistes
filamentosus (3)
Z: Ptereleotris sp (2), Cyprinocirrhites polyactis (2)
P: Carcharhinus albimarginatus (9)NT

AI: Amblypomacentrus breviceps (4)
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TABLE 2 Continued

Assemblage
name

# ofDLI
species in
assemblage

Proportion
of DLI

species in
assemblage

(%)

Number of
BRUV

deployments
allocated to
an assem-
blage

Proportion
of BRUV

deployments
in assem-
blage (%)

DLI (%)
generalist carnivore (GC), invertebrate carnivore (IC),
piscivore (P), zooplanktivore (Z), algae/invertebrate

consumer (AI), herbivore (H)

Shallow shoal
assemblage

120 33.9 220 14.2 IC: Oxycheilinus digramma (29), Scolopsis bilineata (24), Halichoeres
prosopeion (23), Balistapus undulatus (20), Neoglyphidodon melas (20),
Amblyglyphidodon leucogaster (18), Chaetodon lunulatus (17),
Monotaxis grandoculis (15), Chaetodon baronessa (14), Halichoeres
hortulanus (14), Halichoeres zeylonicus (13), Macolor niger (13),
Thalassoma lunare (13), Coris gaimard (12), Naso vlamingii (12)*,
Pomacanthus imperator (11), Acanthurus thompsoni (10), Bodianus
diana (10), Balistoides conspicillum (8), Chaetodon trifascialis (8)NT,
Hologymnosus doliatus (8), Hemigymnus fasciatus (7), Scolopsis
xenochrous (7), Balistoides viridescens (6), Bodianus mesothorax (6),
Coris batuensis (6), Forcipiger longirostris (6), Halichoeres chrysus (6),
Anampses meleagrides (5), Cirrhilabrus cyanopleura (5)DD, Heniochus
varius (5), Odonus niger (5), Oxycheilinus celebicus (5), Epibulus
insidiator (4), Parupeneus barberinus (4), Bodianus anthioides (3),
Cephalopholis spiloparaea (3)*, Chaetodon adiergastos (3),
Chaetodontoplus mesoleucus (3), Cheilinus fasciatus (3), Labropsis
manabei (3), Lutjanus kasmira (3), Novaculichthys taeniourus (3),
Pseudobalistes flavimarginatus (3), Arothron nigropunctatus (2),
Hologymnosus rhodonotus (2), Malacanthus latovittatus (2),
Paracanthurus hepatus (2), Pictichromis paccagnellae (2), Siganus
puellus (2)
GC: Lethrinus semicinctus (47)*, Macolor macularis (28), Lethrinus
erythracanthus (22), Aethaloperca rogaa (20), Plectropomus spp (16)VU/
NT*, Cephalopholis urodeta (11), Carangoides plagiotaenia (10)*,
Labroides bicolor (9), Lethrinus amboinensis (9), Neotrygon australiae
(8)NT, Elagatis bipinnulata (7)*, Plectropomus laevis (7)VU, Taeniura
lymma (6)NT, Cephalopholis leopardus (4)*, Epinephelus maculatus (3)*,
Plectorhinchus vittatus (3), Aphareus furca (2)*, Aulostomus chinensis
(2), Grammatorcynus bilineatus (2)*, Lethrinus erythropterus (2)*
AI: Acanthochromis polyacanthus (20), Pygoplites diacanthus (17),
Chaetodon kleinii (15), Pomacentrus limosus (11), Pomacentrus
amboinensis (9), Pseudodax moluccanus (9), Pomacentrus reidi (6),
Chaetodon meyeri (5), Pomacentrus spp (4), Aluterus scriptus (3),
Pomacentrus brachialis (3), Pomacentrus nigromarginatus (3), Arothron
hispidus (2), Chaetodon selene (2), Naso brachycentron (2), Pomacentrus
moluccensis (2)
H: Acanthurus pyroferus (23), Centropyge bicolor (21), Cetoscarus
ocellatus (15), Siganus argenteus (11), Chlorurus sordidus (10),
Zebrasoma scopas (10), Centropyge vrolikii (7), Acanthurus nigricans
(6), Scarus tricolor (6), Acanthurus nigrofuscus (5), Siganus
punctatissimus (5), Scarus dimidiatus (3), Acanthurus spp (2), Scarus
flavipectoralis (2), Scarus fuscocaudalis (2)
Z: Chromis xanthura (13), Pterocaesio marri (12), Dascyllus reticulatus
(10), Hemitaurichthys polylepis (10), Cirrhilabrus randalli (9),
Genicanthus lamarck (9), Caesio teres (7), Chromis ternatensis (5),
Amblyglyphidodon aureus (4), Pterocaesio tile (4), Dascyllus
trimaculatus (3), Amphiprion clarkii (2), Canthidermis maculata (2),
Pterocaesio sp (2)
P: Triaenodon obesus (17)NT, Variola albimarginata (14)*,
Cephalopholis miniata (8)*, Gymnosarda unicolor (4)*, Gracila
albomarginata (7)DD
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TABLE 2 Continued

