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Multiple low salinity stress
modes provided novel insight
into the metabolic response of
Scylla paramamosain adapting
to inland saline-alkaline water
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Scylla paramamosain is a high-quality cultivar for saline-alkaline water

aquaculture as a euryhaline crustacean species. However, salinity impacts the

respiratory metabolism, growth, and survival of marine crustaceans. The

metabolic response of crabs adapting to multiple low salinity environments

has not been thoroughly studied yet, especially in inland saline-alkaline water.

In this study, we analyzed metabolites in the gill and hemolymph of crabs

cultured in three different low salinity environments. The results showed that

membrane composition (lipids and lipid molecules) and free amino acids

played an essential role in the osmoregulation of crabs, and the energy

consumption accompanied as well. Meanwhile, S. paramamosain relied on

ion transport and energy metabolism under acute/short-term low salinity

conditions for osmoregulation. In contrast, amino acids and energy

metabolism occupied a leading position in long-term low salinity.

Furthermore, taurine and hypotaurine play a vital role in crabs adapting to

inland saline-alkaline water. This is the first study to identify the crucial

metabolites and key pathways as biomarkers to differentiate the metabolic

mechanisms of S. paramamosain under multiple low salinity stress modes

based on GC-MS technology, which provided novel insight into the metabolic

response of S. paramamosain adapting to inland low salinity saline-alkaline

water, and provided theoretical guidance for the aquaculture of S.

paramamosain in the inland saline-alkaline water.

KEYWORDS

Scylla paramamosain, metabolic response, low salinity stress, osmoregulation, inland
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Introduction

The problem of soil salinization is globally widespread. The

development of saltwater and brackish water aquaculture cannot

only make full use of saline land, but also produce better

economic benefits and contribute to the improvement of the

regional economy. At the same time, the supply of fresh water is

severely limited in many countries, and coastal salinization

caused by sea-level rise is increasing, which makes it more

critical to have salt-tolerant species in aquaculture farms

around the world (Zhu et al., 2018).

Scylla paramamosain, also known as mud crab, is a kind of

euryhaline crustacean species, which is a suitable species for

saline-alkaline water aquaculture. It is mainly distributed in the

southeastern coastal area of China, the Indian Ocean, and the

western Pacific Ocean (Ma et al., 2014). Because of its fast

growth, delicious meat, strong adaptability and high nutritional

value, it is an essential species of marine crab in China. (Jiang

et al., 2014; Ma et al., 2016). In 2020, the output of S.

paramamosain increased to 159,433 tons, accounting for more

than half of the total marine crab farming industry in China

(China fishery statistical yearbook, 2021). However, the yield

cannot meet the ever-increasing market demand (Ma et al.,

2016; Shi et al., 2018; Wang et al., 2018b). Therefore, insufficient

production capacity is the biggest bottleneck currently in the

development of the mud crab industry. The most effective way to

break through this bottleneck is to expand the aquaculture space.

Under the current situation of saturated coastal aquaculture

space, inland saline-alkaline land aquaculture has great potential

to solve this problem. At present, our team has built a technical

system for cultivating crabs in saline-alkaline water, and

successfully cultivated crabs in Henan (with a salinity of

1.6‰) and other low salinity saline-alkali water areas along

the Yellow River. Nevertheless, the metabolic response of S.

paramamosain adapting to low salinity saline-alkaline water is

not clear, and systematic research is urgently needed to improve

the theory of crabs’ cultivation in saline-alkaline water.

Salinity is one of the most significant elements that affects the

physiological state of aquatic animals. S. paramamosain is an

excellent model for studying salinity adaptation mechanisms as a

euryhaline species (Chung and Lin, 2006). Changes in

environmental salinity are directly related to the capacity

of osmoregulation (Fry, 1971). A lot of research work of

crustaceans has been done on the morphological structure of

osmolality regulation organs (Neufeld et al., 1980), ion

transportase (Li et al., 2010), hemolymph osmolality regulation
Abbreviations: NS, normal salinity group; CS, coastal low salinity group; IS,

inland low salinity saline-alkaline water group; AS, acute low salinity group;

QC, quality control sample; PCA, principal component analysis; OPLS-DA,

orthogonal partial least squares discriminant analysis; DMs, differentially

metabolites; TCA cycle, tricarboxylic acid cycle.
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(Péqueux and Gilles, 1978) and neuroendocrine regulation

(Pinoni et al., 2005), and many significant achievements have

been made. Studies have shown that the gill is a major organ for

osmolality and ion regulation in crustaceans (Romano et al.,

2014). Crustaceans can adapt to various salinity and other

aquatic environmental factors, mainly through the regulation of

hemolymph osmolality to maintain the daily activities of the body.

