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Vegetation changes in
Yellow River Delta wetlands
from 2018 to 2020 using
PIE-Engine and short time
series Sentinel-2 images

Dong Chang1,2, Zhiyong Wang1*, Xiaogang Ning1,2, Zhenjin Li1,
Long Zhang1,2 and Xiaotong Liu1

1College of Geodesy and Geomatics, Shandong University of Science and Technology,
Qingdao, China, 2Institute of Photogrammetry and Remote Sensing, Chinese Academy of Surveying
and Mapping, Beijing, China
Vegetation is the functional subject in the wetland ecosystem and plays an

irreplaceable role in biodiversity conservation. It is of great significance to

monitor wetland vegetation for scientific assessment of the impact of

vegetation on ecological environment and biodiversity. In this paper, a

method for extracting wetland vegetation based on short time series

Normalized Difference Vegetation Index (NDVI) data set was constructed.

First, time series NDVI data were constructed using Sentinel-2 images. Then,

the Support Vector Machine (SVM) classifier was used to classify the wetland

vegetation types. The distributions of the main wetland vegetation in the study

area in 2018 and 2020 were got. Finally, the land cover transfer matrix was

calculated to analyze the spatial pattern and change of wetland vegetation

emphatically from 2018 to 2020. Based on 46 Sentinel-2 images acquired in

2018 and 2020, the spatial pattern and change of vegetation in the Yellow River

Delta wetlands were extracted and analyzed in this paper. The results show

that: (1) Themethod for extracting wetland vegetation in estuary delta based on

PIE-Engine platform and short time series NDVI data constructed in this paper

can effectively extract the wetland vegetation information. The overall

accuracy of the classification results reached 90.47% in 2018 and 80.30% in

2020. The Kappa coefficient of the classification results are 0.874 in 2018 and

0.739 in 2020 respectively. Compared with the results from the random forest

classification method and the maximum likelihood classification method, the

accuracy is improved by 6.40% and 13.04%, and the Kappa coefficient is

improved by 0.055 and 0.069. (2) There were significant changes in

vegetation coverage in the Yellow River Delta wetlands from 2018 to 2020.

The Spartina alterniflora increased by 3.74km2. The Suaeda salsa degraded

seriously, and the total area decreased by 20.38km2. In addition, the increase of

Spartina alterniflora effectively guaranteed the stability of the coastline in the

study area. This study can provide a theoretical basis for wetlands vegetation

classificaton, and the classificaton results can provide scientific reference for
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protecting the ecological environment of wetlands and maintaining

ecological stability.
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Yellow River Delta wetlands, Normalized Difference Vegetation Index, PIE-Engine, Support
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Introduction

As one of the most dynamic and valuable ecosystems in the

coastal zone, salt marsh wetland has a variety of ecological

functions, such as intercepting sediment, coastal protection,

water purification and food supply, while also being some of

the most threatened areas (Costanza et al., 1997; Sun et al., 2016;

Borges et al., 2021). The Yellow River Delta wetlands plays an

irreplaceable role in providing humans with land, tourism and

natural resources, so it is of great significance to protect the

Yellow River Delta wetlands (Wang et al., 2022). However, due

to the single vegetation type of the wetland ecosystem in the

Yellow River Delta in early years, the ecological environment is

very fragile and easily disturbed by natural or human factors (Liu

et al., 2021). Since the 1990s, relevant departments in China have

introduced Spartina alterniflora into the Yellow River Delta to

improve the salt marsh wetland environment, and succeeded in

trial planting (Zuo et al., 2012; Huang et al., 2022). Then, the

Spartina alterniflora spreads rapidly to the intertidal zone of

Yellow River Delta wetlands. In the 21st century, Spartina

alterniflora has become one of the main vegetation

communities in this region (Wan et al., 2009), showing strong

invasiveness. The introduction of Spartina alterniflora has

created great ecological benefits for the Yellow River Delta, but

the explosive spread of Spartina alterniflora threatens the

biodiversity and ecological stability. Therefore, it is of great

significance to quantitatively monitor the species distribution of

vegetation for protecting wetland biodiversity and maintaining

the sustainable development of the ecosystem.

Medium and low resolution remote sensing images play an

important role in wetland monitoring, including ecosystem

evaluation (Wang et al., 2021), biomass inversion (Yu et al.,

2022), and monitoring of seasonal and spatial variability

(Daggers et al., 2020). In the early, medium and low resolution

remote sensing images have been used to monitor Spartina

alterniflora (Mao et al., 2019; Cavallo et al., 2021). But the

spectral characteristics of Spartina alterniflora were similar to

those of other green vegetation, such as Phragmites australis,

they could not distinguish Spartina alterniflora accurately from

other vegetation. With the further study, researchers found that

Spartina alterniflora and other vegetation have significant

differences in growth cycle. This is manifested in the
02
differences of different spectral features (Zheng et al., 2017)

and texture features (Guo et al., 2020) in optical images, and in

the characteristics of backscattering coefficient (Hu et al., 2021)

and coherence (Li Z. J. et al., 2022) in SAR images. At present,

medium and low resolution remote sensing images are effective

materials for monitoring Spartina alterniflora and vegetation

classification in a large area. Mao et al. (2019) applied the multi-

scale segmentation method to process Landsat 8 OLI images,

used the object-oriented SVM classification algorithm to

monitor the spread of Spartina alterniflora in coastal areas of

Mainland China from 1995 to 2015, and analyzed the invasion of

Spartina alterniflora in different coastal areas based on available

image data. It was found that the rapid spread of Spartina

alterniflora had potential harm to coastal wetland ecology in

China. Cavallo et al. (2021) studied the evolution of land cover in

Albufera wetland in Spain in winter by using Sentinel-2 and

Landsat 8 OLI images, with an overall accuracy of over 95%.

Chen et al. (2021) land-use researched the landscape patterns of

Zhoushan Island using multi-temporal Landsat satellite data, the

classification results from 1984 to 2020 is over 75%. The above

scholars verified the feasibility of vegetation classification with

medium and low resolution remote sensing images.

Early wetland vegetation monitoring was limited to single

species monitoring (Wan et al., 2009; Chen et al., 2020; Ren et al.,

2021). The remote sensing images with medium and low

resolution, such as Landsat 8 and Sentinel-2, could complete

the task of monitoring the wetlands in a large area (Wang et al.,

2020; Ashok et al., 2021). However, in further exploring the

influence mechanism between invasive species and native

species in wetland environment, it is urgent to carry out fine

and quantitative monitoring of salt marsh vegetation

community. Due to the limitation of satellite image resolution,

it cannot effectively monitor different vegetation communities

using the classification results of medium and low resolution

remote sensing images. It is an important challenge for

monitoring the wetland vegetation. The high resolution

remote sensing images can better monitor vegetation by using

texture features, such as Worldview images, UAV aerial images

and multispectral images (Jiao et al., 2019; Wang et al., 2019;

Zhu et al., 2019). However, due to expensive data and long image

acquisition cycle, it is difficult to obtain a large amount of high-

quality data to form an effective long time series monitoring,
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which cannot be promoted in practical application. In addition,

due to the complexity of wetland environment, the traditional

use of multi-spectral features (Zheng et al., 2017; Jiao et al., 2019)

and texture features (Wang et al., 2018) for monitoring wetlands

cannot well meet the needs of research. Therefore, how to obtain

more valuable information from the remote sensing images with

medium and low resolution for classification has become an

urgent problem to be solved.

