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Rapid urbanization and other human activities have exacerbated the global

human health risks associated with antibiotic resistance genes (ARGs).

Swimming in contaminated waters is one of important pathways by which

humans can be exposed to ARGs. However, little is currently known about the

overall levels of ARGs in recreational waters and the forces driving their

occurrence. In this study, we analyzed the ARGs and bacterial communities

in water samples taken from five recreational coastal waters (RCWs) and their

adjacent estuaries in the Qinhuangdao area of Bohai Bay, China, using high-

throughput quantitative PCR and 16S rRNA gene amplicon sequencing

technique. The relative abundances of ARGs in RCWs varied greatly, and

occurred at levels close to, or even higher than, those in the neighboring

estuaries, ranging from 9.4×10-2 to 2.5 copies/16S rRNA gene. A total of 159

different ARGs able to express resistance to almost all antibiotics were detected

in all of the water samples. b-lactamase resistance genes (blaTEM gene) were

the most abundance of all ARGs. Patterns of ARG occurrence were significantly

correlated with those of bacterial communities (Mantel test, P < 0.05). A partial

redundancy analysis showed that differences in bacterial communities

accounted for 50.3% of the total ARG variations, which was much higher

than the sum of the contribution of mobile genetic elements (18.1%) and the

other selected environmental factors (8.3%). Principal coordinate analysis

based on Bray-Curtis distance revealed the similarities between ARG profiles

in the RCWs and in their adjacent estuaries. To our knowledge, this is the first

study to report the ARG profiles in RCWs using high throughput qPCR

technology. These results implied that it is necessary to develop proper

regulations and monitoring strategies of RCWs for reducing risks of ARGs on

human health.
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Introduction

The overuse of antibiotics has accelerated the emergence and

spread of antibiotic resistance genes (ARGs) in the environment

(Wen et al., 2015) . ARGs have been found in a wide variety of

environments including agricultural soils (Sun et al., 2020),

urban wastewater treatment plants (Freeman et al., 2018),

lakes (Y. Q. Wang et al., 2021), rivers (Pruden et al., 2006)

and aquacultural facilities (P. Gao et al., 2012). Microorganisms

in the environment can contribute to, or acquire, ARGs from

human pathogenic bacteria, as demonstrated by the significant

similarities in their sequences (Tomova et al., 2015; Jing Yang

et al., 2013). Increased levels of ARGs in the environment have

led to growing concerns about an impending global public health

crisis (Pruden et al., 2006). It has been estimated that the number

of deaths arising from antibiotic resistant pathogens may exceed

10 million by the end of 2050 (O' Neil, 2014), and that ARGs will

surpass cancer as the most serious risk factor for human health.

As emerging contaminants (A. Pruden et al., 2006), ARGs

replicate not only through bacterial growth but also can be

transferred between different bacterial species mediated by

mobile genetic elements (MGEs) (von Wintersdorff et al.,

2016). The amount of ARGs can increase and spread if they

are selected by antibiotic pollutions or are co-selected by

ecologically favorable determinant present in the same MGEs

(Blahova et al., 1999). Therefore, identifying environmental

reservoirs of ARGs and exploring their routes of transmission

are critical for the prevention of ARG related infections.

Estuaries occur at the boundary between terrestrial/

freshwater and coastal ecosystems (Stewart et al., 2008; Marti

et al., 2014). Approximately half of the world’s population lives

within 100 kilometers of the coastline (Culliton, 1998).

Generally, estuaries receive mass discharges of waste from

industry and other human activities (Wright et al., 2008), such

as wastewater treatment plants (WWTP) (Wu et al., 2018; Bi

Weihong et al., 2022), medical wastewater (Rodriguez-Mozaz

et al., 2015), livestock rearing, aquaculture and agricultural

wastewater (Jang et al., 2018). Traditional WWTPs are not

generally effective in removing ARGs and the ARG abundance

in the effluent can be as high as 3.13×106 copies/mL (H. Chen &

Zhang, 2013; H. W. Huang et al., 2019). Terrigenous pollutants,

including heavy metals, antibiotics, ARGs and drug-resistant

bacteria, are also washed into rivers and then into estuaries.

Surface waters also receive wastewater and municipal sewage

from nearby factories and cities. It has been shown that rivers in

China generally contain various ARGs, including the Yangtze,

Yellow, Haihe and Huaihe Rivers (Zhuang et al., 2021).

Moreover, the specificity of the water quality environment and

the increasing development of tourism can also affect the

evolution of microbial resistance (Su et al., 2022). The resistant

bacteria will be brought into the coastal tourist area near the
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shore with the rain, tide, and currents. Swimming in recreational

coastal waters (RCWs) is an important route by which humans

are exposed to pollutants in the coastal environment. Many

studies have reported various pollutants in RCWs, including

heavy metals (Bigus et al., 2016), nitrogen, phosphorus, viruses

(Wei et al., 2020), microplastics (F. L. Gao et al., 2021), and

pollutants resulting in elevated chemical oxygen demands,

which may facilitate the spread of ARGs (Stepanauskas et al.,

2006; Tandukar et al., 2013; Forsberg et al., 2014). However, the

overall profiles, influent factors, and driving mechanisms of

ARGs in RCWs are still not fully understood.