The osmolality effectors in hemolymph, such as inorganic ion

concentration and free amino acid content, determine the level of

hemolymph osmolality in crustaceans (Via, 1986; Chen and Chia,

1997). The amassment of free amino acids in cells is a typical

response to changes in environmental salinity in many organisms

(Yancey et al., 1982; Hare et al., 2010; Yao et al., 2020). In addition,

the metabolic levels of hemolymph components such as protein,

blood glucose, lipids, and ammonia also influence osmolality (Via,

1986; Chen and Chia, 1997). The studies on the salinity adaptation

mechanism of mud crabs mainly focus on the acute low salinity

stress at the laboratory level (Wang et al., 2018a; Wang et al.,

2018c; Zhang et al., 2020; Yao et al., 2021). However, the metabolic

response of crabs adapting to inland low salinity saline-alkaline

water has not been thoroughly studied yet.

In this study, we explored the metabolic response of S.

paramamosain under multiple low salinity stress modes based

on GC-MS technology, which provided theoretical guidance for

the aquaculture of S. paramamosain in the inland low salinity

saline-alkaline water.
Materials and methods

Animals and sample collection

A total of 600 crabs from Sanmen Bay were randomly

selected with a bodyweight of 30 ± 5 g. Randomly draw a

group of every 50 crabs (n=3) and transferred to the following

four aquaculture pools with the same domestication conditions:

Normal salinity group (NS), Coastal low salinity group (CS),

Inland low salinity saline-alkaline group (IS) and Acute low

salinity group (AS). Sanmen Bay, located on the eastern coast of

Zhejiang Province, is one of the main producing areas of crabs,

with a seawater salinity of 12-18‰, which is suitable for the

growth of crabs, and was defined as NS group. Hangzhou Bay,

located in the northeastern part of Zhejiang Province, is both the

bay and the estuary of the Qiantang River. Affected by river

inflow and precipitation, the seawater salinity is low and

unstable, about 3-5‰, crabs from NS grow normally here,

which is defined as CS group. Yanjin is located on the north

bank of the Yellow River, Henan Province, with a large area of

saline-alkaline land. The groundwater is saline-alkaline water

with a salinity of 1.5-2‰, crabs from NS could grow normally

here after gradient desalination and defined as IS group. The

pilot test base was an acute low-salinity environment artificially

simulated in the laboratory. The seawater was diluted to a
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salinity of 3‰ with fresh water, and the crabs from NS were kept

in it, which is defined as the AS group (Table 1).

Experiments were conducted at ambient temperature and

natural photoperiod, and water quality parameters were

monitored every morning. The parameters were as follows:

water temperature 25°C-30°C, dissolved oxygen≥6.0 mg L-1,

pH 7.8-8.6, ammonia nitrogen concentration 0.16-1.58 mg L-1,

nitrite concentration 0.009-0.102 mg L-1. Feed the clams once a

day at 5:00 pm. After 90 days of culture, adult S. paramamosain

(165-297 g body weight) with good vitality, health and uniform

bodyweight were obtained from the NS, CS and IS groups in

October 2020 (n=5). The AS group was sampled after 120 h

according to the previous study (Wang et al., 2018a).The crabs

were killed under anesthetize in ice water, then the posterior gill

and hemolymph were quickly removed and stored in liquid

nitrogen for metabolomic analysis.
Sample preparation

Took out the hemolymph samples stored at -80°C, thawed

them at room temperature, transferred 80 mL of the samples to a

1.5 mL EP tube, and vortex for 10 s. Then 240 mL methanol-

acetonitrile (V: V=2: 1) mixed solution was added to the tube,

vortexed for 30 s, followed by ultrasonic extraction in ice-water

bath for 10 min. Then stood them at -20°C for 30 min. After that,

centrifuge for 10 min (13,000 rpm, 4°C), and transfer 200 mL of

the supernatant into a glass derivatized vial. Quality control

samples (QC) were prepared by mixing equal volumes of

extracts from all samples, and each QC has the same volume

as the sample. After evaporating the sample with a freeze-

concentrating centrifugal dryer, add 80 mL of methoxyamine

hydrochloride pyridine solution (15 mg/mL) to a glass

derivatized vial, vortex for 2 min, and incubate in a shaking

incubator at 37°C for 90 min to carry out the oximation reaction.