Vegetation phenology information (Zeng et al., 2020)

records vegetation growth characteristics from time scale,

providing a new idea for wetland vegetation classification.

Relevant scholars have carried out a lot of research in this

aspect. Such as Sun et al. (2016) for the first time introduced

temporal phenology information and temporal spectrum

information of remote sensing image into monitoring the

vegetation of salt marsh, and used HJ-1 temporal Normalized

Difference Vegetation Index (NDVI) image to get the vegetation

classification results of Salt marsh in Jiangcheng, and the

classification accuracy reached 88.2%. Since the Sentinel-2

satellite launching in 2017, Sentinel-2 satellite images, as one

of the representatives of medium and low resolution images,

have become an important data source for time series analysis,

wetland vegetation monitoring and other related studies

(Mahdianpari et al., 2018; Sun et al., 2020). Cai et al. (2019)

used the data fusion between MODIS and Sentinel-2 to obtain

multi-temporal Sentinel-2 data and studied rice classification.

The overall accuracy of classification based on object-oriented

random forest algorithm was 95%. When targeting complex

communities, Sentinel-2 can also effectively map the distribution

of vegetation. For example, Rapinel et al. (2019) used Sentinel-2

temporal images to map the distribution of seven vegetation

communities in the Bay of Mont Saint-Michel in France using

unsupervised classification, with an overall accuracy of 78%.

However, under the background that the classification accuracy

was less than 80%, Vrieling et al. (2018) introduced Sentinel-2

time series NDVI information, and verified that the vegetation

phenological information by using spectral features could be

effectively obtained based on the time series Sentinel-2 images.

Time series data has great potential in monitoring vegetation

and has received extensive attention from researchers (Chapple

and Dronova, 2017). However, it requires complex computation

and expensive storage equipment to construct and store time

series data, which seriously hinders the application and

popularization of time series data. The cloud computing

method provides researchers with powerful computing

capacity and cloud storage space. It can overcome the

problems of low efficiency such as local download, storage and

pre-processing, and is widely used in monitoring the land cover

and change in a large scale (Liang et al., 2020; Akhoondzadeh,

2022; Li Z. J. et al., 2022; Ning et al., 2022). PIE-Engine (Cheng

et al., 2022) is an online remote sensing cloud computing open

platform integrating real-time distributed computing, interactive

analysis and data visualization. It contains an elastic big data
Frontiers in Marine Science 03
environment for automatic management and integrates

technologies such as multi-source remote sensing data

processing, distributed resource scheduling, real-time

computing, batch computing and deep learning framework.

PIE-Engine remote sensing computing cloud service platform

combines massive remote sensing data and computing resources

to quickly realize complex image calculation through simple

codes, providing open data and elastic computing force support

for research in the field of earth science.Compared with Google

Earth Engine (GEE) (Li X. et al., 2022), PIE-Engine lowers the

barrier for Chinese researchers to learn and use with its detailed

Chinese help documents, communication community and

friendly interactive interface. Therefore, based on PIE-Engine,

this paper used Sentinel-2A to construct intensive short time

series NDVI data (number of images > 12) to extract salt marsh

vegetation in the Yellow River Delta wetlands, and then explored

the wetland vegetation distribution pattern and change

characteristics from 2018 to 2020. It can provide scientific

reference for protecting and managing the Yellow River Delta

wetlands and maintaining wetland biodiversity and

ecological stability.

The structure of this paper is as follows: In Section 2, the

situation of the study area and the experimental data are

introduced. Section 3 is the study method of this paper. Based

on PIE-Engine remote sensing cloud computing platform, a

method for extracting the wetland vegetation based on short

time series NDVI data set was constructed. Section 4 is the study

results of this paper, including the thematic map of wetland

vegetation classification in the Yellow River Delta wetlands in

2018 and 2020, as well as the accuracy verification. In section 5,

the spatial and temporal change analysis of vegetation in the

Yellow River Delta wetlands was carried out, and the spatial

distribution and change characteristics of the invasive species –

Spartina alterniflora were mainly analyzed. In the last section,

some important conclusions were given.
Data and materials

Study Area

The Yellow River Delta wetlands is selected as the experimental

area in this paper. The Yellow River Delta is located in the south of

Bohai Bay and the west of Laizhou Bay in China (Xie et al., 2022),

and its latitude and longitude coordinates are 37°35’N ~ 37°52’N,

and 118°56’E ~ 119°18’E. It mainly distributes in Dongying,

Shandong Province, China. It is the estuary delta with the largest

newly added land area in China. The Yellow River Delta located in

the mid-latitude warm temperate zone, has a sub-humid

continental monsoon climate with distinct four seasons, an

average annual temperature of 12.1 °C, and annual precipitation

of about 560-590mm, which varies greatly from year to year. The

Yellow River Delta is the most well-preserved, broadest and
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youngest wetland ecosystem in China’s warm temperate zone

(Zhang B. et al., 2019), which is rich in animal and plant resources.

The study area in this paper is the Yellow River Estuary,

covering an area of about 487km2. This area is susceptible to the

influence of the Yellow River sediment and ocean dynamic,

resulting in a large change of shoreline sedimentation erosion.

Therefore, this is a typical area for studying the change of

wetland vegetation and ecological environment in the Yellow

River Delta. The geographical location of the study area is shown

in red box in Figure 1A. Figure 1B shows an enlarged view of the

study area with Sentinel-2 image as the background.

The native vegetation of the Yellow River Delta is mainly

Phragmites australis, Suaeda salsa and Spartina alterniflora.

Studies have shown that the restoration of Phragmites australis

can significantly increase soil moisture content, reduce soil salinity,

and provide habitat for migratory birds. Suaeda salsa is a salt

polyethylene plant, which is prone to high humidity, saline-alkali

resistance and barren resistance. Suaeda salsa growing in saline-

alkali land can absorb and store water through succulent stems and

leaves, and dilute the concentration of salt absorbed from the soil

and transported to the plant, so as to improve soil salinity. In the

low-tide zone, the tiller mutant of Spartina alterniflora is washed

into the sea by seawater, which accelerates the outward expansion of

Spartina alterniflora. Moreover, because of its high tolerance and

adaptability to saline-alkali land, Spartina alterniflora seriously

damages native species (Meng et al., 2020). In our field
Frontiers in Marine Science 04
investigation, Spartina alterniflora, Phragmites australis and

