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Nutrients and phytoplankton associated with mariculture development are

important concerns globally, as they can significantly impact water quality

and aquaculture yield. Currently, there is still insufficient information regarding

the variations in nutrients and phytoplankton community of intensive

mariculture systems, and effective treatment is lacking. Here, based on

consecutive daily monitoring of two Litopenaeus vannamei ponds from July

to October, the dynamic variations in nutrients and phytoplankton were

elucidated. In addition, modified clay (MC) method was adopted to regulate

the nutrients and phytoplankton community. The temporal variations in

organic and inorganic nutrients presented fluctuating upward trends.

Notably, organic nutrients were the dominant species, with average

proportions of TON/P in TN/P were as high as 75.29% and 87.36%,

respectively. Furthermore, a marked increase in the ratios of dinoflagellates

to diatoms abundance were also observed in the control pond, concurrently

with dominant organic nutrients, ascending N/P ratio and decreasing Si/N and

Si/P ratios. In the MC-regulated pond, MC reduced the contents of both

organic and inorganic nutrients. Furthermore, a distinct change pattern of

dominant phytoplankton community occurred, with green algae becoming the

most abundant phytoplankton in the MC-regulated pond. This study can

provide new insights into an effective treatment for managing water quality

and maintaining sustainable mariculture development.
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Highlights
Fron
• Organic N and P were the dominant species of nutrients

in mariculture shrimp ponds.Higher N/Si and N/P ratios

were prominent over the production cycle.

• Variations in nutrients favored the potential

predominance of dinoflagellates.

• Modified Clay effectively reduced nutrient contents and

regulated the phytoplankton community.
Introduction

Mariculture is one of the fastest-expanding sectors

worldwide (Campbell and Pauly, 2013; Froehlich et al., 2018;

Meng and Feagin, 2019), with global production reaching 87.5

million tons in 2020 (FAO(Food and Agriculture Organization

of the United Nations), 2022). Notably, China has played a

major role in this growth (Li et al., 2017). In China, pond

farming is a dominant aquaculture farming system. For instance,

the total production of pond farming continued to increase in

2019, contributing approximately 50% of national aquaculture

production (Ministry of Agriculture and Rural Affairs of the

People’s Republic of China, 2020). However, the rapid

development of mariculture has been accompanied by

environmental pollution, such as nutrient and organic matter

overload, harmful algal blooms, and drug residues, which pose

threats to mariculture development (Briggs and Funge-Smith,

1994; Couch, 1998; Bouwman et al., 2013; Han et al., 2021).

Currently, mariculture has become a significant and expanding

cause of coastal nutrient enrichment and has influenced marine

ecosystems of the receiving coastal waters (Bouwman et al., 2013;

Li et al., 2017; Yang et al., 2017).

As is the case with all intensive farming systems, large

quantities of excess feed and faeces increase the nutrient

loading to water bodies, which cause the deterioration of water

quality and restrict the sustainable mariculture (Alonso-

Rodrıguez and Páez-Osuna, 2003; Casé et al., 2008; Yang et al.,

2017; Dıáz et al., 2019). Notably, the accumulation of ammonia

and nitrite will exert toxic effects on aquaculture organisms and

cause disease proliferation in culture ponds (Casé et al., 2008;

Glibert, 2016). Moreover, the excessive accumulation and

unbalanced proportion of nutrients will influence the

phytoplankton community and can cause the occurrence of

‘harmful algal blooms (HABs)’ (Glibert, 2016; Dıáz et al.,

2019). Increasing occurrences of HABs, such as Karenia spp,

dinoflagellates, and Aureococcus anophagefferens, are leading to

growing deleterious impacts including the poisoning,

asphyxiation and even the death of mariculture organisms and

human poisoning (Davidson et al., 2009; Gobler et al., 2011;

Anderson, 2012; Brown et al., 2020). On the other hand, the
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unbalanced proportion of nutrients can cause a significantly

higher toxicity activity of phytoplankton (Johansson and

Granéli, 1999; Hagström and Granéli, 2005). Furthermore, the

discharge of mariculture effluents generates diverse effects on

coastal waters (Bouwman et al., 2013). For instance, over 26% of

the excess nitrogen in China’s waters is likely a result of shrimp

production alone (Meng and Feagin, 2019).