After the samples were taken out, 80 mL of BSTFA (containing

1% TMCS) derivatization reagent, 20 mL of n-hexane and 10 mL
internal standards (C8/C9/C10/C12/C14/C16, 0.16 mg/mL;

C18/C20/C22/C24/C26, 0.08 mg/mL, all prepared in

chloroform) were added, then vortexed for 2 min and reacted

at 70°C for 60 min. Finally, the samples were taken out, placed at

room temperature for 30 min (Imura et al., 2018), and subjected

to GC-MS metabolomic analysis. The AS group had one sample

of hemolymph unqualified and therefore only 4 replicates.
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Accurately weighed 30 mg of posterior gill tissue samples

into a 1.5 mL centrifuge tube, added 600 mL methanol-water (V:

V=4: 1) and two small steel balls, put them in a -80°C

refrigerator for 2 min, and then ground them in a grinder (60

Hz, 2 min). Added 120 mL of chloroform to the tube, vortexed

for 2 min, then ultrasonically extracted in an ice-water bath for

10 min, then stood at -20°C for 30 min. The rest of the steps were

the same as for the hemolymph sample.
GC-MS

The derivatived samples were analyzed on an Agilent

7890B gas chromatography system coupled to an Agilent

5977A MSD system (Agilent Technologies Inc., CA, USA). A

HP-5MS fused-silica capillary column (30 m ×0.25 mm × 0.25

mm, Agilent J & W Scientific, Folsom, CA, USA) was utilized to

separate the derivatives. Helium (>99.999%) was used as the

carrier gas at a constant flow rate of 1 mL/min through the

column. The injector temperature was maintained at 260°C.

Injection volume was 1 mL by splitless mode, and the solvent

delay time was set to 6.2 min. The initial temperature of

column thermostat is 50°C, keeps 0.5min, ramped to 125°C

at a rate of 8°C/min, to 210°C at a rate of 5°C/min, to 270°C at a

rate of 10°C/min, to 305°C at a rate of 20°C/min, and finally

held at 305°C for 2 min. The temperature of MS quadrupole

and ion source (electron impact) was set to 150 and 230°C,

respectively. The collision energy was 70 eV. Mass

spectrometric data was acquired in a full-scan mode (m/z

50-500).

The QCs were injected at regular intervals (every 8 samples)

throughout the analytical run to provide a set of data from which

repeatability could be assessed.
Data processing and analysis

The processing of the data was done with MS-DIAL

software. GC-MS qualitative analysis was performed using the

LUG database (Untarget database of GC-MS from Lumingbio).

Qualitative analysis of volatile and similar substances was

performed using the NIST database (https://webbook.nist.gov/

chemistry/). A combination of multivariate and univariate

statistical analysis was used to screen differential metabolites
TABLE 1 Sampling points information in this study.

Serial number Sites Code Geographic location Salinity (‰)

1 Sanmen Bay NS E: 121°56’29’’; N: 29°05’72’’ 12-13

2 Hangzhou Bay CS E: 121°10’87’’; N: 30°28’69’’ 3-5

3 Yanjin IS E: 114°15’55’’; N: 35°19’01’’ 1.5-2

4 Pilot test base AS E: 121°96’17’’; N: 29°78’02’’ 3
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between groups. The criteria for differential metabolite screening

were that the VIP value of the first principal component of the

OPLS-DA model was >1, and the P -value of the T test was<0.05

(Liu et al., 2021). Principal component analysis (PCA),

orthogonal partial least squares discriminant analysis (OPLS-

DA), heatmaps and bubble charts were analyzed and plotted

with R software (version 3.6.2). Metabolic pathway enrichment

analysis of differential metabolites was performed based on the

KEGG database (http://www.kegg.jp/). Meanwhile, Cytoscape

(http://www.cytoscape.org) was adopted to visualize and analyze

metabolic pathways and corresponding differential

metabolites networks.

In this study, the raw sequences acquired were available

through the MetaboLights database (https://www.ebi.ac.uk/

metabolights/). The accession number are MTBLS5202

and MTBLS5220.
Results

Metabolic profiling of S. paramamosain
in the gill and hemolymph

Metabolites changes in the gill and hemolymph among four

groups were detected by GC-MS. The results showed 341 and

285 detected metabolites in the gill and hemolymph,

respectively. The detectable metabolites of gill and hemolymph

in super class classification were the same except prenol lipids,

and the top three were organic acids and derivatives (27.21% and
Frontiers in Marine Science 04
27.64%), organic oxygen compounds (19.05% and 22.76%),

lipids and lipid-like molecules (17.35% and 20.33%)

(Figures 1A, B).

QC samples were required for reliable and high-quality

results (León et al., 2013). The results showed that the QC

samples were closely clustered, indicating that the experiment

was stable and reproducible and that the data was qualified for

statistical analysis. In addition, the PCA showed that all but one

outlier sample were within 95% confidence intervals, with scores

showing significant separation of metabolite profiles between the

four groups (Figures 1C, D). OPLS-DA multivariate statistical

analysis revealed significant differences in metabolites between

each two groups (Figures S1, S2).
Differential metabolites of S.
paramamosain in the gill and
hemolymph