Suaeda salsa were photographed in situ, as shown in Figure 1C-E

respectively. It can be seen that Phragmites australis and Spartina

alterniflora are similar in appearance, mainly in green. Suaeda salsa

is short and red in color, which is significantly different from

Phragmites australis and Spartina alterniflora.
Data

In this paper, Sentinel-2 optical remote sensing satellite data

were used to monitor the wetland vegetation in the Yellow River

Delta. Sentinel-2 satellite (Spoto et al., 2012) consists of two

satellites in synchronous orbit, which completed satellite

network observation in 2017 (Sentinel-2A satellite was launched

in June 2015, and Sentinel-2B satellite was launched in March

2017). After the network observation of these two satellites, the

revisiting period in low latitude area is 5 days, and the revisiting

period in high latitude area is only 3 days. Each of the Sentinel-2A/

B satellites carries a MultiSpectral Imager (MSI) that captures

images in 13 spectral bands with ground resolutions of 10m, 20m

and 60m respectively. There are two product levels of Sentinel-2

data: Level-1C and Level-2A. The product of Level-1C is the

original reflection data of the atmosphere at the top, and the

product of Level-2A is the surface reflection data released by the

European Space Agency (ESA) after atmospheric correction.
B

C D

A

E

FIGURE 1

Study area map. (A) is the location of the study area; (B) is the specific delineation with Sentinel-2 optical remote sensing images as the
background; (C) is Spartina alterniflora photographed in situ; (D) is Phragmites australis photographed in situ; and (E) is Suaeda salsa
photographed in situ.
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In this paper, Sentinel-2A Level-2A products were selected. The

band B2 (Blue, 490nm), band B3 (Green, 560nm), band B4 (Red,

665nm), and band B8 (NIR, 842nm) with 10-meter resolution were

used to calculate Normalized Difference Vegetation Index (NDVI),

sample selection and accuracy verification. A total of 46 Sentinel-2A

images were selected in this paper, including 25 images in 2018 and

21 images in 2020. The number of Sentinel-2A images acquired in

different months in 2018 and 2020 is shown in Figure 2.
Method

To improve the accurate of monitoring vegetation in the

Yellow River Delta wetlands, a method for extracting the wetland

vegetation and change analysis using short time series NDVI data

set was constructed based on PIE-Engine remote sensing cloud

computing platform. Firstly, PIE-Engine was used for cloud

screening, cloud removal and calculating the NDVI. Then, the

Sentinel-2 images with large cloud coverage were removed by

visual screening, and the short time series NDVI data were

constructed. Finally, SVM classifier was used to monitor and

classify wetland vegetation, and thematic maps of wetland

vegetation coverage in 2018 and 2020 were obtained. On this

basis, the land cover transfer matrix was calculated to analyze the

wetland vegetation pattern and spatio-temporal evolution from

2018 to 2020. The overall flow chart is shown in Figure 3.
Construction of time series NDVI
data set

NDVI is an important vegetation index for vegetation

classification and biomass reproduction, which is widely used

in monitoring the wetland vegetation (Mahdianpari et al., 2018;

Sun et al., 2020). In this paper, based on PIE-Engine remote

sensing computing cloud platform, Sentinel-2A surface
Frontiers in Marine Science 05
reflectance data with cloud cover less 40% were obtained.

Cloud detection band (QA60) was used to remove cloud from

the Sentinel-2A image. Then, the NDVI of each Sentinel-2A

image was calculated according to different bands (Sun et al.,

2021). The calculation formula of NDVI is as follows:

NDVI =  
Nir − Redð Þ
Nir + Redð Þ (1)

Where Nir and Red represent the band B8 and band B4 of

Senienel-2 MSI respectively.

According to the time of Sentinel-2A image acquisition, the

calculated NDVI are matched pixel by pixel according to pixel

coordinates to construct short time series NDVI data set. The

creation process is completed on the PIE-Engine platform.

The cloud cover is calculated from the whole image, but the

area of the study area is less than 1% of the Sentine-2 image area, so

the low volume screening value may abandon part of the effective

data. In order to obtain more available images, the threshold range

of cloud cover screening is set to be large (0~40%) in the process of

data acquisition. The short-time sequence NDVI data of multiple

bands were obtained through the cloud platform, and the band

serial number of corresponding time was obtained. Through visual

interpretation of true color images, the bands which completely

blocked in the study area were removed, and the images which

partially blocked by clouds and fog were retained. But the results in

a large range of null value areas in calculating NDVI data after

cloud removal of some images in the study area. To solve this

problem, visual inspection method was adopted to remove the

image with large missing areas, so as to avoid interference caused

by cloud cover in the process of obtaining original data. For the

empty values in NDVI data after cloud removal, the nearest

neighbor interpolation method was applied to fill the empty

values in each pixel from the time dimension. Based on the

attributes of the nearest pixel, the nearest neighbor algorithm

was used to fill the missing attributes of the object behind the mask.
FIGURE 2

The number of Sentinel-2A images acquired in different months in 2018 and 2020.
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Time series NDVI analysis

The main vegetation communities in the Yellow River Delta

region are rich, mainly including Phragmites australis, Spartina

alterniflora and other vegetation suaeda grass is the main surface

vegetation in this region. And they can be identified by visual

interpretation in remote sensing images. In the classification

process of this paper, the land features are classified into five

categories, namely Spartina alterniflora (SA), Suaeda salsa (SS),

Phragmites australis (PA), Open water (OW) and Tidal flat (TF).

Among them, the buildings, saline-alkali land and tidal flats in the

region with very similar spectral characteristics are divided into

tidal flats. The distribution of Phragmites australis and Spartina

alterniflora was relatively concentrated, and there were many

intersections. The Sentinel-2 true-color images acquired from

June to October in 2018 are shown in Figure 4. It can be seen

from the figures that the characteristics of Phragmites australis,

Spartina alterniflora and Suaeda salsa in different months are

significantly different, and there are obvious seasonal changes. In

the Sentinel-2 images from June to August, Phragmites australis

was green. In Sentinel-2 images from August to October, Spartina
Frontiers in Marine Science 06
alterniflora was green and Phragmites australis was dark purple.

Suaeda salsa matures from October to November, showing “red

carpet” on the Sentinel-2 images.

Based on true-color Sentinel-2 images, ground truth were

selected and the distribution is shown in Figure 5A. According to

the divided ground object types and time series data, the time

series NDVI curves of different land objects in different months

were counted, as shown in Figure 5B. It can be seen from the

curves that there are significant differences in time series NDVI

of different land types, which can provide a theoretical basis for

subsequent classification.
SVM classification method

Support Vector Machine (SVM) classifier (Cortes and

Vapnik, 1995) is widely used in monitoring the wetland

vegetation because it can better deal with the imbalance of

wetland vegetation samples (Ahmed et al., 2021; Zhang and Lin,

2022). The SVM classifier firstly normalizes the data, and then the

data to be classified is mapped to the factor space of high
FIGURE 3

Overall flow chart for analyzing vegetation changes in the Yellow River Delta wetlands from 2018 to 2020.
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B