The dynamics of ARG occurrence are far more complex than

the selective pressure of antibiotics (Tamminen et al., 2011). A

growing number of studies have reported that shifts in bacterial

communities are the main driver of ARG accumulation in the

environment (Zhang et al., 1800; Su et al., 2015). Horizontal gene

transfer (HGT) mediated by MGEs is also an important

mechanism of ARG propagation (K. Zhang et al., 2021).

Environmental microorganism, particularly pathogenic

bacteria, can acquire ARGs from different species of bacteria

via HGT to express antibiotic resistant and even become the

“superbugs” endangering public health (von Wintersdorff et al.,

2016). Environmental factors, such as nitrogen and phosphorus

concentrations (Ali et al., 2016), pH (H. N. Huang et al., 2017),

salinity (Y.-J. Zhang et al., 2019), and temperature (J. Yang et al.,

2020), may also be predominant factors governing the

distribution patterns of environmental ARGs. Therefore, it is

necessary to explore the overall ARG profiles in RCWs as well as

all of the possible factors affecting their occurrence to discover

the predominant drivers and to control their propagation and

thus reduce potential health risks.

The Bohai Sea has a coastline of about 3,800 kilometers and

is fed by large number of rivers. Qinhuangdao, located in the

north part of the Bohai Sea, is one of the most important tourist

cities in northern China, and is greatly impacted by human

activities (L. H. Zhu et al., 2014). The “Qinhuangdao

Recreational Coastal Water Management Regulations”

stipulate the minimum straight-line distance between RCWs

and the nearest estuary, fishing port, tourist wharf, fishing boat

berth and shallow sea aquacultural area to avoid the spread of

pollutants (Qinhuangdao Municipal People’s Government,

2019). However, it is unclear whether the above provisions can

prevent the ARG impacts of estuaries on RCWs. In this study,

water samples were collected from the estuaries of typical rivers

and their adjacent RCWs around Qinhuangdao: (1) to

investigate the ARG profiles and bacterial communities in

estuaries and their RCWs; (2) to determine the influencing

factors and driving mechanisms of ARG occurrence in

estuaries and their adjacent RCWs; and (3) to explore the

potential antibiotic resistance risks to human health under

current regulations.
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Methods and materials

Sample collection, water chemistry and
DNA extraction

Water samples were collected from the estuaries and their

adjacent RCWs around Qinhuangdao City, located on the north

coast of Bohai Bay, China. Detailed descriptions of the sampling

sites are shown in Figure S1. Water samples (~5L) were taken

during December 2020 on three consecutive days without

rainfalls during the preceding week. All water samples were

stored on ice in sterile containers and brought back to the

laboratory within six hours for further treatment.

The bacteria cells in each water sample were collected by

filtering through 0.22 mm mixed cellulose esters filters

(Millipore, USA) and stored at -20°C for subsequent total

extraction of genomic DNA using a QIAGEN Extraction Kit

(Qiagen Instruments, USA), following the manufacturer’s

instructions. The purity and integrity of the extracted DNA

were assessed using a Nano Drop spectrophotometer (Thermo

Fisher Scientific, USA) and agar gel electrophoresis, respectively.

The extracted DNA was stored at -20°C. Temperature, pH and

salinity were measured in situ using a multiparameter water

quality analyzer (Hydrolab DS5, Hach Company, Loveland,

USA). Ammonia-nitrogen (NH4+-N), nitrate nitrogen (NO3

+-N) (Rider and Mellon, 1946), nitrite nitrogen (NO2–N) (J.

Yang et al., 2020), and phosphate (PO4–P) were measure

according to standard methods (B. Wu et al., 2014).
High-throughput quantitative
PCR of ARGs

HT-qPCR was performed using a Warfergen SmartChip

Real-time PCR System (Anhui Microanaly Gene Technologies

Co., Ltd, China) to detect and quantify ARGs, as described

previously (Ouyang et al., 2015). Quality assurance/quality

control was conducted following the standard protocols

provided by Wafergen Biosystems. A total of 296 primers sets

were used targeting at 285 ARGs, eight transposases, three

integrons and one 16S rRNA gene. Detailed information on

the primers is listed in Table S1. The 285 ARGs could express

antibiotic resistance to almost all antibiotics by 4 mechanisms.

HT-qPCR assay was performed in a 100 nL reaction system

consisting of a 1 × LightCycler 480 SYBR Green I Master mix,

0.1 mg/mL albumin from bovine serum, 500 nM of each primer

and 2 ng/mL DNA template. A non-template control was

included on each chip for each primer set. The qPCR reaction

mixture was first added to a microarray using nanoscale multi-

sample point sampling instrument, and then qPCR reaction was

performed using a cycler with the thermal cycles: 95°C for
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10 min, 40 cycles of 95°C for 30 s, and 60°C for 30 s, ending

with a melting curve analysis auto-generated by the

Wafergen program.