Modified clay (MC), produced from natural clays via the

surface modification by inorganic or organic compounds, can

effectively control HABs (Yu et al., 2017; Song et al., 2021).

Currently, MC technology has been included as a national

standard method to control HABs and is widely employed in

China (Yu et al., 2017). Previous studies found that MC can not

only remove algal cells but also reduce nutrients and organic

matter contents, improve water quality and reduce the degree of

eutrophication (Gao et al., 2007; Lu et al., 2017; Yu et al., 2017;

Song et al., 2021). In addition, MC has no adverse effects on the

survival and growth of typical economically marine organisms

when used at appropriate dosages (Zhang et al., 2019; Song et al.,

2021). Furthermore, in mitigating the blooms of toxin-producing

dinoflagellates, MC can quickly reduce algal toxins in water

(Hagström and Granéli, 2005; Lu et al., 2017; Li et al., 2019).

The variations in nutrients and phytoplankton associated

with mariculture development are important concerns globally,

as they can have a variety of potential impacts on the mariculture

yield and the environment of receiving water. Currently, there is

still insufficient information on the dynamic variations in

nutrients and phytoplankton, and effective regulation

treatment is lacking. In the present study, based on daily

monitoring of nutrients and phytoplankton of intensive

mariculture shrimp ponds in Laizhou Bay, the specific

objectives were to: (i) elucidate the dynamic variations in

nutrients and explore the potential responses of phytoplankton

community to the variations in content, composition and

stochiometric ratio of nutrients, (ii) compare the variations in

nutrients and phytoplankton community between an MC-

regulated and control ponds and assess the regulation effects

of MC. The results of this study are crucial for the

comprehensive understanding of the variation patterns of

nutrients and phytoplankton in the mariculture systems, and

provide new insights into an effective regulation treatment for

managing water quality and maintaining sustainable

mariculture development.
Materials and methods

Study area

Intensive rearing Litopenaeus vannamei ponds were located

in Dongying, Laizhou bay, China (118°55’E, 37°27’N), and two

shrimp ponds were selected as the control pond and the MC-

regulated pond, respectively (Figure 1). Each pond covered an
frontiersin.org
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area of approximately 1000 m2, with an average water depth of

1.5 m (shrimp stocking density: 5 × 104 shrimp per pond, the

average body length of shrimp: 1.6 cm). There were no water

changes during the culture process and each pond was equipped

with an aerator to ensure a suitable dissolved oxygen

concentration. The control pond adopted the traditional

culture method for breeding, while the MC-regulated pond

adopted MC to regulate water quality and phytoplankton

community. The elemental composition and content of the

MC were determined by XRF, as shown in Table S1. The MC

is prepared into a suspension with seawater and then sprayed on

the pond in a boat with spraying equipment. And the spraying of

the MC were determined according to the variations in water

quality and phytoplankton community (Table S2).
Sampling and analysis

Hydrographic parameters, including temperature and

salinity, were measured by a YSI multiparameter water quality

meter (YSI Ltd., USA). The water samples analyzed for nutrients,

Chl a and 18S rDNA were collected at a depth of 0.5 m below the

surface from multiple points (four corners and the center) in the

pond every two days. In addition, parallel samples were collected

every week. Samples for measuring total nitrogen (TN) and total

phosphorus (TP) were collected and stored at -20°C in a sulfuric

acid solution (50% v/v) with a final concentration of 0.2%. Water

samples for the determination of dissolved inorganic nutrients

were filtered under dim light through Whatman GF/F filter

membranes (pore size: 0.68 mm). The filtrate was poured into 60

mL polyethylene bottles added to approximately 0.1 mL of

chloroform and stored at -20°C. For the Chl a measurement,
Frontiers in Marine Science 03
100 mL of water sample was filtered using What man GF/F

filters after initial filtration through a 200 µm nylon sieve, and

the filter membrane was wrapped in stored in a dark

environment at -20°C. Water samples for 18S rDNA were

filtered through a 200 µm nylon sieve to eliminate the

interference of zooplankton. Following filtration, the samples

were passed through a 0.22 µm cellulose acetate membrane filter.

The filters were collected in a centrifuge tube and stored in liquid

nitrogen at -196°C.