C D

E

A

FIGURE 4

Sentinel-2 true-color images of the Yellow River Delta wetlands in 2018. (A) is the true-color image of Sentinel-2A acquired in June; (B) is the
true-color image of Sentinel-2A acquired in July; (C) is the true-color image of Sentinel-2A acquired in August; (D) is the true-color image of
Sentinel-2A acquired in September; (E) is the true-color image of Sentinel-2A acquired in October.
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dimension to find the optimal decision boundary and classify data

into different categories. SVM was originally applied to binary

classification problems. In two dimensions, two kinds of points

that can be completely separated by a line are called linearly

separable. The line that extends the two-dimensional space to the

multi-dimensional space and divides each category: WTx+b=0 is

called the hyperplane, which is the decision boundary of the

furthest distance closest to the two types of samples sought by

SVM. SVM obtains the optimal decision boundary by maximizing

the solution to maximize margin. The binary classification

problem is extended to the multi-classification problem, that is,

for each class, it is treated as +1 class and all samples of the

remaining M-1 classes are treated as -1 class, and a binary SVM is
Frontiers in Marine Science 08
constructed. As shown in the Figure 6 below, for class 1 shown in

the red dot, all other categories are regarded as -1 classes and

binary SVM is constructed, whose decision boundary is gray

dotted line. For the categories shown by the red dot, all other

categories are regarded as -1 classes, and binary SVM is

constructed, whose decision boundary is a red dotted line. We

get others by the similar methods. SVM method classifies

nonlinear data by identifying a decision boundary. In the case

of non-linear data without linear classification, this decision

boundary can increase the dimension of data artificially by

using kernel function (Yu et al., 2021).

In this paper, SVM classifier was used to classify wetland

vegetation based on short time series NDVI data. The specific
B

A

FIGURE 5

The training samples location and time series NDVI curves. (A) The distribution of training samples; (B) Time series NDVI curves based on
training samples. SA, Spartina alterniflora; OW, Open water; TF, Tidal flat; SS, Suaeda salsa; PA, Phragmites australis.
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method was as follows: According to the different characteristics

of five typical lands in different times in the Yellow River Delta

wetlands, Sentinel-2 multi-temporal images were used as the

judgment basis to select training samples; The constructed short

time series NDVI data set and training samples were input into

the SVM classifier. To ensure the objectivity of sample selection,

the samples were randomly selected as training, and the

maximum sampling value was set to 500.
Results

Classification results

According to 46 Sentinel-2 optical remote sensing images in

2018 and 2020, the wetland types in the Yellow River Delta are

classified based on the method constructed in this paper, and the

classification results are shown in Figure 7. The classification
Frontiers in Marine Science 09
result in 2018 is shown in Figure 7A, and the classification result

in 2020 is shown in Figure 7B. Legends are all represented in the

lower right corner of the figures, where the red represents

Spartina alterniflora, green represents Phragmites australis,

yellow represents Suaeda salsa, sky blue represents Tidal flat,

and dark blue represents Open water.

As can be seen from Figure 7, the distribution of ground

objects in the Yellow River Delta wetlands was complex. In 2018

and 2020, and a large amount of Spartina alterniflora was

distributed along the estuary. At the same time, there was a lot

of trivial Suaeda salsa in the Tidal flat, especially in the west of

the estuary, but it can be seen that the number of Suaeda salsa is

significantly reduced. Phragmites australis were mainly

distributed on both sides of the Yellow River channel. There is

obvious interlacing between Spartina alterniflora and

Phragmites australis near the estuary, and the situation is

similar in 2018 and 2020. In general, the cover pattern of

wetland vegetation in the Yellow River Delta is as follows:
BA

FIGURE 7

Classification results from the method constructed in this paper. (A) is the classification result in 2018. (B) is the classification result in 2020.
FIGURE 6

Classification principle of SVM.
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from the coastal edge to the Yellow River channel, the vegetation

distribution presents a pattern of “Spartina alterniflora - Suaeda

salsa - Phragmites australis”.
Accuracy verification

Confusion matrix verification (Townsend, 1971) has been

proved to be effective in verifying classification accuracy. In this

paper, combined with GF-2 remote sensing images with high

resolution, Google Earth images and the classification results of

other scholars (Wang et al., 2022; Li Z. J. et al., 2022; Zhang B.

et al., 2019), 127 verification samples were used to evaluate the

accuracy of classification results. The locations of verification

samples are shown in Figure 8. The number of verification

samples is as follows: 27 Spartina alterniflora, 24 Suaeda salsa,

24 Phragmites australis, 36 Tidal flats, and 16 Open water.

The accuracy verification results are shown in Table 1. The

overall classification accuracies in 2018 and 2020 are 90.47% and

80.30% respectively, and the kappa coefficients in 2018 and 2020

are 0.874 and 0.739 respectively. It is worth noting that in 2018

and 2020, the classification accuracies of Spartina alterniflora are

high, about 94.34% and 96.72% respectively. It can be concluded

that the method proposed in this paper can achieve good

classification accuracy, and it can meet the needs of spatial

and temporal change analysis of wetland vegetation.
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In order to verify the advantages of the proposed method in

monitoring the wetland vegetation types, the classification result

in 2018 from the proposed method was compared with the

classification results obtained by two traditional classification

methods: the maximum likelihood classification method and the

random forest classification method. Figure 9A is the result from

the proposed method; Figure 9B is the result from the random

forest classification method; Figure 9C is the result from the

maximum likelihood classification method. As can be seen from

Figure 9, the classification result from the proposed method in

this paper is relatively smooth, especially the distribution of

Spartina alterniflora is relatively consistent with the real

situation. In addition, Tidal flat also shows a more realistic

classification effect.

The same verification samples of the confusion matrix

verification method were used to verify the accuracy of the

three classification results in 2018, and the obtained accuracy is

shown in Table 2. As can be seen from the table, compared with

the random forest classification, the overall accuracy and Kappa

coefficient of the proposed method were improved by 6.40% and

0.088, and the classification accuracy of Spartina alterniflora was

improved by 12.13%. Compared with the maximum likelihood

classification, the overall accuracy and Kappa coefficient of the

proposed method were improved by 13.04% and 0.174, and the

classification accuracy of Spartina alterniflora was improved by

10.68%. Therefore, the proposed method has achieved better
FIGURE 8

The distribution of Verification samples.
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B

C

A

FIGURE 9

Comparison of different classification methods in 2018. (A) is the result from the proposed method; (B) is the result from the random forest
classification method; (C) is the result from the maximum likelihood classification method.
TABLE 1 Accuracy verification of the classification results in 2018 and 2020 from the method constructed in this paper.

Year Class SA SS PA TF OW

2018 SA 94.34 0.11 0.23 —— ——

SS 3.20 88.13 6.42 4.88 ——

PA 0.70 0.31 89.76 —— ——

TF 1.76 11.39 3.37 94.88 15.43

OW 0.01 0.06 0.22 0.24 84.57

Over Accuracy 90.47

Kappa Coefficient* 0.874

2020 SA 96.72 3.61 0.25 0.06 ——

SS 2.69 42.79 7.57 15.19 0.10

PA 0.10 0.31 90.85 —— ——

TF 0.02 53.12 0.38 80.26 13.40

OW 0.49 0.17 0.95 4.49 86.50

Over Accuracy 80.30

Kappa Coefficient* 0.739
Frontiers in Marine Sci
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results in monitoring the vegetation types in the Yellow River

Delta wetlands. Especially in the monitoring Spartina

alterniflora, the accuracy has significantly improved.
Discussion and analysis

Wetland vegetation change

To explore the process of wetland vegetation change, the

transfer matrix of land use type was calculated based on the

classification results in the Yellow River Delta wetlands in 2018

and 2020, as shown in Table 3, and the distribution and change

of wetland vegetation were analyzed. According to Table 3, the

coverage areas of Spartina alterniflora, Suaeda salsa and

Phragmites australis in 2018 were 31.72 km2, 52.46 km2 and

38.46 km2, respectively. In 2020, the coverage areas of Spartina

alterniflora, Suaeda salsa and Phragmites australis were 35.46

km2, 32.08 km2 and 39.52 km2, respectively. Compared with

2018, the coverage area of Spartina alterniflora increased by 3.74

km2, the coverage area of Phragmites australis increased by 1.06

km2, and the coverage area of Suaeda salsa decreased by

20.38 km2.