To screen the differential metabolites (DMs) among these

groups, we integrated the results of the multivariate analysis

to identify the DMs between any two groups (VIP > 1, P<

0.05). The metabolites screened under the above conditions

had significant differences, and we have screened all the up-

regulated and down-regulated DMs (Tables S1-12). In order

to exhibit the relationship and the expression differences of

metabolites between different samples more intuitively, we

performed Hierarchical Clustering on the expression levels of

all significantly different metabolites (Figure 2).
A B

DC

FIGURE 1

Data overview. Super class classification of total metabolites in gill (A) and hemolymph (B); PCA score plot of metabolites in gill (C) and
hemolymph (D).
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In the gills, DMs were down-regulated significantly more

than up-regulated. We analyzed annotated metabolites and

found that 14 DMs were up-regulated and 57 DMs were

down-regulated in IS/NS group. The up-regulated DMs were

mainly lipids and lipid-like molecules, including d-tocopherol,
montanic acid, linoleic acid, cis-gondoic acid and pentacosanoic

acid. Moreover, the most down-regulated DMs were organic

oxygen compounds, mainly carbohydrates, including L-sorbose,

D-fructose, Glucose-6-phosphate and so on (Figure 2A). As for

AS/NS group, we found 6 increased and 37 decreased DMs. The

increased metabolites were mainly organic acids and

derivatives, while most of the decreased metabolites were

organic oxygen compounds, including D-fructose, L-sorbose,

D-arabinose etc. (Figure 2B). Among CS/NS group, there were

13 DMs increased and 56 DMs reduced. The increased

metabolites were mostly lipids and lipid-like molecules and

organic acids and derivatives, including d-tocopherol, linoleic
acid, pimelic acid, fumaric acid, a-ketoglutarate and N-

carbamoylaspartate. The dominantly reduced metabolites were

organic oxygen compounds (Figure 2C). A total of 38 DMs in

IS/CS group were found, among which 13 metabolites were up-

regulated and 25 metabolites were down-regulated. The most

increased metabolites were lipids and lipid-like molecules,
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including stearic acid, montanic acid, b-glycerophosphoric
acid and cis-gondoic acid. Most of the decreased metabolites

were organic ac ids and der ivat ives , inc luding N-

acetylputrescine, L-cystine, O-phosphoserine and carbamic

acid (Figure 2D). There were 13 DMs rose, focusing on lipids

and lipid-like molecules, including montanic acid, linoleic acid,

cis-gondoic acid and so on. And 51 DMs declined, mainly

organic oxygen compounds, including D-fructose-1,6-

bisphosphate, glucose-6-phosphate, trehalose-6-phosphate in

IS/AS group (Figure 2E). There were 24 DMs up-regulated,

mainly lipids and lipid-like molecules, while 48 DMs were

down-regulated, predominantly 13 organic oxygen

compounds and 13 organic acids and derivatives in CS/AS

group (Figure 2F). From the above results, we found that

organic oxygen compounds, mainly carbohydrates were

significantly down-regulated in the 3 low salinity groups. In

addition, lipids and lipid-like molecules, especially d-tocopherol
and linoleic acid were significantly up-regulated in CS and IS

compared with NS. Similarly, lipids and lipid-like molecules in

IS were significantly up-regulated compared with CS and AS. It

was worth noting that montanic acid and cis-gondoic acid were

significantly up-regulated in IS compared to the other

three groups.
A B

D

E F

G

I

H

J

K L

C

FIGURE 2

Heat maps of differential metabolites in the gill (A–F) and hemolymph (G–L). (A, G): IS/NS; (B, H): AS/NS; (C, I): CS/NS; (D, L): IS/CS; (E, J): IS/
AS; (F, K): CS/AS. The abscissa and ordinate represent sample names and differential metabolites, respectively. Colors from blue to red indicate
low to high expression abundance of metabolites.
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In the hemolymph, the results showed 34 increased and 7

decreased DMs in IS/NS group. Most of the increased

metabolites were organic acids and derivatives, including

fumaric acid, L-isoleucine, homoserine, glutamate, pyruvic

acid, L-lactic acid, etc., while stigmasterol, erythritol,

scopoletin, etc. were reduced (Figure 2G). There were 11 DMs

up-regulated, mainly organic acids and derivatives, including

serine, taurine, 2-hydroxybutyric acid and L-asparagine. And 33

DMs were down-regulated, the majority were organic oxygen

compounds, such as erythritol, glucose-1-phosphate, and D-

fructose-1-phosphate in the AS/NS group (Figure 2H). There

were 36 DMs rose in the CS group, predominantly organic acids

and derivatives, such as acetic acid, g-aminobutyric acid, fumaric

acid and isocitric acid, and 14 DMs declined, including glycine

compared with the NS group (Figure 2I). There were 47 DMs

up-regulated, mainly organic acids and derivatives (including

malic acid, fumaric acid, pyruvic acid, L-lactic acid, etc.) and

organic oxygen compounds (including D-arabinose, erythrose,

D-xylitol, etc.), however, only 5’-deoxy-5’-methylthioadenosine

was down-regulated in IS/AS group (Figure 2J). There were 52

DMs increased and 13 DMs reduced in CS/AS group, the most

of increased metabolites were organic oxygen compounds

(including D-fucose, D-xylitol, maltotriose, etc.) and organic

acids and derivatives (including L-histidine, L-proline, g-
aminobutyric acid, etc.), while organic acids and derivatives,

such as serine, taurine, L-asparagine and L-tyrosine were
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decreased (Figure 2K). There were 19 DMs up-regulated and 8