In the laboratory, the concentrations of TN, TP, and

dissolved inorganic nitrogen [DIN, including nitrate (NO3
-),

nitrite (NO2
-), TAN (non-ionic ammonia (NH3) and

ammonium ion (NH4
+))], dissolved inorganic phosphorous

(DIP) and dissolved silicate (DSi) were measured with a

SKALAR Flow Analyser (Skalar Ltd., Netherlands). The TON

and TOP contents were calculated by the differential subtraction

method, i.e. TON=TN-DIN, TOP=TN-DIP. Chl a was extracted

in acetone, and its concentrations were determined by using a

Trilogy fluorometer (Turner Design Ltd., USA).
DNA extraction, PCR, and
gene sequencing

DNA was extracted using the HiPure Soil DNA Kits (Magen,

Guangzhou, China) according to the manufacturer’s protocol. For

1 8 S rDNA gene s , u n i v e r s a l p r ime r s 5 2 8F ( 5 ’ -

GCGGTAATTCCAGCTCCAA-3’) and 706R (5’-AATCCRA

GAATTTCACCTCT-3’) targeting the V4 regions were used for

PCR (95°C for 2 min, followed by 35 cycles at 95°C for 30 s, 60°C

for 45 s, 72°C for 90 s, and a final extension at 72°C for 10 min).

Ampicons were extracted using 2% agarose gels and purified using
FIGURE 1

The locations of mariculture shrimp ponds in the Laizhou bay.
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the AxyPrep DNAGel Extraction Kit (Axygen Biosciences, Union

City, CA, USA) according to the manufacturer’s instructions.

Purified amplicons were pooled in equimolar amounts and

paired-end sequenced (PE250) on an Illumina platform

according to the standard protocols.
Data processing and analysis

The raw reads were further filtered using FASTP to obtain

high-quality clean reads. Paired-end clean reads were merged as

raw tags using FLASH, with a minimum overlap of 10 bp and a

mismatch error rate of 2%. The clean tags subjected to specific

filtering conditions were clustered into operational taxonomic

units (OTUs) of ≥ 97% similarity using the UPARSE pipeline. All

chimeric tags were removed using the UCHIME algorithm;

finally, effective tags were obtained for further analysis. The tag

sequence with the highest abundance was selected as the

representative sequence within each cluster. The representative

OTU sequences were classified into organisms by a naïve Bayesian

model using the RDP classifier based on the SILVA database, with

a confidence threshold value of 0.8. To further elucidate the

abundance and richness of eukaryotic phytoplankton from the

18S rDNA results, the nonalgal OTUs, including Metazoa, Fungi,

Ap i c omp l e x a , I n t r am i c r onu c l e a t a , S t r e p t o p y t a ,

Postciliodesmatophora, Opalozoa, and unclassified data were

removed. In addition, the relative abundance of each taxon was

calculated by dividing the sequence number of OTUs of this group

by the total sequence number of algae.

The ranking analysis of phytoplankton and environmental

factors was performed using CANOCO for Windows 5.0

software package. To satisfy the assumptions of normality and

homogeneity of variance, all species data and environmental

data were subjected to log (x + 1) transformation prior to

multivariate analysis (Leps ̌ and Šmilauer, 2003). According to

the results of detrended correspondence analysis (DCA),

redundancy analysis (RDA) was selected to determine the

relationship between phytoplankton and environmental

factors. The significance of the RDA ranking model was

verified by the Monte Carlo permutation test.
Results

Temporal variations in nutrients

The TN and TP concentrations in the control and MC-

regulated ponds varied in the ranges of 95.10-588.76 mmol/L,

100.86-557.41mmol/L and 1.73-22.47 mmol/L, 2.24-19.32 mmol/

L, respectively. Notably, the contents of TN (Figure 2A) and TP

(Figure 2B) in both ponds exhibited a rapid and fluctuating

upward trend over time. Overall, during the main culture period,

the TN and TP concentration of the MC-regulated pond were
Frontiers in Marine Science 04
lower than those of the control pond. As for TON and TOP, the

ranges in the control and MC-regulated ponds were 88.66-

478.81 mmol/L, 43.81-387.82 mmol/L, and 0.81-21.42 mmol/L,

1.85-18.60 mmol/L, respectively. The mean concentrations of

TON (Figure 2C) and TOP (Figure 2D) were significantly higher

than those of DIN and DIP, which indicated that organic

nutrients were the predominant species of nutrients in the

water column of shrimp ponds. Similarly, significant temporal

variations in TON and TOP concentrations were observed over

the study period, which showed an increasing trend over time.