The growth of Phragmites australis vegetation community

was relatively stable, mainly distributed in perennial or seasonal

water flood beaches, depression and soil erosion zone at the

Yellow River estuary. In the boundary between Spartina

alterniflora and Phragmites australis on both sides of the

estuary, the area of Phragmites australis decreased by 0.39 km2

due to the expansion of Spartina alterniflora. However, some

Spartina alterniflora were also replaced by Phragmite australis in

the Yellow River estuary. Figure 10 shows the change of wetland

vegetation coverage. In Figure 10, a large area of Suaeda salsa

disappeared, as shown in blue. This area was eroded by soil
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salinization, resulting in vegetation degradation, which requires

more attention. Spartina alterniflora was mainly distributed in

the south and north sides of the Yellow River estuary. From 2018

to 2020, Spartina alterniflora increased by 3.74 km2, and its

expansion rate was 11.8%. The expansion area was concentrated

in the boundary area of Spartina alterniflora and Suaeda salsa

and the boundary area of Spartina alterniflora and Phragmites

australis, and a total of 2.42 km2 of Phragmites australis and

Suaeda salsa were invaded. The direction of expansion was from

Spartina alterniflora to Phragmites australis and Suaeda salsa. In

terms of species competition, Spartina alterniflora had good

adaptability to saline-alkali wetland environment, and the

continuous growth of Spartina alterniflora seriously invaded

the living space of Suaeda salsa and Phragmites australis. On

both sides of the Yellow River estuary, Spartina alterniflora

increased significantly and replaced part of Phragmites australis

from 2018 to 2020.
Spartina alterniflora change and
ecological benefit

Using remote sensing images to extract coastline data can

usually accurately separate water and land areas (Chen et al.,

2022). In this paper, to further analyze the expansion of invasive

species Spartina alterniflora at the Yellow River estuary, the

classification results were combined to obtain the binary image of

land and sea, and the cavity filling was carried out. The filled binary

image was vectorized as the land and sea boundary. Because the

method adopted in this paper has high accuracy for Open water and

other non-vegetation objects, it can obtain the water-land boundary

with high precision. The distribution of Spartina alterniflora at the

Yellow River estuary is shown in Figure 11. Figure 11A shows the

distribution of Spartina alterniflora in 2018, and Figure 11B shows
TABLE 3 Land cover transfer matrix from 2018 to 2020 in Yellow River Delta wetlands.

2020

Type SA (km2) SS (km2) PA (km2) TF (km2) OW (km2) Total Area (km2)
2018 SA (km2) 30.72 0.78 0.21 —— —— 31.72

SS (km2) 2.03 21.34 0.20 0.04 28.83 52.46

PA (km2) 0.39 1.62 36.42 —— 0.02 38.46

TF (km2) 0.73 0.01 0.05 214.68 0.50 215.98

OW (km2) 1.57 8.32 2.62 3.98 131.52 148.03

Total Area (km2) 35.46 32.08 39.52 218.70 160.89 486.66
TABLE 2 Accuracy verification of different classification methods in 2018.

Our method Random forest Maximum likelihood

Overall Accuracy 90.47% 84.07% 77.43%

Kappa Coefficient 0.874 0.786 0.700

Spartina alterniflora Accuracy 94.34% 82.21% 83.66%
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the distribution of Spartina alterniflora in 2020. Green vegetation

communities can be observed in Tidal flats formed by sediment

deposits outside the shoreline.

After the Yellow River carries a large amount of terrestrial

sediment into the sea from the upper reaches, the land in the
Frontiers in Marine Science 13
Yellow River Delta is deposited near the shore with the decrease

in flow velocity. The coastline of the Yellow River Delta is

vulnerable to sea erosion, so Spartina alterniflora is introduced

to protect the coastline. Figure 12 shows the changes between

land and water and the ever-present Spartina alterniflora area
BA

FIGURE 11

Water-land boundary map. (A) is the distribution of Spartina alterniflora in 2018; (B) is the distribution of Spartina alterniflora in 2020.
FIGURE 10

Typical vegetation cover changes map. The yellow represents the change from Open water to Spartina alterniflora. The violet represents the
change from Phragmites australis to Spartina alterniflora. The red represents the change from Suaeda salsa to Spartina alterniflora. The blue
represents the change from Suaeda salsa to Tidal flat.
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from 2018 to 2020. Combined with the extracted coastline, it can

be found that in Figure 12, the water-land boundary of the area

with Spartina alterniflora distribution in the red box at the

bottom right presents a trend of outward expansion, as shown in

the yellow area. There is no Spartina alterniflora distribution in

the southwest and north coastal areas, and the water-land

boundary is seriously eroded, as shown in the blue area. In the

southwest of the Yellow River Delta wetlands (the bigger yellow

box), Tidal flats are severely eroded by the sea. In Figure 12,

Spartina alterniflora in the south showed a significant trend of

outward expansion, as shown in the red area. In conclusion,

Spartina alterniflora effectively attenuates seawater erosion and

plays a positive ecological benefit in protecting the coastline.
Conclusions

In this paper, based on PIE-Engine remote sensing cloud

computing platform and 46 Sentinel-2 optical remote sensing

images, a method for extracting wetland vegetation based on short

time series NDVI data set was constructed. SVM classifier was used

to classify the main vegetation in the Yellow River Delta wetlands in

2018 and 2020, and the change of wetland vegetation from 2018 to

2020 was analyzed. Some important conclusions can be drawn:
Fron
1. The overall accuracy of vegetation classification in 2018

and 2020 obtained by using the method proposed in this

paper are 90.47% and 80.30% respectively, and the Kappa

coefficients are 0.874 and 0.739 respectively. Compared

with the results from the random forest classification

method and the maximum likelihood classification

method, the overall accuracy is improved by 6.40% and

13.04%, the Kappa coefficient is improved by 0.088 and
tiers in Marine Science 14
0.174, and the classification accuracy of Spartina

alterniflora is improved 12.13% and 10.68%. The

proposed method provides a basis for monitoring the salt

marsh vegetation using remote sensing cloud computing

platform in large scale, and it provides a scientific reference

for classification the vegetation community and ecological

evolution in the Yellow River Delta.