The HT-qPCR results were analyzed using SmartChip qPCR

(v 2.7.0.1) software to remove the results with multi-peak

melting curve and with amplification efficiencies beyond the

range of 1.8-2.2. A threshold cycle (CT) value of 31 was used as

the detection limit. All qPCR reactions were conducted in

triplicate, and if more than two were amplified, the result was

regarded as positive. Relative copy numbers of ARGs was

calculated according to the following equation:

Gene copy number = 10 ^[(31-CT)/(10/3)]

Relative ARG copy number = ARG copy number/16S rRNA

gene copy number

Where, CT is the cycle threshold.

The result of the primer sets targeting at the same gene were

combines. For example, blaOXA10-01 and blaOXA10-02 both

target at the blaOXA10 gene according to their nomenclature

(Jacoby, 2006).
Bacterial 16S rRNA gene sequencing and
data processing

Bacterial communities were investigated using a 16S rRNA

gene amplicon sequencing technology (Anhui Microanaly Gene

Technologies Co., Limited, China). The V3-V4 region of the 16S

rRNA gene was amplified using barcodes and the primer sets

341F (5’-CCTACGGGNGGCWGCAG-3’) and 765R (5’-

GACTACNVGGGTATCTAAT-3’). The genomic DNA was

used as templates to conduct PCR using Taq DNA Polymerase

(Vazyme, Nanjing, China). PCR products were purified using a

QIAquick Gel Extraction Kit (QIAGEN, USA) and pooled in

equimolar for sequencing using an Illumina MiSeq PE300

platform. Paired-end sequences were joined after the barcode

and primers were removed using FLASH (Magoc and Salzberg,

2011). FLASH software was also used to remove short reads,

chimeras and ambiguous N (Magoc and Salzberg, 2011). The

sequences were clustered into Operational Taxonomic Units

(OTUs) with a threshold of 97% similarity using the VSEARCH

method (Rognes et al, 2016). Representative sequences were

selected for further OTU annotation using a default method

involving assignment to the Greengenes Database taxonomy

(Wang et al., 2007). Species diversity and a-diversity of the

bacterial communities were estimated with the observed species,

Chao1, Shannon, Simpson and PD_whole_tree index, which

were calculated using a script in QIIME software. Bacterial

communities in different groups (b-diversity) were compared

using the unweighted pair group method with arithmetic mean

(UPGMA), principal coordinate analysis (PCoA) based on Bray-

Curtis distances, and the Adonis test.
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Network analysis

The co-occurrence patterns among ARGs, MGEs and

bacterial communities were revealed by network analysis using

Cytoscape (3.8.2) with the CoNet plug-in (Sarkar and Chang,

1997). Pairwise correlations were calculated by the Mutual

information, Spearman’s correlation, Pearson’s correlation,

Bray-Curtis dissimilarity and Kullback-Leibler dissimilarity

tests. Correlations with a P value above 0.9 and a significance

level below 0.05 were considered significant. ARGs or bacterial

taxa detected in less than three samples were discarded in

correlation calculations. Correlation efficiencies and P values

were analyzed using the Simes method implemented with the

CoNet plug-in to avoid false-positive correlations (Sarkar and

Chang, 1997). The network topology was visualized in Gephi

(0.9.2) with the Frucherman Reingold algorithm (Dalcin and

Jackson, 2018).
Statistical analyses

Averages and standard deviations of all data were

determined using Microsoft Excel 2010 (Microsoft Office 2010,

Microsoft, U.S.A.). The normalized ARG abundances were

plotted with OriginPro 2017 (OriginLab, U.S.A.). Heat maps

analyzing the ARGs data of water samples were generated with

using the Pheatmap package in R (Version 4.1.2). Mantel test,

PcoAs based on Bray-Curtis distance, Redundancy analyses

(RDA) and partial RDAs were performed using R4.1.2 with

the vegan package. Aggregated boosted tree (ABT) analysis was

performed using R2.7.0 with the gbmplus package. Significant

differences between estuaries and RCWs were tested using the

Student−Newman−Keuls (S−N−K) test (SPSS V20, IBM,

U.S.A.). Pearson’s correlation coefficients among ARG and

MGE abundances were calculated using SPSS.
Result

Abundance and diversity of ARGs

A total of 159 ARGs and 5 MGEs were detected in the 10

water samples from RCWs and estuaries in Qinhuangdao,

China. An average of 114 ARGs were detected in the estuaries

and 94 in the RCWs. However, there were not necessarily fewer

ARGs in the RCWs than in their adjacent estuaries, such as the

Nandai and Yang Rivers (Figure S2). Aminoglycoside and b-
Lactamase were the most dominant types of resistant genes,

followed by Macrolide-Lincosamide-Streptogramin B (MLSB)

and tetracycline resistant genes, accounted for 30.8%-83.9% of

the total ARGs in each sample (Figure S2). ARGs potentially
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conferring resistance to vancomycin were widely distributed

among the estuaries and RCWs, with occurrence ranging from

2.34%-6.94%. It should be noted that vancomycin is critically

important for human medicine and is considered the last line of

treatment for bacterial infections. In the 159 ARGs, antibiotic

deactivation, efflux pump, and cellular protection are the most

predominant resistance mechanisms (Figure S2).