DMs down-regulated in IS/CS group. The up-regulated

metabolites were mainly organic acids and derivatives,

including L-lactic acid, homoserine and b-alanine, and the

primary down-regulated metabolites were also organic acids

and derivatives, including L-proline, glutaric acid and acetic

acid (Figure 2L). Collectively, these data showed that organic

acids and derivatives, mainly amino acids and metabolites

related to energy metabolism were significantly up-regulated in

the three low salinity groups.
Analysis of metabolic pathway of
differential metabolites

To gain further insight into the metabolic changes associated

with salinity, a KEGG pathway analysis of all DMs was

performed. There were significant differences in various

metabolic pathways in different groups, including amino acid

metabolism, fatty acid metabolism, tricarboxylic acid (TCA)

cycle and other related pathways (Figure 3).

In the gill, 37 metabolic pathways were found in IS/NS group

through DMs metabolic pathway enrichment analysis, of which

9 were significantly enriched (P< 0.05) and 28 were non-

significantly enriched (P > 0.05). The 9 significant enriched

metabolic pathways were mainly amino acid metabolism. In
A B

D

E F

G

I

H

J

K L

C

FIGURE 3

Bubble diagram of the significantly enriched metabolic pathways in the gill (A–F) and hemolymph (G–L) (p< 0.05). (A), G:IS/NS; (B), H:CS/NS;
(C), I:AS/NS; (D, J): CS/AS; (E, K):IS/CS; (F, L): IS/AS. The abscissa represents the Rich factor (Rich factor=number of significantly different
metabolites/total number of metabolites in the pathway), and the ordinate represents the metabolic pathway name. The greater the Rich factor,
the greater the degree of enrichment; The color from red to green indicates that the p-value decreases in turn; The larger the point, the greater
the number of metabolites enriched on the pathway.
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addition, pathways related to purine metabolism and

phingolipid metabolism were also included. Particularly, ABC

transporters, galactose metabolism and aminoacyl-tRNA

biosynthesis have extremely significant differences (Figure 3A,

P< 0.01). The analysis indicated that there were 42 metabolic

pathways of DMs annotated in CS/NS group. Among them,

amino sugar and nucleotide sugar metabolism, lysine

degradation, alanine, aspartate and glutamate metabolism were

extremely significant enrichment (P< 0.01), while galactose

metabolism, TCA cycle, caffeine metabolism, pentose and

glucuronate interconversions, arginine biosynthesis,

sphingolipid metabolism, pyrimidine metabolism, mTOR

signaling pathway were significant enrichment (Figure 3B, P<

0.05). 38 metabolic pathways were enriched in AS/NS group, and

7 of them were significant enrichment (P< 0.05). Galactose

metabolism and pentose and glucuronate interconversions

were extremely significant enrichment (Figure 3C, P< 0.01).

There were 41 metabolic pathways of DMs enriched in CS/AS

group, including 4 extremely significant enrichment pathways

(P< 0.01) and 3 significant enrichment (P< 0.05) pathways

(Figure 3D). There were 21 metabolic pathways enriched, and

only caffeine metabolism was significantly enriched in IS/CS

group (Figure 3E, P< 0.05). We found 47 metabolic pathways, of

which 14 were significantly enriched in IS/AS group (P< 0.05). It

is worth noting that arginine biosynthesis, alanine, aspartate and

glutamate metabolism, and ABC transporters showed extremely

significant enrichment (Figure 3F, P< 0.01).