2. The cover pattern of wetland vegetation classification in the

Yellow River Delta wetlands is as follows: From the coastal

edge to the Yellow River channel, the vegetation distribution

presents a pattern of “Spartina alterniflora - Suaeda salsa -

Phragmites australis”. From 2018 to 2020, the area of Suaeda

salsa in the Tidal flat was degraded in a large area, and the

vegetation coverage decreased by 20.38 km2. Spartina

alterniflora continued to expand in the south and north of

the YellowRiver estuary, and the area increased by 3.74 km2.

Meanwhile, it expanded from the coastline to the Yellow

River channel, occupying 2.42 km2 of local vegetation area.

However, Spartina alterniflora still showed positive effects in

some aspects. On the southwest coast of the Yellow River

Delta wetlands, where there was no distribution of Spartina

alterniflora, the Tidal flats were severely eroded by seawater.

However, in the coastal areas where Spartina alterniflora

existed, the community of Spartina alterniflora showed an

obvious trend of outward expansion, which effectively

weakened the erosion of seawater.
It provides an effective technical method for clssification and

analyzing the vegetation in Yellow River Delta wetlands in this

paper, and the results can also provide a reference for local

ecological protection. However, the study still has the following

shortcomings, which need further research for improvement:

Although Spartina alterniflora can be observed in the image
FIGURE 12

Land and water changes from 2018 to 2020.
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outside the water-land boundary of the south of the Yellow River

Delta estuary, SVM classifier cannot detect the vegetation in

these areas from the NDVI data because the area has been

invaded by sea for a long time. In addition, due to the limitations

of the algorithm, cloud shadow and fog cannot be removed, so

there are probably some errors in the final results.
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.
Author contributions

DC collected and analyzed the data, and wrote the manuscript.

ZW proposed the method, designed its structure and revised the

manuscript. XN and ZL helped in collecting and analyzing the data.

LZ and XL critically revised the manuscript. All authors contributed

to the article and approved the submitted version.
Funding

This research is funded by the Major Science and Technology

Innovation Projects of Shandong Province (No. 2019JZZY020103).
Frontiers in Marine Science 15
This research is supported by funding from the National Natural

Science Foundation of China (No. 41876202).
Acknowledgments

We thank the European Space Agency (ESA) for providing

the Sentinel-2 remote sensing data. We thank PIESAT

International Information Technology Limited for providing

PIE-Engine remote sensing cloud computing platform for

this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
Ahmed, K. R., Akter, S., Marandi, A., and Schüthd, C. (2021). A simple and
robust wetland classification approach by using optical indices, unsupervised and
supervised machine learning algorithms. Remote Sens. Appl. 23, 100569.
doi: 10.1016/j.rsase.2021.100569

Akhoondzadeh, M. (2022). Advances in seismo-LAI anomalies detection within
Google earth engine (GEE) cloud platform. Adv. Spa. Res. 69, 4351–4357.
doi: 10.1016/j.asr.2022.03.033

Ashok, A., Rani, H. P., and Jayakumar, K. V. (2021). Monitoring of dynamic
wetland changes using NDVI and NDWI based landsat imagery. Remote Sens.
Appl. 23, 100547. doi: 10.1016/j.rsase.2021.100547

Borges, F. O., Santos, C. P., Paula, J. R., Mateos-Naranjo, E., Redondo-Gomez, S.,
Adams, J. B., et al. (2021). Invasion and extirpation potential of native and invasive
spartina species under climate change. Front. Mar. Sci. 8. doi: 10.3389/
fmars.2021.696333

Cai, Y. T., Lin, H., and Zhang, M. (2019). Mapping paddy rice by the object-
based random forest method using time series sentinel-1/Sentinel-2 data. Adv. Spa.
Res. 64, 2233–2244. doi: 10.1016/j.asr.2019.08.042

Cavallo, C., Papa, M. N., Gargiulo, M., Palau-Salvador, G., Vezza, P., and Ruello,
G. (2021). Continuous monitoring of the flooding dynamics in the albufera wetland
(Spain) by landsat-8 and sentinel-2 datasets. Remote Sens. 13, 3525. doi: 10.3390/
rs13173525

Chapple, D., and Dronova, I. (2017). Vegetation development in a tidal marsh
restoration project during a historic drought: A remote sensing approach. Front.
Mar. Sci. 4. doi: 10.3389/fmars.2017.00243

Chen, H. X., Chen, C., Zhang, Z. L., Lu, C., Wang, L. Y., He, X. Y., et al. (2021).
Changes of the spatial and temporal characteristics of land-use landscape patterns
using multi-temporal landsat satellite data: a case study of zhoushan island, China.
Ocean Coast. Manage. 213, 105842. doi: 10.1016/j.ocecoaman.2021.105842
Cheng, W., Qian, X. M., Li, S. W., Ma, H. B., Liu, D. S., Liu, F. Q., et al. (2022).
Research and application of PIE-engine studio for spatiotemporal remote sensing
cloud computing platform. Natl. Remote Sens. Bull. 26, 335–347. doi: 10.11834/
jrs.20211248

Chen, M. M., Ke, Y. H., Bai, J. H., Li, P., Lyu, M. Y., Gong, Z. N., et al. (2020).
Monitoring early stage invasion of exotic Spartina alterniflora using deep-learning
super-resolution techniques based on multisource high-resolution satellite
imagery: A case study in the yellow river delta, China. Int. J. Appl. Earth Obs.
92, 102180. doi: 10.1016/j.jag.2020.102180

Chen, C., Liang, J. T., Xie, F., Hu, Z. J., Sun, W. W., Yang, G., et al. (2022).
Temporal and spatial variation of coastline using remote sensing images for
zhoushan archipelago, China. Int. J. Appl. Earth Obs. 107, 102711. doi: 10.1016/
j.jag.2022.102711

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297. doi: 10.1023/A:1022627411411

Costanza, R., D’Arge, R., Groot, R. D., Farber, S., Grasso, M., Hannon, B., et al.
(1997). The value of the world’s ecosystem services and natural capital. Ecol. Econ.
387, 253–260. doi: 10.1038/387253a0

Daggers, T. D., Herman, P. M. J., and van der Wal, D. (2020). Seasonal and
spatial variability in patchiness of microphytobenthos on intertidal flats from
sentinel-2 satellite imagery. Front. Mar. Sci. 7. doi: 10.3389/fmars.2020.00392

Guo, X. J., Zhang, C. C., Luo, W. R., Yang, J., and Yang, M. (2020). Urban
impervious surface extraction based on multi-features and random forest. IEEE
Access 8, 226609–226623. doi: 10.1109/ACCESS.2020.3046261