Overall, in the late stage, the TOP concentration of the MC-

regulated pond was lower than that of the control pond. The

concentrations of DIN and DIP in the control and MC-regulated

ponds varied in the ranges of 0.91-281.82 mmol/L, 0.79-248.37

mmol/L, and 0.22-5.62 mmol/L, 0.19-3.75 mmol/L, respectively.

Significant temporal variations in the DIN (Figure 2E) and DIP

(Figure 2F) were observed, with a fluctuating upward trend

observed in the middle and late stages. Comparatively, the

concentrations of DIN, especially DIP, in the MC-regulated

pond were lower than those in the control pond during the

study period. The DSi concentrations remained relatively stable

during the study period (Figure 2G), and DSi concentrations in

the control and MC-regulated ponds varied in the ranges of

1.55-8.96 mmol/L and 1.81-8.86 mmol/L.

The concentrations of TAN, NO2
- and NO3

- ranged as

follows: 0.78-301.93 mmol/L, 0.01-9.41 mmol/L and 0.00-8.63

mmol/L, respectively, in the control pond; while 0.70-239.71

mmol/L, 0.00-6.23mmol/L, and 0.00-9.21 mmol/L, respectively, in

the MC-regulated pond. Notably, TAN was the predominant

species of DIN, with significantly higher concentrations than

those of NO2
- and NO3

-, and its average content accounted for

86.72% and 88.30% of the DIN concentration in the control and

MC-regulated ponds, respectively (Figure 3A). Temporal

variations in the TAN (Figure 3B) and NO2
- (Figure 3C)

concentrations of both ponds were observed, which exhibited

an overall increasing trend during the study period. In addition,

the TAN and NO2
- concentrations were lower in the MC-

regulated pond than in the control pond during the main

study period. Differently, the concentrations of NO3
- exhibited

a different temporal variation (Figure 3D), decreasing in the

early stage and then increasing in volatility during the middle

and late stages.
Temporal variations in Chl a
concentrations and phytoplankton
community

The Chl a concentrations ranged between 12.57-635.40 µg/L

and 12.25-489.93 µg/L in the control and MC-regulated ponds,

respectively. There were significant temporal variations in Chl a

concentrations in the two ponds, with considerably lower

concentrations observed during the initial stage than the other
frontiersin.org
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two stages (Figure 4A). Comparatively, the variation of Chl a in

the control pond exhibited greater fluctuations than that in the

MC-regulated pond. As for phytoplankton community, a total of

2,728,684 effective tags by 18S rDNA gene sequencing were

obtained, after quality screening, with an average N50 of 343 bp.

After clustering based on a 97% similarity threshold and

removing non-algal OTUs, 212 and 222 algal OTUs were

obtained from the control and the MC-regulated ponds,

respectively. Overall, six phyla, 16 classes, 22 orders, 29
Frontiers in Marine Science 05
families, 33 genera and 38 species were identified after

annotation. Among them, the top ten algae with the highest

abundance at the family level were defined as the dominant

phytoplankton genera, and the abundance of families in the two

ponds is shown in Figures 4B, C. In the initial stage, the

phytoplankton community in both the control and the MC-

regulated ponds were similar and dominated by diatoms, mainly

including Stephanodiscaceae at the family level. Thereafter, the

phytoplankton composition exhibited temporal variations, with
B

C D

E F

G

A

FIGURE 2

Temporal variations in (A) TN, (B) TP, (C) DON, (D) DOP, (E) DIN, (F) DIP and (G) DSi concentrations in the water column.
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a decreasing ratio of diatoms was observed. Moreover, the

dominant phytoplankton species exhibited different variation

pattern between the two ponds. Notably, the dominant

phytoplankton species in the control pond changed to

dinoflagellates, mainly including Gymnodiniaceae at the family

level. And the proportion of dinoflagellates (30.02%) in the

control pond was higher than that of the MC-regulated pond

(25.37%) (Welch’s t-test, P > 0.05). In addition, the

Chattonellaceae (Heterosigma at the genus level), one of the

HABs species, was another dominant family in the control pond,

and had a much higher proportion in the control pond (13.09%)

than the MC-regulated pond (0.92%). In contrast, the dominant

phytoplankton species in the MC-regulated pond became green

algae, mainly including Chlorellaceae at the family level and

Nannochloris at the genus level, which had the highest

proportion. In addition, the mean relative abundance (29.9%)

of Chlorellaceae was significantly higher than that in the control

pond (6.41%) (Welch’s t-test, P < 0.05).
RDA ranking analysis between the
abundance of major phytoplankton
species and environmental variables