The relative abundances of ARGs in water samples from the

Tang and Xinkai Rivers are significantly higher than those in

other samples (P < 0.01), as shown in Figure 1A. In contrast to

the other estuaries, the most abundant type of ARG in the Tang

River was aminoglycoside (17.3%). The relative abundance of

ARGs in water samples from the Tang and Xinkai Rivers ranged

from 1.3-2.5 copies/16S rRNA copies, about 20 times higher

than those of the other samples (0.21~0.29copies/16S rRNA

gene). A total of 10 MGEs were detected, including eight

transposases and two integrases with relative abundances

ranging from 2.7%-28.5%. As shown in Figure 1B, the relative

abundance of MGEs in all RCWs and estuaries ranged from

5.6×10-3 -8.5×10-1 copies/16S rRNA genes. The normalized

copy number of transposases and integrases was significantly

different among sampling sites. For example, integrase

accounted for 96.0% of MGEs in the RCW adjacent to the

Nandai River estuary, but only transposase genes were detected

in the RCW close to estuary of the Tang River (0.11copies/16S

rRNA genes).

There were significant differences in the overall structure of

ARGs in the different water samples (Adonis test, P < 0.05).

PCoA based on Bray-Curtis distance (Figure 2A) showed that

water samples from the Nandai, Yang and Shi Rivers clustered

together and separated from the other samples. The first two

PCs explained a total of 68.1% of the variance in ARGs, with

PC1 explaining more than half (50.5%) of the variation.

Samples from different locations were generally separated

along the first PC, and samples from the same estuary and its

adjacent RCW were separated along PC2, which explained

17.6% of the variation, indicating the minor differences

between ARG profiles of an estuary and its adjacent RCWs.

Hierarchical clustering analysis further verified such variances

in ARG profiles (Figure 3). The estuary samples from the Tang

and Xinkai Rivers were separated from the other water

samples, which clustered together. As shown in Figure 3, all

of the ARGs detected could be divided into three subgroups:

(A) ARGs with high relative abundance in all water samples,

such as the blaTEM、folA、blaOXA10 and aadA5 genes; (B)

ARGs with high relative abundance in the estuaries of Tang

and Xinkai Rivers, such as the strB and aadA genes; and (C)

ARGs with high relative abundance in other sampling sites,

such as the VanC and mphA genes. A detailed table of ARG

abundance with names can be found in the Supplementary

Materials (Table S2).
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Characteristics of microbial community
structure

After assembling and quality filtering, a total of 640,000

high-quality sequences were obtained from 10 samples, ranging

from 45,663-95,376 sequences per sample. These sequences were
Frontiers in Marine Science 05
assigned to 8,675 OTUs at the 97% similarity level, with the

number of OTUs in each single sample ranging from 638-1,112.

Species accumulation curves and rank abundance curves

indicated that the bacteria species in the estuarine samples

were generally higher than those in the adjacent RCWs

(Figure S3), Proteobacteria and Bacteriodetes were the
A

B

FIGURE 1

Normalized abundance of (A) ARGs and (B) MGEs in sediment of estuaries and recreational coastal waters. Normalized copy number of ARGs
presented as number of ARGs per 16S rRNA genes. Multidrug resistance genes are defined as the resistance to multiple antibiotics with different
structures and antimicrobial mechanisms.
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dominant phyla in all samples, accounting for 57.1-83.5%

of the bacterial communities. Gammaproteobacteria and

Alphaproteobacteria were the major classes of Proteobacteria,

while Flavobacteriia was the major class of Bacteroidetes. The

compositions of the bacterial communities at different levels are

shown in Figure S4. PCoA analysis based on Bray-Curtis

distance showed that estuarine bacterial communities and

their corresponding RCWs were relatively similar except in the

Tang and Xinkai Rivers. As shown in Figure 2B, the first two PCs

explained 57.8% and 14.5% of the differences in bacterial

community composition, respectively. The genus-level

UPGMA hierarchical analysis confirmed that the bacterial

communities in the Shi and Yang River regions were similar at

the genus level (Figure S5). Psychrobacer, Litoreibacter,

Sulfitobacter, Planktomarina and Loktanella were the most

dominant bacteria, accounting for 29.5-49.6% of the total

genera. Interestingly, the bacterial communities in samples

from the Shi and Yang Rivers were similar even though they

are not geographically adjacent, indicating that bacterial

communities in coastal environments were affected by more
Frontiers in Marine Science 06
complex factors than mere diffusion between. No significant

differences were observed between bacterial communities from

estuaries and their adjacent RCW (Anosim, P > 0.05), but certain

bacterial species were only observed in estuaries or in RCWs. For

example, Campylobacteraceae and Arcobacter were prevalent in

estuariesbut rarely detected in RCWs. Whether they can be used

as biomarkers to distinguish estuarine samples from RCWs

requires further research. It is worth noticing that Arcobacter,

a potential human pathogen, was widely distributed in estuaries.