Huang, X., Duan, Y. T., Tao, Y. H., Wang, X. P., Long, H. L., Luo, C. S., et al.
(2022). Effects of Spartina alterniflora invasion on soil organic carbon storage in
the beihai coastal wetlands of China. Front. Mar. Sci. 9. doi: 10.3389/
fmars.2022.890811
frontiersin.org

https://doi.org/10.1016/j.rsase.2021.100569
https://doi.org/10.1016/j.asr.2022.03.033
https://doi.org/10.1016/j.rsase.2021.100547
https://doi.org/10.3389/fmars.2021.696333
https://doi.org/10.3389/fmars.2021.696333
https://doi.org/10.1016/j.asr.2019.08.042
https://doi.org/10.3390/rs13173525
https://doi.org/10.3390/rs13173525
https://doi.org/10.3389/fmars.2017.00243
https://doi.org/10.1016/j.ocecoaman.2021.105842
https://doi.org/10.11834/jrs.20211248
https://doi.org/10.11834/jrs.20211248
https://doi.org/10.1016/j.jag.2020.102180
https://doi.org/10.1016/j.jag.2022.102711
https://doi.org/10.1016/j.jag.2022.102711
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1038/387253a0
https://doi.org/10.3389/fmars.2020.00392
https://doi.org/10.1109/ACCESS.2020.3046261
https://doi.org/10.3389/fmars.2022.890811
https://doi.org/10.3389/fmars.2022.890811
https://doi.org/10.3389/fmars.2022.977050
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chang et al. 10.3389/fmars.2022.977050
Hu, Y. K., Tian, B., Yuan, L., Li, X. Z., Huang, Y., Shi, R. H., et al. (2021).
Mapping coastal salt marshes in China using time series of sentinel-1 SAR. ISPRS J.
Photogram. 173, 122–134. doi: 10.1016/j.isprsjprs.2021.01.003

Jiao, L. L., Sun, W. W., Yang, G., Ren, G. B., and Liu, Y. N. (2019). A hierarchical
classification framework of satellite Multispectral/Hyperspectral images for
mapping coastal wetlands. Remote Sens. 11, 2238. doi: 10.3390/rs11192238

Liang, J. Y., Xie, Y. C., Sha, Z. Y., and Zhou, A. (2020). Modeling urban growth
sustainability in the cloud by augmenting Google earth engine (GEE). Comput.
Environ. Urban 84, 101542. doi: 10.1016/j.compenvurbsys.2020.101542

Liu, Y. Y., Jin, R., and Zhu, W. H. (2021). Conversion of natural wetland to
farmland in the tumen river basin: Human and environmental factors. Remote
Sens. 13, 3498. doi: 10.3390/rs13173498

Li, Z. J., Wang, Z. Y., Liu, X. T., Zhu, Y. D., Wang, K., and Zhang, T. G. (2022).
Classification and evolutionary analysis of yellow river delta wetlands using
decision tree based on time series SAR backscattering coefficient and coherence.
Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.940342

Li, X., Wang, N. L., and Wu, Y. W. (2022). Automated glacier snow line altitude
calculation method using landsat series images in the Google earth engine
platform. Remote Sens. 14, 2377. doi: 10.3390/rs14102377

Li, J. T., Yan, D. D., Yao, X. Y., Liu, Y., Xie, S. Y., Sheng, Y. F., et al. (2022).
Dynamics of carbon storage in saltmarshes across china’s Eastern coastal wetlands
from 1987 to 2020. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.915727

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., and Gill, E.
(2018). The first wetland inventory map of Newfoundland at a spatial resolution of
10 m using sentinel-1 and sentinel-2 data on the Google earth engine cloud
computing platform. Remote Sens. 11, 43. doi: 10.3390/rs11010043

Mao, D. H., Liu,M. Y.,Wang, Z.M., Li, L., Man,W. D., Jia, M.M., et al. (2019). Rapid
invasion of Spartina alterniflora in the coastal zone of mainland China: Spatiotemporal
patterns and human prevention. Sensors 19, 2308. doi: 10.3390/s19102308

Meng, W. Q., Feagin, R. A., Innocenti, R. A., Hu, B. B., He, M. X., and Li, H. Y.
(2020). Invasion and ecological effects of exotic smooth cordgrass Spartina
alterniflora in China. Ecol. Eng. 143, 105670. doi: 10.1016/j.ecoleng.2019.105670

Ning, X. G., Chang, W. T., Wang, H., Zhang, H. C., and Zhu, Q. D. (2022).
Extraction of marsh wetland in heilongjiang basin based on GEE and multi-source
remote sensing data. Natl. Remote Sens. Bull. 26, 386–396. doi: 10.11834/jrs.20200033

Rapinel, S., Mony, C., Lecoq, L., Clément, B., Thomas, A., and Hubert-Moy, L.
(2019). Evaluation of sentinel-2 time-series for mapping floodplain grassland plant
communities. Remote Sens. Environ. 223, 115–129. doi: 10.1016/j.rse.2019.01.018

Ren, G. B., Zhao, Y. J., Wang, J. B., Wu, P. Q., and Ma, Y. (2021). Ecological
effects analysis of Spartina alterniflora invasion within yellow river delta using long
time series remote sensing imagery. Estuar. Coast. Shelf. S. 249, 107111.
doi: 10.1016/j.ecss.2020.107111

Spoto, F., Sy, O., Laberinti, P., Martimort, P., Fernandez, V., Colin, O., et al.
(2012). “Overview of sentinel-2,” in 2012 IEEE International Geoscience and
Remote Sensing Symposium, Munich, Germany, 13134007. doi: 10.1109/
IGARSS.2012.6351195

Sun, C., Li, J. L., Cao, L. D., Liu, Y. C., Jin, S., and Zhao, B. X. (2020). Evaluation of
vegetation index-based curve fitting models for accurate classification of salt marsh
vegetation using sentinel-2 time-series. Sensors 20, 5551. doi: 10.3390/s20195551

Sun, C., Li, J. L., Liu, Y. X., Liu, Y. C., and Liu, R. Q. (2021). Plant species
classification in salt marshes using phenological parameters derived from sentinel-
2 pixel-differential time-series. Remote Sens. Environ. 256, 112320. doi: 10.1016/
j.rse.2021.112320

Sun, C., Liu, Y. X., Zhao, S. S., Zhou, M. X., Yang, Y. H., and Li, F. X. (2016).
Classification mapping and species identification of salt marshes based on a short-
time interval NDVI time-series from HJ-1 optical imagery. Int. J. Appl. Earth Obs.
45, 27–41. doi: 10.1016/j.jag.2015.10.008

Townsend, J. T. (1971). Theoretical analysis of an alphabetic confusion matrix.
Atten. Percept. Psycho. 9, 40–50. doi: 10.3758/BF03212817
Frontiers in Marine Science 16
Vrieling, A., Meroni, M., Darvishzadeh, R., Skidmore, A. K., Wang, T. J., Zurita-
Milla, R., et al. (2018). Vegetation phenology from sentinel-2 and field cameras for
a Dutch barrier island. Remote Sens. Environ. 215, 517–529. doi: 10.1016/
j.rse.2018.03.014

Wang, L. Y., Chen, C., Xie, F., Hu, Z. J., Zhang, Z. L., Chen, H. X., et al. (2021).
Estimation of the value of regional ecosystem services of an archipelago using
satellite remote sensing technology: A case study of zhoushan archipelago, China.
Int. J. Appl. Earth. Obs. 105, 102616. doi: 10.1016/j.jag.2021.102616

Wang, M. Y., Fei, X. Y., Zhang, Y. Z., Chen, Z., Wang, X. X., Tsou, J. Y., et al.
(2018). Assessing texture features to classify coastal wetland vegetation from high
spatial resolution imagery using completed local binary patterns (CLBP). Remote
Sens. 10, 778. doi: 10.3390/rs10050778