Assemblage
name

# ofDLI
species in
assemblage

Proportion
of DLI

species in
assemblage

(%)

Number of
BRUV

deployments
allocated to
an assem-
blage

Proportion
of BRUV

deployments
in assem-
blage (%)

DLI (%)
generalist carnivore (GC), invertebrate carnivore (IC),
piscivore (P), zooplanktivore (Z), algae/invertebrate

consumer (AI), herbivore (H)

Shallow shoal near
pipeline assemblage

125 35.3 73 4.7 IC: Bodianus bilunulatus (81)*, Parupeneus cyclostomus (54),
Thalassoma lutescens (52), Heniochus singularius (50), Parupeneus
multifasciatus (40), Sufflamen chrysopterum (38), Apolemichthys
trimaculatus (36), Parapercis clathrata (35), Chaetodon ornatissimus
(33), Sufflamen fraenatum (32), Halichoeres biocellatus (31), Chaetodon
speculum (23), Chaetodon lineolatus (22), Coris caudimacula (20),
Labroides dimidiatus (20), Chaetodon auriga (19), Chaetodon lunula
(17), Heniochus diphreutes (16), Chromis weberi (14), Heniochus
acuminatus (13), Pseudojuloides severnsi (12), Chaetodon unimaculatus
(9), Pseudocheilinus evanidus (9), Parupeneus pleurostigma (8)*,
Forcipiger flavissimus (7), Bodianus axillaris (6), Coris aygula (6),
Choerodon jordani (5), Chromis fumea (5), Gomphosus varius (5),
Gymnocranius microdon (5)*, Pomacanthus sexstriatus (5), Chaetodon
ulietensis (4), Chaetodon plebeius (3), Cirrhilabrus exquisitus (3)DD,
Ostracion cubicus (3), Sufflamen bursa (3)
GC: Lethrinus atkinsoni (68)*, Caranx melampygus (42)*, Melichthys
vidua (41), Lethrinus rubrioperculatus (31)*, Epinephelus malabaricus
(30)NT*, Lutjanus bohar (30)*, Oxycheilinus unifasciatus (30),
Epinephelus bilobatus (21)DD*, Alepes vari (19), Epinephelus tukula (18),
Lethrinus olivaceus (18)*, Galeocerdo cuvier (17)NT, Gymnocranius
euanus (17)*, Lutjanus rivulatus (17), Aprion virescens (14)*, Lethrinus
microdon (12)*, Carcharhinus amblyrhynchos (11)NT/EN, Fistularia
commersonii (11), Cirrhitichthys oxycephalus (9), Echeneis naucrates (9),
Lutjanus lemniscatus (9)*, Lutjanus gibbus (8), Arothron sp (7),
Lutjanus quinquelineatus (6)*, Nebrius ferrugineus (6)VU, Epinephelus
fuscoguttatus (5)VU/NT*, Cephalopholis formosa (3)*, Elops hawaiensis
(3)DD*, Epinephelus coioides (3)*, Lutjanus fulviflamma (3), Epinephelus
rivulatus (2)*, Sargocentron caudimaculatum (2)
H: Acanthurus grammoptilus (44), Naso lituratus (42), Chlorurus
capistratoides (41), Scarus rubroviolaceus (37), Centropyge tibicen (31),
Ctenochaetus striatus (25), Naso fageni (25), Naso hexacanthus (22),
Scarus oviceps (22), Hipposcarus longiceps (17), Scarus forsteni (16),
Scarus sp3 (13), Acanthurus dussumieri (12), Scarus schlegeli (11), Naso
unicornis (10), Chlorurus microrhinos (8), Acanthurus nigros (7),
Ctenochaetus binotatus (5), Scarus frenatus (5), Acanthurus leucocheilus
(4), Scarus ghobban (4), Scarus sp (4), Acanthurus blochii (3), Naso
caesius (3), Chlorurus bleekeri (2), Naso reticulatus (2)DD