Overall, the phytoplankton richness, indicated by Chl a

concentration, was negatively correlated with salinity and
Frontiers in Marine Science 06
temperature, and positively correlated with nutrients in both

organic and inorganic forms (Figure 5), resulting in gradually

higher phytoplankton biomass as the nutrient accumulated

during the study period. As for the phytoplankton

communit ies , the RDA resul ts indicated that the

phytoplankton patterns were largely grouped by nutrient

regimes. In addition, there were temporal variations in the

relationship between phytoplankton communities and

environmental variables. In the initial stage, the clustering

characteristics of the samples from the control and MC-

regulated ponds were basically the same. During this period,

the phytoplankton composition was dominated by diatoms,

mainly including Stephanodiscaceae, whose abundance was

positively correlated with DSi. Thereafter, the clustering

characteristics of the samples from the two shrimp ponds

differed, indicating that the environmental influences on the

distribution of the samples from the two ponds became

inconsistent. In the control pond, the dominant phytoplankton

species have become harmful dinoflagellates, mainly including

Gymnodiniaceae and Thoracosphaeraceae. And their

abundance responded strongly to TON and TOP, as indicated

by their positive correlations. In contrast, the dominant species

of phytoplankton in the MC-regulated pond was Chlorellaceae, a

kind of green algae, and its abundance exhibited a significant

positive correlation with TOP and DIP and a significant negative

correlation with DSi.
B

C D

A

FIGURE 3

(A) The composition of DIN and temporal variations in each component ((B) TAN, (C) NO2
-, (D) NO3

-) of DIN.
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B

C

A

FIGURE 4

Temporal variations in the (A) Chl a concentrations and relative abundance of major taxa of phytoplankton in (B) the control pond and (C) MC-
regulated pond at the family level. The blue arrows indicates the date when MC was applied.
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Discussion

Nutrient variation characteristics in
mariculture ponds and their impacts on
water quality of receiving coastal waters

In the intensive mariculture pond systems, the variation and

accumulation of nutrients could cause the deterioration of water

quality and pose threat to the organisms (Alonso-Rodrıguez and

Páez-Osuna, 2003; Casé et al., 2008; Ray et al., 2011; Yang et al.,

2017; Dıáz et al., 2019). In addition, the export of mariculture

pond effluents is an important anthropogenic source of nutrients

pollution in coastal waters (Cao et al., 2017; Li et al., 2017; Yang

et al., 2017), which has significantly increased the nutrients

concentrations (Paerl, 2006; Danielsson et al., 2008; Glibert

and Burford, 2017), and altered the nutrients composition and

structure (Glibert et al., 2012; Peñuelas et al., 2012; Sutton et al.,
Frontiers in Marine Science 08
2013). In the present study, the nutrients of the mariculture

shrimp ponds exhibited unique characteristics compared with

typical coastal regions. The concentrations of TON/P and DIN/P

in the shrimp ponds were significantly higher, while DSi

concentrations were lower than those in typical coastal waters.

Notably, organic forms of nitrogen and phosphate were

dominant (Figure 6), which could be attributed to continuous

input and lower utilization efficiency of feeds (Bouwman et al.,

2013). In general, more than 63% of nitrogen and 83% of

phosphorus from feed have been discharged into the water

column and sediment (Bouwman et al., 2013). Moreover, a

large supply of organic nutrients stimulates microbial

decomposition in the water column and sediment, as indicated

by the increasing trend of DIN concentrations and DIN/TN

ratios in this study. Notably, TAN was the predominant species

of DIN, and it could be oxidized to NO2
- and NO3

-. Yang et al.,

2017 found that the sediment fluxes in the shrimp ponds were
BA

FIGURE 5

RDA ranking of samples and phytoplankton families with environmental variables in (A) the control pond and (B) the MC-regulated pond.
BA

FIGURE 6

Temporal variations in (A) DIN/TN and (B) DIP/TP ratios.
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significantly higher than the range of 0.01-31.25 mg N/(m2 h).