In the hemolymph, the data indicated 45 metabolic

pathways enrichment of DMs in IS/NS group. In particular,

seven pathways including glycine, serine and threonine

metabolism, alanine, aspartate and glutamate metabolism,

TCA cycle, arginine biosynthesis and so on were extremely

significant enriched (Figure 3G, P< 0.01). For CS/NS group,

there were 41 metabolic pathways enrichment of DMs, including

4 extremely significant enrichment pathways (neuroactive

ligand-receptor interaction, tyrosine metabolism, glyoxylate

and dicarboxylate metabolism and butanoate metabolism, P<

0.01) and 12 significant enrichment pathways (glycine, serine

and threonine metabolism, TCA cycle, alanine, aspartate and

glutamate metabolism, arginine, proline metabolism, etc., P<

0.05) (Figure 3H). 30 metabolic pathways were enriched in AS/

NS group, of which 5 pathways were extremely significant

enriched (P< 0.01), including ABC transporters, galactose

metabolism, purine metabolism, neuroactive ligand-receptor

interaction and aminoacyl-tRNA biosynthesis, and three

pathways were significant enriched (Figure 3I, P< 0.05). As for

CS/AS group, there were 40 metabolic pathways enrichment, 6

pathways including cysteine and methionine metabolism were

extremely significant enriched (P< 0.01), and 6 pathways

including taurine and hypotaurine metabolism were significant

enriched (Figure 3J, P< 0.05). For IS/CS group, there were 33

metabolic pathways enrichment of DMs, including 4 extremely

significant enrichment pathways (propanoate metabolism,
Frontiers in Marine Science 07
pyrimidine metabolism, taurine and hypotaurine metabolism,

arginine and proline metabolism) (P< 0.01) and 12 significant

enrichment pathways (glycolysis/gluconeogenesis, pyruvate

metabolism, ABC transporters, b-alanine metabolism, etc.)

(Figure 3K, P< 0.05). There were 38 metabolic pathways of

DMs enriched in IS/AS group, of which 9 pathways such as

pyruvate metabolism, glycine, serine and threonine metabolism

and glycolysis/gluconeogenesis were extremely significant

enriched (P< 0.01), and 6 pathways including alanine,

aspartate and glutamate metabolism, b-alanine metabolism,

etc. were significant enriched (Figure 3L, P< 0.05).

The above results showed that significant metabolic

pathways were mainly related to amino acids, energy

metabolism, and signal transduction. In the gills, compared

with NS, it was found that galactose metabolism and lipid

metabolism (phingolipid and glycerolipid) metabolic pathways

were all significantly enriched in IS, CS and AS, while amino

acids (especially lysine degradation) metabolic pathways were

significantly enriched in IS and CS, and ABC transporters

metabolic pathways were significantly enriched in IS and AS.

In the hemolymph, compared with NS, the results revealed that

amino acids (glycine, serine and threonine metabolism, alanine,

aspartate and glutamate metabolism, arginine and proline

metabolism) and TCA cycle metabolic pathways were

significantly enriched in IS and CS. Compared with CS, NS

and AS, alanine, pyruvate metabolism, ABC transporters,

pyrimidine metabolism, nicotinate and nicotinamide

metabolism pathways were significantly enriched in IS.

Particularly, taurine and hypotaurine metabolism were

significantly enriched in IS compared with CS and NS. In this

study, taurine and hypotaurine metabolism directly regulated

the synthesis of taurine, which significantly increased the levels

of pyruvate and glutamate (intermediate metabolites of taurine)

in the IS group (Figure 4). The significantly different amino acid

pathways, ABC transporters, TCA cycle and corresponding

differential metabolites in IS/NS group were then combined to

form an interaction network diagram (Figure 5). The results

indicated that these changed metabolites might play an essential

role in the response of S. paramamosain to low-salinity saline-

alkaline water stress.
Discussion

Gills play a crucial role in osmotic and ionic regulation in

crustaceans (Romano et al., 2012; Lv et al., 2016). Previous

studies have proved that the anterior gills were specialized for

gas exchange, whereas the main function of the posterior gills is

osmoregulation (Péqueux, 1995). Thus, the posterior gill was

used as the research material in this study. The function of

posterior gills on osmotic and ion regulation depends on ion

transport enzymes, especially Na+/K+-ATPase, and transporters

(Henry et al., 2003; Henry et al., 2012). The results showed that
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lipids and lipid-like molecules (especially d-tocopherol and

linoleic acid) were the main metabolites, which were

significantly up-regulated in IS and CS, while cholesterol was

significantly up-regulated in AS. At the same time, lipid

metabolism (phingolipid and glycerolipid) metabolic pathways

were significantly enriched in IS, CS and AS compared with NS.

Phospholipids are known to be major components of cell

membranes, maintaining the shape and fluidity of cells (Lavie

et al., 1999). Meanwhile, cholesterol is also an essential

component of cell membranes. It is embedded between the
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phospholipid bilayers of cell membranes, making the cell

membrane structure fluid and playing a vital role in

maintaining normal cell function. The analysis revealed that

lipids and lipid-like molecules play a critical role in the

osmolality regulation of crab, which was consistent with Yao

et al. (Yao et al., 2021).

Previous studies have shown that crustaceans, including

crabs, responded to changes in environmental salinity by

altering the fatty acid composition in different tissues,

especially gills (Romano et al., 2014). Moreover, the lipid
FIGURE 4

Taurine and hypotaurine metabolism KEGG pathway. The red indicates the up-regulated compound in this study, the green squares indicate
enzymes unique to the species.
FIGURE 5

Interaction network diagram of metabolic pathways and differential metabolites (IS/NS).
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composition and the intra-/intercellular ion concentration of S.

serrata varied significantly with salinity (Bhoite and Roy, 2013).