AI: Acanthurus olivaceus (67), Pseudobalistes fuscus (36), Naso
brevirostris (35), Zanclus cornutus (31), Melichthys niger (30),
Chaetodon punctatofasciatus (24), Plectroglyphidodon johnstonianus
(18), Pomacentrus vaiuli (13), Siganus punctatus (13), Acanthurus mata
(10), Pomacanthus semicirculatus (8), Cantherhines dumerilii (4),
Acanthurus nigricauda (3), Pomacentrus adelus (3)
Z: Pomacentrus coelestis (54), Caesio cuning (24), Cirrhilabrus sp (23),
Chromis margaritifer (21), Thalassoma amblycephalum (20),
Cirrhilabrus temminckii (17)DD, Pseudanthias cooperi (15), Cirrhilabrus
punctatus (14), Pseudanthias sp (4), Pterocaesio digramma (3)
P: Variola louti (55), Scomberoides lysan (12)*, Paracirrhites forsteri (9),
Sphyraena qenie (4)*, Scomberoides tol (3), Plagiotremus rhinorhynchos
(2)
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Values of the Dufrene-Legendre index (DLI) for each discriminant taxa are shown in brackets with asterisk (*) indicates commercial taxa. The higher DLI value (100 being the highest) the
more ‘indicative’ the taxa is of a specific assemblage. Coloured circles match terminal nodes indicated in Figure 4 and mapped in Figure 5. Threatened taxa under IUCN Red List are
indicated with superscript: data deficient (DD), near threatened (NT), vulnerable (VU), endangered (EN), critically endangered (CR). Text colours represent feeding guilds: generalist
carnivore, invertebrate carnivore, piscivore, zooplanktivore, algae/invertebrate consumer, herbivore.
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effort, and various enforcement tools may improve shark

management and conservation efforts and contribute to

population recovery (Braccini et al., 2020; Gaughan &

Santoro, 2021).

Shoal mesophotic assemblage included relatively few

indicator taxa (and low DLI values), with many quite mobile
Frontiers in Marine Science 14
and wide-ranging taxa (e.g., Carangoides coeruleopinnatus,

Carangoides fulvoguttatus, Carangoides gymnostethus,

Carangoides orthogrammus, Carcharhinus albimarginatus,

Loxodon macrorhinus, Hemitriakis falcata, etc). Such species

can be attracted to shoals as these habitats support high

biodiversity and an abundance of prey (Pinheiro et al., 2016;
A

B

FIGURE 6

(A) Individual-based and (B) Sample-size-based rarefaction (solid lines) and extrapolation (dotted lines) sampling curves with 95% confidence
intervals (shaded areas) for the species diversity (number of taxa) data across three seafloor complexities: pipelines, low complexity natural
habitat and high complexity natural habitat. Solid line indicates the rarefied curve, dashed line indicates the extrapolated curve, symbol indicates
the observed taxonomic richness, the shaded area indicates the 95% confidence interval.
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Moore et al., 2017) and deeper areas around shoals may provide

refugia from physical disturbances (e.g., cyclones) or fishing

pressures (Lindfield et al., 2016; Abdul Wahab et al., 2018). An

abundance of mobile, predatory reef-associated finfish and

sharks supports previous research by Letessier et al. (2019)

that showed remote regions in the Timor Sea that were far

from human influence, and possessed submerged shoals, were

hotspots for shark abundance.