Even though its detection limit in RCWs was low in this study,

its dissemination and fate in coastal environments requires

further surveillance and attention.
Correlations between ARGs, MGEs and
microbial community structure

Significant correlations were detected among the all classes

of ARGs (Pearson’s correlation), indicating that the spread of

various ARGs may share the same dissemination mechanism.
A

B

FIGURE 2

Principal coordinates analysis based on Bray-Curtis distance showing the overall distribution pattern of (A) ARGs and (B) microbial communities
in water samples of estuaries and recreational coastal.
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The abundance of integrons was not correlated with any

particular class of ARG, but the total abundance of

transposases genes were significantly correlated with almost all

classes of ARG, except for b-Lactamase, sulfonamide, and

vancomycin resistance genes, indicating that transposons

played an important role in ARG propagation in coastal
Frontiers in Marine Science 07
environment. Several ARGs (blaTEM, strB, blaVEB, sulI

genes), generally embedded in transposons, were detected with

the highest normalized copy number, indicating that

transposons were the most common carrier of ARGs in coastal

waters. With the exception of b-Lactamase and vancomycin

resistant genes, the normalized abundance of ARGs were
FIGURE 3

ARG profiles in sediment of estuaries and recreational coastal waters. Each column is labeled with a sample name. K represents water samples
from estuaries and Y represents water samples from recreational coastal water. Plotted values are the logarithm-transformed relative abundance
of each ARGs. Columns and rows were clustered based on Bray-Curtis distance. (A) ARGs with high relative abundance in all of the water
samples; (B) ARGs with high relative abundance in estuaries of Tang and Xinkai Rivers; (C) ARGs with high relative abundance at the other
sampling sites.
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correlated with those of MGEs, with correlation coefficients

ranging from 0.67-0.99 (Table 1, Person’s correlation, P <

0.05), indicating that ARGs may be readily transferred within

bacterial communities. These correlations were based on the

normalized abundances of ARGs and MGEs, suggesting that

MGEs mediated HGT, contribute to the propagation of ARGs in

coastal waters and lead to the enrichment of those ARGs in

bacterial communities.

The patterns of co-occurrence among ARGs and MGEs were

analyzed using co-occurrence network analysis (Figure 4) based

on the strong and significant correlation between ARGs and

MGEs. The network structure consists of 25 nodes and 20 edges,

which could be divided into nine modules with a module degree

of 0.72. The line in the Figure 4 shows a strong and significant

correlation between two nodes (r > 0.9). The most densely

connected node was defined as a “hub” in the module. For

example, the aadA2 gene is the hub in its module and is

significantly correlated with the blaOXA10, catB3, qacEdelta1

and tetM genes. The hubs can be used as indicators for all ARGs

in a module to predict dynamic changes of other ARGs in the

same module. Most modules contained different types of ARGs

or MGEs. For example, module IV includes the aminoglycoside

resistant genes (aadA2 gene) and the tetracycline resistance

genes (tetR gene), and module VIII includes the vgbB gene

and aadD gene, which belong to MLSB and aminoglycoside

resistance genes. The correlation between transposon (tnpA

gene) and aminoglycoside resistant gene (aac(6’)-Ib(aka

aacA4)) further indicated that transposons could contribute to

the propagation of ARGs in coastal environments. The

correlations between different ARGs suggested that they are

carried by the same bacteria or located in the same MGE. We

further analyzed the patterns of co-occurrence among ARGs,

MGEs and bacterial communities at the genus level. We

hypothesized that a strong nonrandom, significant correlation

between microorganisms and ARGs (R2 > 0.9, P < 0.05) could

indicate the identity of the host of an ARG. For instance,

Acinetobacter may be the host cell of an aminoglycoside gene
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(aac(6’)-Ib(aka aacA4)), and the b-lactamase resistance gene

(blaVEB) was probably carried by the genus Phycisphaera.

We also studied the differences between the abundances of

bacteria that directly correlated with ARGs in RCWs and

estuaries. The bacteria which could be recognized as hosts of

ARGs were detected with relatively high abundance in estuaries

but low abundance in RCWs, and were perhaps present at levels

below the limits of detection. The abundance of Succinispira,

which is correlated with the trimethoprim resistant gene (dfrA)

ranged from 0- 8.3×10-5 in estuaries, but was rarely detected in

RCWs. Acinetobacter is a potential human pathogen, and was

strongly and significantly associated with aminoglycoside

resistant gene (aac(6’)-Ib(aka aacA4)). This potentially

resistant pathogen was detected in all of the water samples

except for the RCWs adjacent to the Nandai River. Together,

these results suggested that environmental bacteria and

pathogens had the potential to evolve antibiotic resistance in

coastal environments and could spread to humans swimming in

these waters so posing serious risks to human health.
Relationships among bacteria
communities, mobile genetic elements,
environmental factors and antibiotic
resistance genes

