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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants having two or more

condensed aromatic rings and are considered the ninth most harmful substance to human

health (Jia and Batterman, 2010; Ifegwu and Anyakora, 2015). Because of the large and

unregulated exploitation of natural resources, PAH contamination has become a global

concern. As far as the aquatic environment is concerned PAHs are found in sediments,

benthic fauna, fish, sea birds, and mammals (Baali and Yahyaoui, 2019). Naphthalene is a

PAH that is widely found in soil, water, air, and aquatic ecosystems, as well as in petroleum-

derived fuels and consumer items (Jia and Batterman, 2010). The most prevalent use of

naphthalene in consumer goods is the manufacture of mothballs (Sudakin et al., 2011).

Ingesting naphthalene can cause both immediate and delayed toxicity (Kundra, et al., 2015).

The main mechanism of PAH toxicity is that they attach to the hydrophobic regions

of macromolecules in the cell, causing molecular and cellular damage and disrupting
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normal physiology (Honda and Suzuki, 2020). Cytochrome

P450 (CYP) enzymes are haeme-containing proteins found in

vertebrates, animals, plants, and microbes. These enzymes

catalyze the oxidative biotransformation of a wide range of

lipophilic xenobiotic and endogenous substances, including

steroids, fatty acids, medicines, and organic pollutants (Walker

et al., 2001). In addition, CYP enzymes are also well recognized

in the detoxification of halogenated and non-halogenated

hydrocarbons in the food chain (Shu et al., 2008).

Individual CYP enzyme levels have a crucial role in

bioaccumulation and vulnerability to environmental pollutant

exposure. The primary hydrocarbon inducible form, CYP1A,

has attracted the greatest attention as a potential biomarker of

exposure to marine hydrocarbon pollutants (Buhler and Wang-

Buhler, 1998). Glutathione S transferase (GST) is a phase II

detoxification enzyme that may catalyze the reaction of reduced

glutathione (GSH) with xenobiotic or indigenous harmful

chemicals, allowing toxins to be expelled quickly from cells

(Park et al., 2009). GST has also been used as a sensitive

biomarker of exposure to a variety of pollutants, including

PAHs and petrochemical compounds, in both field and

laboratory research (Gopalakrishnan et al., 2011; Gan et al.,

2021). Moreover, the antioxidants play a crucial role in

maintaining homeostasis and when antioxidant defenses are

compromised, oxidative stress products, particularly reactive

oxygen species (ROS), can cause DNA damage, peroxidation

of cell components, and enzymatic inactivation. Using the

marine green mussel (Perna viridis) as a model species,

the current work aims to assess the role of the CYP system

in the metabolism of PAHs by marine animals, as well as how

these modulations of biotransformation enzymes cause

oxidative stress. It is also known that in response to oxidative

stresses, marine organisms would be expected to have larger

amounts of antioxidant enzymes such as catalase (CAT),

glutathione peroxidase (GPx), and superoxide dismutase

(SOD). Variations in antioxidant levels can thus be utilized to

identify xenobiotic exposure (Gopalakrishnan et al., 2011).

P. viridis is a green-lipped marine mussel that may be found

in coastal waters on both the east and west coasts of India. It

absorbs pollutants easily and exhibits a variety of physiological

and biochemical responses, providing information on the overall

state of contamination as well as animal health. P. viridis has

been utilized as an environmental bio-indicator in toxicity-

related experiments using a range of biomarkers. The majority

of bivalves like P. viridis toxicity research has been focused on

the animal’s metal bio-accumulation mechanism and the organs

involved (Jha et al., 2019; Satheeswaran et al., 2019). There has

been very little research on the impact of naphthalene on the

physiological processes of bivalves like P. viridis (Bagchi et al.,

1998). This is the first research to look at how biotransformation

enzymes and DNA damage in P. viridis are affected by

chronic long-term exposure to sublethal concentrations of
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naphthalene. The goal of the study was to see if altering these