In contrast, the three shallow water assemblages were

characterised by low proportion of BRUV deployments but

collectively consist of almost 85% of indicator taxa which is a

common pattern of shallow tropical environments which are

often associated with higher abundance and diversity of fish

(Fitzpatrick et al., 2012; McLean et al., 2016; Abdul Wahab et al.,

2018). The shallow fish assemblages were characterised by many

Choerodon (tuskfish), Parupeneus (goatfish) and Lethrinus

(emperor) taxa that are known to associate with reefs and

sandy patches between reefs where they can forage for

invertebrates amongst the sediment (McCormick, 1995;

Travers et al., 2010). The representation of various feeding

guilds within these shallow ecosystems aligns strongly with

previous characterisation of fish assemblages in this region,

with many of the indicator taxa identified here among the

most ubiquitous identified by McLean et al. (2016). High

relative abundance of zooplanktivores in two shallow shoal

assemblages can support high biomass of generalist carnivore

and piscivore taxa in their vicinity (Bejarano et al., 2014;

Pinheiro et al., 2016). While the greatest proportion of

indicator taxa were observed on shallow BRUV deployments

especially near to shoals, very few fishery-target taxa were

observed in comparison to those in deeper areas across the

region (the two mesophotic assemblages). As many of these

shallow and shoal-associated taxa had high DLI values, this also

could indicate site attachment (Dufrene & Legendre, 1997). A

high degree of site-attachment by low-mobility species might be

expected for fish observed on shallow offshore shoal features

remote from similar habitat features (e.g., a break in habitat

continuity) or where surrounding ecosystems are oligotrophic

(Papastamatiou et al., 2009; Martinez et al., 2017).

The shallow shoal near pipeline fish assemblage comprised

substantial numbers of indicator taxa with high DLI values,

including numerous Epinephelus (grouper), Chaetodon

(butterflyfish) and herbivorous fish taxa (e.g., Scarus spp.).

These locations offshore of Dampier are typically of a mix of

hard coral habitat and patchy soft sediment communities (Abdul

Wahab et al., 2018; McLean et al., 2021) and are situated near

Glomar Shoal and Rankin Bank, and adjacent to several

pipelines. In contrast, the shallow shoal assemblage had

indicator taxa with comparatively low DLI values which may

reflect an overall ubiquity of these taxa across the region

(Dufrene & Legendre, 1997). The shallow shoal near pipeline

assemblage included many similar families and feeding guilds to

other shallow water assemblages but did have fewer
Frontiers in Marine Science 15
Epinephelidae (grouper) species and a greater number of

Pomacentridae (damsels) and Acanthuridae (surgeonfish).

Scaridae (parrotfish) and various Acanthuridae and

Pomacanthidae (angelfish) species, in particular, were

distinctive of both shoal assemblages, aligning strongly with

published works on shoals in these areas (Bellwood et al., 2012;

Moore et al., 2017; Abdul Wahab et al., 2018). Herbivorous fish

species play an important role in maintaining low macroalgal

cover on reefs, thus enhancing juvenile coral densities (Evans

et al., 2020), with parrotfishes also playing a role in removing live

and dead corals and transporting sediment (Graham et al., 2006;

Adam et al., 2011).

The mean relative abundance of all feeding guilds was

similar across seafloor complexities except for piscivore and

herbivore taxa which had higher relative abundance on pipelines

than on low and high complexity seafloor. The high relative

abundance of piscivores near pipelines supported previous

findings by Schramm et al. (2021) where piscivore species

were more abundant on shallow pipelines where they were

feeding on prey from lower trophic levels. However, our

results for herbivore relative abundance are different from

those of Schramm et al. (2021). This difference likely reflects

the local scale of research by Schramm et al. (2021) where

herbivores were abundant in surrounding macroalgae habitats.

The taxonomic richness on pipelines was notably low in

comparison to the taxonomic richness in the natural ecosystems.

This aligns well with a previous local study identifying lower

diversity of fish (number of species) on the Griffin pipeline in

comparison to adjacent off-pipeline habitats (Bond et al., 2018a).