The relationship between microbial communities,

MGEs, environmental factors, and ARGs were explored by

RDA analysis (Figure 5A). Taken together, the selected

environmental variables (NH4+-N, NO3–N, NO2–N, PO43-,

salinity, pH), MGEs, and bacterial communities explained 99.8%

of the variation in ARGs. MGEs, salinity, and NH4+-N were

significantly positively correlated with the first axis and ARGs

from the estuaries of the Tang, Xinkai and Shi Rivers. PO43-,

pH, NO3–N, Litoreibacter, and Psychrobacter were significantly

positively correlated with ARGs in the RCWs of the Xinkai,

Nandai, and Yang Rivers. Partial RDA was performed to further

distinguish the effects of environmental factors, MGEs and

bacterial communities on antibiotic resistomes in water

samples. Based on partial RDA, the bacterial communities

accounted for 50.3% of the total ARG variations, much more

than the sum of the contribution of MGEs (18.1%) and

environmental factors (8.3%). The interaction between

environmental factors and microbial community structure, as

well as those between MGEs and the bacterial community

accounted for 5.9% and 15.2% of total resistome variation,

respectively. Mantel correlation based on Bray-Curtis distance

showed significant correlations between bacterial communities

and antibiotic resistomes in the coastal environments studied

(r2 = 0.4591, p = 0.008). The contributions of microbial

communities, MGEs and environmental factors to the relative

abundance of ARGs in the samples were further explored

separately using ABT analysis. Figure S6 shows the relative
TABLE 1 Pearson’s correlation analysis among the normalized
abundances of ARGs and MGEs.

MGEs Integrons Transposase

Aminoglycoside 0.78** 0.25 0.82**

Beta_Lactamase 0.15 0.54 0.027

Chloramphenicol 0.94** 0.32 0.98**

MLSB 0.99** 0.48 0.99**

Multidrug 0.73* 0.60 0.66*

Sulfonamide 0.67* 0.50 0.63

Tetracycline 0.98** 0.46 0.98**

Vancomycin -0.04 0.33 -0.13
*p < 0.05, and **p < 0.01.
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importance of these indicators. The greater the value, the higher

the importance of an indicator. MGEs strongly influenced the

occurrence of ARGs in the waters. In addition, the concentration

of NO2- (0.011-0.02 mg/L) also had a strong effect on the

relative abundance of ARGs. In terms of microbial

communities, Acidobacteria had the greatest influence on the
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resistomes in RCWs and their adjacent estuaries. Coexistence of

multiples integrative and conjugative elements has been found in

the chromosome of Acidobacteria (Gonçalves and Santana,

2021). Therefore, they could easily become resistant to

antibiotics and contribute to the dissemination of ARGs,

mediated by the MGEs in estuaries and RCWs.
A B

FIGURE 5

(A) Redundancy analysis (RDA) and (B) partial RDA assess the effects of environmental factors including pH, NH4-N, NO3-N and NO2-N, MGEs
and microbial communities (relative abundance of phylum) on the difference of overall ARGs. TP, total phosphorus; SAL, salinity; MGEs, mobile
genetic elements.
A B

FIGURE 4

Network analysis revealing (A) co-occurrence patterns among ARGs and (B) co-occurrence patterns between ARGs and microbial taxa at genus
level. Nodes are colored according to modularity classes. A connection between nodes indicated a strong (r > 0.8) and (P < 0.01) significant
correlation. The size of each node is proportional to the number of connections.
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Discussion
ARGs and MGEs were widely distributed
in RCWs

An abundance of diverse ARGs are alarmingly widespread in

estuarine environments. Our study detected a broad spectrum of

ARGs in RCWs using HT-qPCR techniques, and their

normalized copy numbers were close to, or even higher than,

those in adjacent estuaries. In particular, 95 and 72 ARGs were

detected in the RCWs adjacent to the estuaries of Tang and

Xinkai rivers, respectively. The corresponding relative

abundances were as high as 2.6 and 1.3/16S rRNA gene,

respectively. Clearly, human exposure to these ARGs in RCWs

(for example by aerosol inhalation, dermal, eye or ear contact,

and oral intake) may represent potential health risks to those

swimming in recreational bathing waters, despite there being no

currently known infectious dose of antibiotic resistant bacteria

or ARGs. In addition, waterborne pathogens also present major

threats to public health. Arcobacter spp. were only identified in

estuarine samples by the Illumina sequences of their 16S rRNA

genes. Whether these species are pathogenic depends on their

expression of a few virulence factors. There have been reports of

the widespread occurrence of pathogenic marker genes in

RCWs, such as the virulence factors of Acanthamoeba spp.,

Clostridium perfringens, enteropathogenic Escherichia coli,

Klebsiella pneumoniae, Vibrio cholera/V. parahaemolyticus

and Legionella spp (An et al., 2020). Co-contamination of

waters with pathogens and ARGs could probably contribute to

the evolution antibiotic resistant pathogenic bacteria. Therefore,

the routine monitoring of waterborne ARGs and pathogens is

imperative to improve or safeguard human, animal and

environmental health, as emphasized in the various “One-

Health” initiatives.