The total phospholipid content in the hind gills of Eriocheir

sinensis significantly increased after salinity changes (Chapelle

et al., 1976). Previous studies have found that S. paramamosain

regulates osmolality by transporting Na+, K+ and Cl- into cells

via cotransporters (Gagnon et al., 2003; Gamba, 2005; Xu et al.,

2017). These results indicated that membrane components of gill

ce l l s were assoc iated with the osmoregulat ion of

S. paramamosain.

Free amino acids (FAAs) are important osmotic regulators

used by crustaceans under salinity stress (Huong et al., 2001; Li

et al., 2014; Yao et al., 2020). In euryhaline crustaceans, FAAs

constitute most of the organic permeate that accumulates in

response to hypertonic stress. In the gills, amino acids (especially

lysine degradation) metabolic pathways were significantly

enriched and N-carbamoylaspartate was significantly up-

regulated in IS and CS compared with NS, indicating that free

amino acids, especially lysine and N-carbamoylaspartate

participated in the osmolality regulation of S. paramamosain.

Hemolymph has the function of maintaining homeostasis,

including pH, osmolarity, water balance, and ion composition.

Studies have indicated that various inorganic ions, especially Na+

and Cl-, are major contributors to hemolymph osmotic pressure

in crustaceans (Chen and Chen, 2000; Wang et al., 2012).

Besides, FAAs are also considered to be key factors in

osmoregulation, which play an essential role in intracellular

osmoregulation in crustaceans, although their concentrations

are lower than those of inorganic ions (Abe, 1999; Huong et al.,

2001). In the hemolymph, more amino acids were taking part in

the regulating osmolality of S. paramamosain. Oxoproline, g-
aminobutyric acid, L-isoleucine, homoserine and glutamate were

up-regulated, and arginine and proline metabolism, alanine,

aspartate and glutamate metabolism, glycine, serine and

threonine metabolism were significantly enriched in IS and CS

compared with NS. Studies have shown that glycine, proline and

alanine widely function as osmoeffectors in several crustacean

species (Fujimori and Abe, 2002; Liu et al., 2008; Faria et al.,

2011; Mazzarelli et al., 2015). In addition, lysine and arginine

were specific osmolality effectors in the hemolymph of

Litopenaeus vannamei (Liu et al., 2008). Glutamate is known

to play a key role in the biosynthesis of non-essential amino

acids, serving as a precursor for L-proline and L-glutamine and

as an amino donor for glycine and L-alanine (Schoffeniels and

Reid, 1976). Thus, the glutamate metabolism was enriched in

our study. Aspartic acid was known to be a critical

osmoregulatory factor in S. paramamosain (Yao et al., 2020)

and Eriocheir sinensis (Wang et al., 2004). From the above

results, it was found that FAAs occupied an important

position in the regulation of osmotic in the S. paramamosain.

The osmoregulation process of crustaceans is physiologically

energy-consuming under low salinity conditions (Ye et al., 2009;
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Dirk et al., 2009; Wang et al., 2018c; Yao et al., 2020).

Carbohydrate metabolism plays a critical part in the energy

required for ionic and osmoregulation (Tseng and Hwang,

2008). In this study, the significantly down-regulated

metabolites in the gill of CS, IS and AS were mainly organic

oxygen compounds, most of which were carbohydrates,

including galactose, glucose-6-phosphate, D-fructose-1,6-

bisphosphate, D-fructose, maltotriose and so on. At the same

time, galactose metabolism and lipid metabolism metabolic

pathways were significantly enriched in IS, CS and AS. On the

contrary, most carbohydrates and organic acids (related to

energy metabolism) were significantly up-regulated in the

hemolymph of CS and IS groups, especially fumaric acid,

pyruvic acid and lactic acid. As we all know, fumaric acid

takes part in the TCA cycle (Ma et al., 2017). Pyruvate is

converted into acetyl-CoA by dehydrogenase and then enters

the TCA cycle, and lactic acid is converted into pyruvate under

the catalysis of lactate dehydrogenase and then enters the TCA

cycle. TCA is a key link between carbohydrate, protein and lipid

metabolism (Zalis et al., 2019). Furthermore, changes in TCA

metabolites indicate alterations in cellular bioenergetics

(Koundal et al., 2015). Additionally, lactic acid level reflects

anaerobic metabolism level (Venkatesh and Ramalingam, 2007).