Wang, X. X., Gao, X. W., Zhang, Y. Z., Fei, X. Y., Chen, Z., Wang, J., et al. (2019).
Land-cover classification of coastal wetlands using the RF algorithm for worldview-
2 and landsat 8 images. Remote Sens. 11, 1927. doi: 10.3390/rs11161927

Wang, X. X., Xiao, X. M., Zou, Z. H., Hou, L. Y., Qin, Y. W., Dong, J. W., et al.
(2020). Mapping coastal wetlands of China using time series landsat images in 2018
and Google earth engine. ISPRS J. Photogram. 163, 312–326. doi: 10.1016/
j.isprsjprs.2020.03.014

Wang, Z. Y., Ye, K. L., Zhang, M. Y., Li, H., Li, Z. J., Zhu, Y. D., et al. (2022).
Monitoring the wetland of the yellow river delta by combining GF-3 polarimetric
synthetic aperture radar and sentinel-2A multispectral data. Front. Ecol. Evol. 10.
doi: 10.3389/fevo.2022.806978

Wan, S. W., Pei, Q., Liu, J. N., and Zhou, H. X. (2009). The positive and negative
effects of exotic Spartina alterniflora in China. Ecol. Eng. 35, 444–452. doi: 10.1016/
j.ecoleng.2008.05.020

Xie, C. J., Cui, B. S., Ning, Z. H., Yu, S. L., and Xie, T. (2022). Longitudinal
dynamics of hydrological connectivity in the yellow river delta, China. Front. Mar.
Sci. 9. doi: 10.3389/fmars.2022.899671

Yu, Y., Pan, Y., Yang, X. G., and Fan, W. Y. (2022). Spatial scale effect and
correction of forest aboveground biomass estimation using remote sensing. Remote
Sens. 14, 2828. doi: 10.3390/rs14122828

Yu, J. W., Yoon, Y. W., Baek, W. K., and Jung, H. S. (2021). Forest vertical
structure mapping using two-seasonal optic images and LiDAR DSM acquired
from UAV platform through random forest, XGBoost, and support vector machine
approaches. Remote Sens. 13, 4282. doi: 10.3390/rs13214282

Zeng, L. L., Wardlow, B. D., Xiang, D. X., Hu, S., and Li, D. R. (2020). A review of
vegetation phenological metrics extraction using time-series, multispectral satellite
data. Remote Sens. Environ. 237, 111511. doi: 10.1016/j.rse.2019.111511

Zhang, L., Gong, Z. N., Wang, Q. W., Jin, D. D., and Wang, X. (2019). Wetland
mapping of yellow river delta wetlands based on multi-feature optimization of
sentinel-2 images. J. Remote Sens. 23, 313–326. doi: 10.11834/jrs.20198083

Zhang, M., and Lin, H. (2022). Wetland classification using parcel-level
ensemble algorithm based on gaofen-6 multispectral imagery and sentinel-1
dataset. J. Hydrol. 606, 127462. doi: 10.1016/j.jhydrol.2022.127462

Zhang, B., Wang, R., Deng, Y., Ma, P., Lin, H., and Wang, J. (2019). Mapping the
yellow river delta land subsidence with multitemporal SAR interferometry by
exploiting both persistent and distributed scatterers. ISPRS J. Photogram. 148, 157–
173. doi: 10.1016/j.isprsjprs.2018.12.008

Zheng, H. R., Du, P. J., Chen, J. K., Xia, J. S., Li, E. Z., Xu, Z. G., et al. (2017).
Performance evaluation of downscaling sentinel-2 imagery for land use and land
cover classification by spectral-spatial features. Remote Sens. 9, 1274. doi: 10.3390/
rs9121274

Zhu, X. D., Meng, L. X., Zhang, Y. H., Weng, Q. H., and Morris, J. (2019). Tidal
and meteorological influences on the growth of invasive Spartina alterniflora:
Evidence from UAV remote sensing. Remote Sens. 11, 1208. doi: 10.3390/
rs11101208

Zuo, P., Zhao, S. H., Liu, C. A., Wang, C. H., and Liang, Y. B. (2012).
Distribution of spartina spp. along china’s coast. Ecol. Eng. 40, 160–166.
doi: 10.1016/j.ecoleng.2011.12.014
frontiersin.org

https://doi.org/10.1016/j.isprsjprs.2021.01.003
https://doi.org/10.3390/rs11192238
https://doi.org/10.1016/j.compenvurbsys.2020.101542
https://doi.org/10.3390/rs13173498
https://doi.org/10.3389/fmars.2022.940342
https://doi.org/10.3390/rs14102377
https://doi.org/10.3389/fmars.2022.915727
https://doi.org/10.3390/rs11010043
https://doi.org/10.3390/s19102308
https://doi.org/10.1016/j.ecoleng.2019.105670
https://doi.org/10.11834/jrs.20200033
https://doi.org/10.1016/j.rse.2019.01.018
https://doi.org/10.1016/j.ecss.2020.107111
https://doi.org/10.1109/IGARSS.2012.6351195
https://doi.org/10.1109/IGARSS.2012.6351195
https://doi.org/10.3390/s20195551
https://doi.org/10.1016/j.rse.2021.112320
https://doi.org/10.1016/j.rse.2021.112320
https://doi.org/10.1016/j.jag.2015.10.008
https://doi.org/10.3758/BF03212817
https://doi.org/10.1016/j.rse.2018.03.014
https://doi.org/10.1016/j.rse.2018.03.014
https://doi.org/10.1016/j.jag.2021.102616
https://doi.org/10.3390/rs10050778
https://doi.org/10.3390/rs11161927
https://doi.org/10.1016/j.isprsjprs.2020.03.014
https://doi.org/10.1016/j.isprsjprs.2020.03.014
https://doi.org/10.3389/fevo.2022.806978
https://doi.org/10.1016/j.ecoleng.2008.05.020
https://doi.org/10.1016/j.ecoleng.2008.05.020
https://doi.org/10.3389/fmars.2022.899671
https://doi.org/10.3390/rs14122828
https://doi.org/10.3390/rs13214282
https://doi.org/10.1016/j.rse.2019.111511
https://doi.org/10.11834/jrs.20198083
https://doi.org/10.1016/j.jhydrol.2022.127462
https://doi.org/10.1016/j.isprsjprs.2018.12.008
https://doi.org/10.3390/rs9121274
https://doi.org/10.3390/rs9121274
https://doi.org/10.3390/rs11101208
https://doi.org/10.3390/rs11101208
https://doi.org/10.1016/j.ecoleng.2011.12.014
https://doi.org/10.3389/fmars.2022.977050
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Vegetation changes in Yellow River Delta wetlands from 2018 to 2020 using PIE-Engine and short time series Sentinel-2 images
	Introduction
	Data and materials
	Study Area
	Data

	Method
	Construction of time series NDVI data set
	Time series NDVI analysis
	SVM classification method

	Results
	Classification results
	Accuracy verification

	Discussion and analysis
	Wetland vegetation change
	Spartina alterniflora change and ecological benefit

	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