The normalized copy numbers of ARGs detected in the

RCWs and estuaries of the Tang and Xinkai rivers were even

higher than those in some other environmental samples, such as

aquaculture waters (P. Gao et al., 2012), estuarine sediments (Y.

G. Zhu et al., 2017), and soils (Y. G. Zhu et al., 2013). The high

abundance of ARGs in these two estuaries could be explained by

the particularly dense populations in these watersheds. Intensive

human activities, such as increased sewage discharge and large

aquacultural developments might contribute to the relatively

high abundance of ARGs in the Tang and Xinkai Rivers and

their accumulation in the estuarine environments. Intensive

human activity has been reported to facilitate the spread of

ARGs, and population density has been positively correlated

with the abundance of ARGs (Uyaguari et al., 2013;

Berglund, 2015).

ARGs and MGEs associated with clinical setting have been

commonly detected in coastal environments, and can often be

traced back to particular hospitals and sewage discharges. For
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example, vancomycin is only used as the “last line” in the

treatment of human bacterial infections. Previous studies have

detected the vancomycin resistant gene (vanA) in ancient

permafrost sediments predating the use of antibiotics (D’Costa

et al, 2011), indicating that it occurs naturally. In 2017, the

normalized copy number of vancomycin in estuarine sediment

around China was as high as 9.3 × 10-3/16S rRNA genes (Zhu

et al., 2017). We found vancomycin resistant genes in all of the

estuaries and RCWs, with the relative abundances ranging from

3.7 × 10-4 ~ 2.4×10-3 and 1.5 × 10-3 ~ 1.1×10-1/16S rRNA

genes, respectively, which could be related to overuse of

vancomycin or unregulated wastewater from hospitals or

medical facilities. The growing occurrence and abundance of

vancomycin resistance presents an urgent problem. The b-
Lactamase blaTEM gene had the highest relative abundance in

the samples, possibly due to overuse of the antibiotic

cephalosporin in clinical settings. It is worth noticing that

blaTEM gene has the potential to encode TEM-1 b-lactamase,

which requires only a few specific single nucleotide hydrolytic

polymorphisms to evolve into a gene encoding an extended-

spectrum b-lactamase that degrades all cephalosporins including

ceftriaxone (Muhammad et al., 2014). Diversity of clinically

relevant antimicrobial resistance genes was found in urban

beaches. The clinical intI1 gene commonly detected in RCWs

occurs in a variety of clinical pathogenic bacteria and in the

human intestinal flora and can be used as a biomarker for

municipal sewage pollution and is closely related to human

health risks (Zheng et al., 2020). The results were in consistence

with previously published paper indicating that diverse clinically

relevant ARGs have been found in urban beaches (Furlan et al.,

2021). Together, our study indicated that estuaries and RCWs

may be polluted by medical and municipal sewage.
ARGs patterns was strongly affected by
bacterial phylogenetic compositions in
coastal water environments

The RCW samples analyzed in this study were collected

along the coastline of Qinhuangdao. However, the two estuaries

with the highest normalized copy numbers (the Tang and Xinkai

Rivers) were not adjacent to each other, and there was no overall

spatial pattern in antibiotic resistomes in the estuarine areas.

These results suggested that environmental factors such as tides

or latitude did not the drive the occurrence of ARGs in these

estuarine environments. Human activities is frequent in this area

and people can either acquire ARGs through direct exposure

when swimming there and also introduce new ARGs, so

promoting their horizontal transfer of ARGs (Chaturvedi

et al., 2021). In order to minimize the impact of human

activities on the ARGs detected in RCWs, water samples were

collected in winter to minimize the anthropogenic variation in

the data. ARGs profiles (qPCR data) were significantly correlated
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with bacterial community (16S rRNA genes, OTU data), as

shown by the Mantel test. Environmental factors (NH4+-N,

NO3–N, NO2–N, PO43-, salinity, pH), bacterial community

compositions (relative abundance of major bacterial phyla), and

MGEs accounted for 99.8% of total variation in ARGs profiles in

the RCWs. Separation of the variations explained by subsets of

these factors indicated that MGEs accounted for 18.1% of the

subset variation, while bacterial compositions accounted for a

much higher percentage of the variation in ARGs (50.3%,

Figure 5B). These data indicated that the particular microbial

community was a driving force in the variation of ARGs in these

estuarine areas. Thus, any factors that disturb the microbial

community, such as salinity, nutrient level, organic pollutants,

and storm and runoff levels, may exert previously

underestimated increases in abundances of ARGs,.