As the most common toxicant in mariculture (Santacruz-Reyes

and Chien, 2010), the general safe concentrations for TAN and

NO2
- in mariculture systems are under 200 mg/L and 10 mg/L,

respectively (Lai, 2014), although the specific toxicity is species-

dependent. In this study, the concentrations of TAN and NO2
-

were higher than the safe concentrations, and this result was

consistent with the study by Yang et al. (2017), which could

potentially restrict the development of shrimp farming.

Moreover, as an important anthropogenic source of nutrient

pollution in coastal waters (Table 1). (Lacerda et al., 2008)

estimated that more than 827 t N/yr and 69.2 t P/yr were

exported from shrimp ponds of northeastern Brazil. In the

Gulf of California, the estimated nutrients loads from shrimp

aquaculture were 9044 t N/yr and 3078 t P/yr (Páez-Osuna et al.,

1997; Páez-Osuna et al., 2013; Páez-Osuna et al., 2017). In the

present study, we further estimated the potential impacts of

effluent discharge on water quality of receiving coastal waters.

Assuming that our average data during the study period are

representative of the aquaculture ponds across China, with a

total area of 2.57×1010 m2 and a mean water depth of 1.4 m

(Yang et al., 2017), approximately 1.05×105 t TON (in terms of

N), 1.08×104 t TOP (in terms of P), 4.80×104 t DIN and 1.69×103

t DIP accumulated in the pond system and could be discharged

into coastal waters. This value represents approximately 16% of

the total nutrient fluxes from the main rivers of China into the

sea, whose contribution was smaller than other anthropogenic

nutrient sources (SOA (State Oceanic Administration), 2017).

Our results were basically consistent with the estimation of

Meng and Feagin, 2019, which proposed that more than 26%

of the excess nitrogen in China’s waters likely originates from

shrimp production alone (Meng and Feagin, 2019). With the

rapid development of marine aquaculture in China, its potential

impact on water pollution will be more prominent in the future.

In addition, the nutrients characteristics of the shrimp ponds

could also significantly alter the composition and structure of
Frontiers in Marine Science 09
phytoplankton community and cause the occurrence of HABs,

which could also limit healthy mariculture development.
The impacts of nutrient variations on the
phytoplankton community and potential
occurrences of HABs

A healthy and stable phytoplankton community structure is

crucial for the stability and balance of mariculture ecosystems

(Alonso-Rodrıguez and Páez-Osuna, 2003; Casé et al., 2008).

Previous studies have documented the negative effect of algal

blooms, especially dinoflagellate blooms, on shrimp

development (Shumway et al., 1990; Alonso-Rodrıguez and

Páez-Osuna, 2003; Matsuyama and Shumway, 2009; Lou and

Hu, 2014). Generally, the structure and variation of

phytoplankton communities are controlled by the complex

interactions between environmental drivers and biotic

interactions (Griffiths et al., 2016). Among them, the

concentration, composition, and structure of nutrients are

crucial for the growth and community succession of

phytoplankton and the potential occurrence of HABs.

Generally, both the inorganic (Altman and Paerl, 2012; Kamp

et al., 2015) and organic nutrients are available for

phytoplankton (McCarthy, 1972; Lønborg and Álvarez-

Salgado, 2012). This could also be verified by the positive

correlations between the Ch l a concentration with both the

TON/P and DIN/P concentrations in the present study.

Generally, most phytoplankton preferentially assimilate NH4
+

due to the lower energy consumption requirements than those

(Kamp et al., 2015). In addition, different species of

phytoplankton differ in their preferences and responses to

different forms of nutrients, previous studies indicated that

NO3
- is preferred by diatoms (Goldman and Glibert, 1983;

Lomas and Glibert, 1999; Lomas et al., 2002; Berg et al., 2003),

while organic nitrogen is preferred by dinoflagellates (Glibert
TABLE 1 Main negative impacts caused by intensive mariculture systems in the Laizhou bay compared with other coastal areas.