Furthermore, the rising slope of all rarefaction curves indicated

that there are additional fish taxa to be discovered with extra

sampling. For pipelines, however, the extrapolated part of the

curve reached asymptote at around 400 BRUV deployments

which indicates the appropriate sample size required to

exhaustively sample fish diversity on this type of infrastructure

for this region. It appears that current sampling effort reported

for pipeline surveys in the NW (including our study) is

insufficient to adequately sample the full range of associated

fish diversity. However, such sampling designs for pipelines are

limited by space, with a requirement for at least 400 m between

neighbouring BRUV deployments to avoid resampling of fish

species capable of visiting more than one BRUV within a one-

hour sampling period. Higher taxonomic richness was attributed

to low seafloor complexity which likely results from the coarse

resolution of the regional bathymetry raster used to derive

seafloor complexity categories. While our method for deriving

seafloor complexity categories is well suited for high resolution

rasters and landscape-scale studies (Galaiduk et al., 2019;

McLean et al., 2021) the resolution of the regional raster (cell

size of 250m * 250m) likely misses many small seafloor features

such as small reef outcrops and bommies and patches of sponge

gardens which are known to harbour high diversity of fishes

(Butler et al., 2002; Marliave et al., 2009; Kerry & Bellwood, 2012;
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Abdul Wahab et al., 2018). The small seafloor features could be

detected using appropriate remote sensing techniques, such as

multibeam echosounder surveys. However, given the spatial

extent of this regional study, obtaining these data across the

study area would require significant time and resources. Further,

the BRUV monitoring technique itself can draw some fish

species in from surrounding areas to the bait which limits the

effectiveness of the technique for targeting small habitat patches

specifically, i.e., a pipeline deployment could include fish drawn

from immediate surrounds. We are confident, however, that the

presented patterns of difference in diversity between pipelines

and natural environments are valid because the pipeline was

observed directly from the BRUV video deployments. In

addition, McLean et al. (2021) used real-time USBL

positioning to assess drift of systems during deployment with

86% of deployments within 10 m of the pipeline. This also

highlights the urgent need for expanding the fine scale

bathymetric surveys for the NW region so it can facilitate

future studies and sustainable management of this highly

diverse region.
Conclusion and implications for the
decommissioning of oil and gas
infrastructure

Decommissioning decisions are typically made for singular

or small groups of interconnected assets and do not consider the

potential impact of cumulative decommissioning activities over

large areas or through time. Our study shows that there is value

in considering regional scale processes and environmental

gradients to better understand potential broad ecological

implications of such activities. At a regional scale, pipelines do

not hold heightened fish taxonomic richness which is not

surprising given the vast extent and diversity of natural

habitats that exist across the NW region (Moore et al., 2017;

Abdul Wahab et al., 2018; Currey-Randall et al., 2021). Such

patterns may be different for other types of infrastructure, such

as platform jackets which are known to be structurally more

complex and consequentially have a high fish diversity (McLean

et al., 2019; van Elden et al., 2019). This does not, however,

suggest that removal of pipelines in this NW region will not

impact fish diversity, as these anthropogenic features can

influence fish communities in a manner of ways not

investigated by this study, e.g., influencing fish behaviour

(Bond et al., 2018b), facilitating depth range extensions of

associated taxa (Sammarco et al., 2014), concentrating fishing

activities (Bond et al., 2021), and potential adverse impacts of

contaminants trough bioaccumulation in food webs or toxicity

to local organisms (MacIntosh et al., 2021; Koppel et al., 2022).

Further, there is a clear paucity of research into the influence
Frontiers in Marine Science 16
O&G infrastructure on seascape ecological connectivity

(McLean et al., 2022), yet this is a critical consideration for

decommissioning (NOPSEMA, 2022). Without understanding

the level and nature of connectedness across marine ecosystems

that include infrastructure, it is difficult to predict the impact

that decommissioning of infrastructure (complete or partial

removal) might have on marine ecosystems. We suggest that a

logical expansion of this research include examination of fish

population and demographic processes (most notably larvae

distribution, metapopulation connectivity processes and

movement patterns of some of the indicator species identified

in this study) to obtain a more holistic understanding of fish

community processes in the region and how important

infrastructure is for these processes. Such a study would also

be particularly relevant for highly mobile species such as

megafauna (e.g. sharks, rays, turtles, whales), many of which

occur and transit across this region and are threatened by

anthropogenic activities (e.g., turtles, sawsharks; Morgan et al.,

2011; Wilson et al., 2018).
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