MGEs are vehicles for horizontal transfer of ARGs, and have

been shown to promote transmission and enrichment of ARGs

many other environments (Wright et al., 2008; Hoa et al., 2011;

K. Zhang et al., 2021). In this study, MGEs accounted for 18.1%

of the total variation in ARGs according to the pRDA analysis.

Based on the network analysis of ARGs, MGEs, and microbial

genera, the correlation between transposons (TnpA) and

aminoglycoside resistant gene (aac(6’)-Ib(aka aacA4))

indicated that conjugation may play a role in the

dissemination of ARGs in RCWs. Transposons can transfer

themselves and related resistant genes at random to a new

location within the cell, including plasmids, while integrons

can transfer resistant genes between defined sites by site-

specific recombination (Cox and Wright, 2013). Although no

correlations between ARGs and integrons were detected, the role

of MGEs in the enrichment of ARGs in estuarine areas should

not be overlooked. It is noteworthy that Acinetobacter, an

opportunistic pathogen, was also significantly associated with

the aac(6’)-Ib(aka aacA4) gene and may express aminoglycoside

resistance. Acinetobacter may cause lung infection through oral

inhalation or direct exposure (Wong et al., 2017). In recent years,

the occurrence of antibiotic resistant Acinetobacter has been

increasing, and ampicillin resistance has remained at a relatively

high level (Kutlu et al., 2008). Previous studies have also reported

marker genes for Acinetobacter baumanii AB0057 and

Acinetobacter oleivorans DR1 in marine recreational beaches

around Xiamen City, China (An et al., 2020). Our study showed

that coastal environments are ideal places for bacteria or even

pathogens to acquire ARGs, and that recreational activities in

coastal water may put human beings at risk of antibiotic resistant

bacteria infections.
Impacts of estuaries on adjacent
recreational coastal waters

PCoA and hierarchical cluster analysis based on Bray-Curtis

distance revealed the consistency of ARG occurrences between
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estuaries and their corresponding RCWs, indicating that

estuaries may, to some extent, impact the ARGs in adjacent

bathing waters through currents or water exchange. The

“Qinhuangdao Recreational Coastal Water Management

Regulations”, established to avoid contamination from

estuaries, state that the RCWs should be located at least 500 m

away from an estuary. However, this distance cannot totally

avoid the potential threat of ARGs. ARGs from livestock farms,

municipal sewage, medical wastewater, and agricultural sewage

outlets may spread to bathing waters through estuaries and

threaten human health. Previous studies have reported that if

RCWs located downstream from poultry farms or municipal

sewage discharge points, people swimming are likely to be

exposed to Escherichia coli expressing broad-spectrum b-
lactamase (Schijyen et al., 2015). Besides, the diverse and

abundant ARGs in RCWs could be due to the fact that

frequent human activities contribute to permanent changes in

properties of RCWs. For example, changes in environmental

factors such as differences in organic matter level (Lin et al.,

2019), total nitrogen (J. Chen et al., 2019), and temperature (Liao

et al., 2018) have been proven to drive the shift of bacterial

communities and promote the propagation of ARGs in aquatic

environments. Based on ABT analysis, the concentration of

NO2- also had an important effect on the relative abundance

of ARGs. We found that NO2—N in RCWs was generally higher

than in estuaries. According to Cen et al. (2020), nitrite higher

than 1 mg/ml could stimulate free radical-induced RpoS

regulators and SOS responses, increase cell membrane

permeability, and regulate binding transfer-related genes, thus

promoting the horizontal transfer of ARGs. Together, these

results indicated that multiple factors could result in the

propagation of ARGs and further emphasize the importance of

routine surveillance of ARGs in RCWs.
Conclusions

The results of this study showed that the abundance of

ARGs in RCWs ranged from 9.9×10-2 to 2.1/16S rRNA gene,

higher than in many other environments such as soil, estuarine

sediments, and aquacultural developments. The consistency

between RCW and their adjacent estuaries indicated that

estuaries, to some extent, may have an impact on ARGs in

RCWs. Thus, the current rules regulating RCWs cannot avoid

the threat of ARGs to human health, and humans may be

exposed to ARGs when swimming in RCWs. The Mantel test

suggested that microbial community structure is the main force

driving the occurrence of ARGs in coastal water environment.

Besides the selective pressure of antibiotics, attention should be

paid to the spread and enrichment of ARGs that may be

overlooked when any perturbation disturbs the microbial

composition of swimming waters, such as changes in
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temperatures, N and P levels, or even algal abundances.

Moreover, the consistency between antibiotic resistomes in

RCWs and their adjacent estuaries suggested that ARGs from

estuaries could contaminate adjacent RCWs. Therefore, proper

regulations of bathing areas and reducing the discharge of ARG

into terrigenous runoff may be useful in controlling ARG levels

in RCWs, and so control the risks to public health. More work

is needed to determine the infectious concentrations and risk

levels of ARGs to better assess the potential public health risk

of ARGs in RCWs. ARG levels and microbial community

composition in bathing waters should be routinely detected

in real-time.
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