Location of the
mariculture systems

Main cultivated
organism species

Main negative impacts Reference

Laizhou bay, China Shrimp Increase in DIN/P, TON/P and Chl a concentrations, dinoflagellates
bloom

This study

Weihai coastal area, China Kelp, shellfish, and fish Increase in DIN and DON concentrations Li et al., 2017

Jiangsu coastal area, China Seaweed, crab, and
shellfish

Increase in DIN and DON concentrations, harmful macroalgal bloom Liu et al., 2013

Hainan coastal area, China Shrimp and fish Increase in DIN and DON, dissolved organic carbon, and Chl a
concentrations

Herbeck et al., 2013

Urias coastal lagoon, USA Shrimp Increase in nitrite and decrease in dissolved oxygen concentrations Cardoso-Mohedano et al.,
2016

Güllük Bay (Turkey) Fish Increase in inorganic N and P concentrations Demirak et al., 2006

Coastal areas of the Gulf of California,
USA

Shrimp Contribution of 10.1% N and 3.3% P to total nutrient loading Miranda et al., 2009
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and Terlizzi, 1999; Dyhrman and Anderson, 2003; Fan et al.,

2003). For instance, dinoflagellates could absorb DON and easily

replace other algae as the dominant species when DON is the

nitrogen source (Collos et al., 2014). In the present study, DON/

P were the predominant species, although an increasing trend in

the ratio of DIN was observed in the late stages, with an average

proportion of 78.92% and 88.18% in TN and TP, respectively.

Furthermore, the predominant TAN in DIN were observed in

this study, with a significantly higher proportion than those of

the NO2
- and NO3

-. This was consistent with previous studies,

which could be attributed to the continuous decomposition of

protein-rich feeds (Yang et al., 2017). Consequently, as the main

forms of nutrient reservoirs, the nutrient pattern, dominated by

TON and TAN, could contribute to the potential dominance of

dinoflagellates, as verified by the 18S rDNA results.

In addition, the fluctuation in nutrient structure can induce a

shift in dominant species of phytoplankton, and researchers

have proposed that the variation of N/P ratios might stimulate

HABs worldwide (Alonso-Rodrıguez and Páez-Osuna, 2003;

Davidson et al., 2012; Li et al., 2014). Generally, the pattern of

“more N, less P and Si” may lead to a shift in the dominant

species from diatoms to dinoflagellates (Li et al., 2014; Wang

et al., 2015). For instance, excessive DIN and persistently

elevated N/P have led to the dominant species shifting from

diatoms to dinoflagellates in the Changjiang estuary (Wang and

Cao, 2012). Likewise, Justić et al., (1995) suggested that the

increase in N and P and the relative stabilization of Si in coastal

waters, increased the possibility of Si limitation, leading to a shift

in dominant phytoplankton species from diatom to non-diatom

species. By comparing the differences in phosphorus

requirements and uptake and utilization strategies of different

algal species, the previous study has indicated that diatoms have

the lowest mean optimum nitrogen to phosphorus ratio,

followed by dinoflagellates, and green algae have the highest

mean optimum nitrogen to phosphorus ratio (Hillebrand et al.,

2013). In this study, there were no absolute concentration

limitations of N, P, and Si in mariculture pond systems.

However, the nutrient structure in terms of N/P and N/Si

ratios exhibited significant temporal variations during the

culture process. Relatively stable ratios of TON/TOP (with an

average value of 27) but fluctuating increasing ratios of DIN/DIP

(with an average value of 66) were found, which could be

attributed to the higher mineralization and accumulation rate

of N than P. In addition, increased DIN/DSi and decreased DSi/

DIP ratios, indicating potential Si limitation, were observed

especially in the middle and late stages. The variations in the

nutrient stoichiometric ratios favored the shift in the dominant

species that changed from diatoms to dinoflagellates. In

addition, a gradually increasing proportion of dinoflagellates

and decreasing proportion of diatoms corresponded well with

the variations in N/P and N/Si ratios.
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Regulation effects of MC on nutrients
and the phytoplankton community