This is consistent with the significant enrichment of the TCA

cycle and pyruvate metabolic pathway in this study. Up- and

down-regulation of carbohydrates and organic acids were

possibly related to the dynamic energy changes of S.

paramamosain in response to low salinity. Lipid and amino

acid metabolism were also vital pathways for energy production

(Amer et al., 2017). Osmotic stress could induce physiological

responses such as increased dissolved oxygen consumption

(Spanopoulos-Hernández et al., 2005) and ammonia excretion

(Chen and Lin, 1994; Silvia et al., 2004). It has been reported that

crustaceans can detoxify elevated ammonia levels in their body

fluids by converting it into urea (Ren et al., 2015; Zimmer et al.,

2017; Dong et al., 2020). This explains the significant up-

regulation of urea in CS and IS groups of hemolymphs in

this study.

There were significant differences in the metabolites of S.

paramamosain in different low salinity areas, indicating certain

differences in their osmotic regulation mechanisms. In the gills,

ABC transporters’ metabolic pathways were significantly

enriched in IS and AS compared with NS, while amino acids’

metabolic pathways were significantly enriched in IS and CS. In

the hemolymph, amino acids and energy metabolism related

metabolites were significantly up-regulated and amino acids and

TCA cycle metabolic pathways were significantly enriched in IS

and CS compared with NS, while energy metabolism related

metabolites were significantly down-regulated and ABC

transporters, galactose metabolism, purine metabolism were

extremely significantly enriched in AS. The ABC transporter

super family is one of the largest types of transporters, their
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function is to use the binding and hydrolysis of ATP to promote

the translocation of various substrates from ions to

macromolecules across membrane (Rees et al., 2009). These

results indicated that the osmoregulation of AS group was

dominated by ion transport and energy metabolism, while IS

and CS were dominated by amino acid and energy metabolism.

The AS group was in an acute low salinity environment

artificially simulated in the laboratory. The seawater was

diluted to a salinity of 3‰ with fresh water, and the crabs

were kept for only one week. While IS and CS were natural low

salinity environments, crabs have adapted to the local

environment after a long period of cultivation. Therefore, we

speculate that under acute/short-term low salinity conditions, S.

paramamosain relied on ion transport and energy metabolism

for osmoregulation, while amino acids and energy metabolism

occupied a leading position in long-term low salinity.

Unlike the other three groups, IS belongs to the inland low

salinity saline-alkaline water environment, the type of saline-

alkaline type is SO2+
4 , and the ion composition in the water is

obviously different from that of seawater. It was also the first-

time marine crabs were successfully cultured in inland low

salinity saline-alkaline water. Thus, the IS group received

more tremendous salinity stress and consumed more energy

to regulate osmolality balance. As a result, there were more

free amino acids and energy metabolism-related metabolites

of IS than CS and AS compared to NS, such as L-isoleucine,

homoserine, glutamate, malic acid, pyruvic acid and L-lactic

acid. Besides, the metabolic pathways of arginine and proline

metabolism, valine, leucine and isoleucine biosynthesis were

significantly enriched in IS. Taurine and hypotaurine

metabolism were significantly enriched in IS compared with

NS, while extremely significantly enriched compared with CS.

This indicated that taurine and hypotaurine play an

important role in the response of crabs to inland saline-

alkaline water stress. Previous studies have shown that

taurine was an important osmoregulatory factor in S.

paramamosain (Yao et al., 2020) and Eriocheir sinensis

(Long et al., 2017). Therefore, in the culturing process,

adding a certain amount of taurine and hypotaurine to the

feed, or strengthening the metabolic pathway through related

products, may improve the ability of S. paramamosain

adapting to inland low salinity saline-alkaline water and

improve their survival rate.
Conclusion

In conclusion, we investigated the metabolic response of

S. paramamosain under multiple low salinity stress modes

based on GC-MS technology. The structure and permeability

of gill cell membranes play an essential role in osmotic

regulation in crustaceans to maintain hemolymph osmotic
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pressure/ion and survive under salinity stress (Freire et al.,

2008). In this study, lipids and lipid molecules accounted for

most of the metabolites of gills, while amino acids took

possession of a large proportion of metaboli tes of

hemolymph. Thus, our results suggested that in the low

salinity environments, the metabolic mechanisms of

osmoregulation of crabs maybe improve their ability to

transport ions, amino acids and carbohydrates through

biomembranes by altering the membrane composition of

the gill cells, and then the free amino acids content in the

hemolymph is increased. This process is accompanied by

consuming energy substances such as carbohydrates and

lipids. However, the mechanism still requires further study.

On the other hand, there were specific differences in the

metabolic mechanisms of osmotic regulation of crabs under

acute low salinity and long-term low salinity stress, and

taurine and hypotaurine play an important role in the

adaptation of crabs to inland saline-alkaline water.

In this work, we used metabolomics analysis to elucidate the

osmoregulation mechanism of S. paramamosain in multiple low

salinity stress modes, which provided novel insight into the

metabolic mechanism of S. paramamosain adapting to inland

low salinity saline-alkaline water, and provided theoretical

guidance for the cultivation of S. paramamosain in inland

saline-alkaline water.
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