The intensive mariculture systems are under the threat of

excessive organic loading and nutrient accumulation, which

cause water quality problems and subsequent diseases

(Hargreaves and Tucker, 2004; Santacruz-Reyes and Chien,

2010; Castillo-Soriano et al., 2013; Hu et al., 2014). Notably,

the TAN threat can become pronounced in intensive culture

systems when TAN is rapidly accumulated to concentrations

beyond the safe level (Santacruz-Reyes and Chien, 2010). More

importantly, it can trigger outbreaks of HABs and pose a serious

threat to the aquaculture ecosystem (Huang et al., 2016; Brown

et al., 2020). In this study, the initiative MC technology was

adopted to regulate the nutrients and phytoplankton in

the typical mariculture pond system. We observed that the

nutrient contents of both organic and inorganic forms in the

water column effectively decreased in most instances 24 h after

the spray of MC (Figure 7). The TON and TOP contents could

be reduced by up to 57% and 65%, respectively. While the TAN,

NO2
- and PO4

3- concentrations could be reduced by up 32%,

45%, and 64%, respectively, in the MC-regulated pond. In

contrast, both organic and inorganic forms in the water

column of the control pond increased in most instances.

Overall, the contents of these nutrients in the MC-regulated

pond were lower than those in the control pond. It has been

suggested that MC can reduce inorganic nutrients, especially

phosphate, and organic nutrients through adsorption

flocculation and chelation (Lu et al., 2015; Yu et al., 2017). In

addition, MC could cause algal cells to flocculate and settle to the

bottom layer, and the interaction of clay minerals with organic

matter provides physical protection for organic matter

(Hemingway et al., 2019). This protection could delay the

microbial (Pinck and Allison, 1951) and oxidative (Eusterhues

et al., 2003) decomposition processes of organic matter and

reduce the mineralized regeneration of nutrients.

Furthermore, MC exerted a moderating effect on the

phytoplankton biomass and community in the shrimp pond. In

this study, the phytoplankton biomass was significantly higher

and exhibited greater volatility in the control pond. In addition,

HABs have occurred twice in the control pond, including an H.

akashiwo bloom on September 2 with a density of 1.26 × 105 cells/

mL (He et al., unpublished data). In contrast, the phytoplankton

community in the MC-regulated pond was relatively stable in

change and no HABs occurred during the study period. Based on

the mean Bray-Curtis distances and molecular ecological network

analysis of the community, (Ding et al. 2021) proposed that MC

could enhance the resistance of phytoplankton ecological

communities in cultured waters to environmental disturbance.

Moreover, under the traditional condition, a high propensity for

dinoflagellate blooms existed, influenced by the variation in the
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composition and structure of nutrients, and posed a potential risk

to the growth of shrimp. This result could be verified by the

variation in the dominant species of phytoplankton that changed

from diatoms to dinoflagellates in the control pond. Compared

with the control pond, the percentage of dinoflagellates in the

MC-regulated pond was maintained at a lower level, and the

percentage of green algae was higher, with Nannochloris being the

dominant species. As an aquatic bait algae species, Nannochloris

can improve the survival and production rate of fish and shrimp

to some extent, which is important to maintain the stability of the

ecosystem (Alonso-Rodrıguez and Páez-Osuna, 2003; Davidson

et al., 2009). MC can directly dispose of HAB organisms through

flocculation; additionally, they can induce the programmed

mortality of red tide organisms through oxidative stress and

other effects, thus controlling HABs (Yu et al., 2017). On the

one hand, the Nannochloris could occupy a favorable ecological

niche and became dominant after the removal of targeted

dinoflagellates in the MC-regulated pond. On the other hand,

the MC increased the N/P ratio and favored the Nannochloris,

which has a higher average optimal nitrogen to phosphorus ratio

than dinoflagellates (Hillebrand et al., 2013).
Conclusion

This research studied the dynamic variations in nutrients and

phytoplankton of intensive mariculture systems and explored the

effects ofMC. The intensive culture of Litopenaeus vannamei caused

a temporal significant increase in nutrients, especially in the organic

forms. In addition, concurrently with ascending N/P ratio and

decreasing Si/N and Si/P ratios, a marked increase in the biomass

and ratios of dinoflagellates to diatoms abundance were also

observed, which pose a potential threat to the mariculture

organism. The MC reduced the contents of nutrients in both

organic and inorganic forms, and improved the water quality.
Frontiers in Marine Science 11
Moreover, MC effectively removed the dinoflagellates and

contribute to the dominance of Nannochloris, which improved the

stability of the phytoplankton community. This study provide new

insights into an effective regulation treatment for managing water

quality and maintaining sustainable mariculture development.
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