biotransformation enzymes causes oxidative stress in P. viridis

and the resulting antioxidant response.
Methods

Greenmussels, P. viridismeasuringwith range of 7.15- 8.95 cm

in length and 15.4-22.1 g in weight were collected and transported

to the lab from a coastal location near the sea mouth of the Pulicat

Lake, Tamil Nadu, India. The acclimatization and toxicity study

procedureswere adopted from the protocol of EPA/ROC, 1998 and

Gopi et al. (2021). Sixtymussels were used in the present study and

the mussels were divided into five groups of six specimens in each

tank. Duplicate tank for each concentration was maintained. To

ensure the solubility of naphthalene in seawater, acetone was used

as a solvent. Themussels inGroup I was reared in normal seawater

(control group). Group II mussels were reared in a solvent control

(Vacetone/Vseawater = 1/20 000), group III mussels were exposed

to 1 mg L-1 naphthalene in seawater, group IV mussels were

exposed to 2 mg L-1 naphthalene in seawater and group V were

exposed to seawater with 4 mg L-1 naphthalene. Mussels were fed

with fresh phytoplankton (Chlorella autotrophica) cultured during

the experimental periods. The water temperature, salinity, and pH

were all maintained at 28 ± 1°C, 33 ± 1 PSU, and 8.1 ± 0.1

respectively, and the tank received a continuous O2 supply. After

28 days of exposure, the animals were analyzed by removing their

gills and digestive glands and stored at -20°C for subsequent

enzyme and biochemical analysis. Protein concentrations in all

tissues were determined using the Bradford (1976) technique.

To study the modulation of biotransformation enzymes due to

the sublethal effect of naphthalene, activities of cytochrome c

reductase, oxidase and glutathione S transferase and oxidative

stress related parameters lipid peroxidation (LPO), DNA damage,

reactive oxygen species (ROS) measurement and also the

antioxidant parameter including catalase (CAT), super oxide

dismutase (SOD), reduced glutathione (GSH) content and

glutathione peroxidise (GPX) were analyzed. As a sensitive and

practical early warning system for biological exposure to organic

contaminants, these parameters have been widely employed.

The activities of cytochrome c reductase were determined

spectrophotometrically using Williams and Kamin’s (1962)

modified technique. Berry and Trumpower (1987)

spectrophotometric approach was used to assess the activity of

cytochrome c oxidase. During variations in its oxidation state, the

absorbance of cytochrome c oxidase at 550 nm was measured.

Shugart’s (1988) alkaline unwinding technique was used to assess

DNA strand breakage using an alkaline unwinding assay, in which

strand separation is obtained under controlled conditions and the

quantities of double and single-stranded DNA after alkaline

unwinding were measured using fluorescence at 360 nm

excitation and 450 nm emission wavelengths (Ref). Glutathione
frontiersin.org
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S-transferase (GST) activity was determined using the 1-chloro-2, 4-

dinitrobenzene (CDNB) substrate after conjugating the acceptor

substrate with glutathione, as reported by Habig et al. (1974).

LPO was calculated using the protocol of Devasagayam and

Tarachand (1987), the color developed was detected at 532 nm,

and Malondialdehyde (MDA) level was represented as nmol of

MDA generated/mg protein. ROS was assessed using the

methods of Driver et al. (2000). CAT activity was measured

according to Sinha (1972). SOD activity was determined by

measuring the degree of inhibition of pyrogallol auto-oxidation

at an alkaline pH using the Marklund and Marklund technique

(1974). GPx was determined by measuring the quantity of GSH

consumed in the reaction mixture by following the protocol of

Rotruck et al. (1973). GSH was calculated by measuring the

optical density of the yellow color generated when 5,5’-dithio-

bis-(2-nitrobenzoic acid) (DTNB) is reduced by glutathione at

412 nm, as described by Moron et al. (1979).

SPSS software (version 20) was used to perform the statistical

analysis. The data were analyzed for significance and reported as the

mean ± standard deviation (SD). One-way analysis of variance

(ANOVA) was used to analyze the data, followed by Tukey’s

multiple-comparison post hoc test. Principal component analysis

(PCA) is one of the most effective approaches for decreasing the

dimensionality of large datasets while preserving their content

(Wunderlin et al., 2001). Strong (> 0.75), moderate (0.75–0.50),

and weak (0.50–0.30) factor loadings were classified according to

Liu et al. (2003) criteria. To establish sample adequacy, the Kaiser–

Meyer–Olkin (KMO) criterion was used. To reduce the impact of

discrepancies in measurement units and variance, all parameters

were normalized using a Z-scale transformation (mean = 0;

variance = 1), which rendered the data dimensionless for PCA.

Further, the Pearson correlation coefficient was used to determine

the inter-relationship between the parameters. There was no

significant difference between the solvent and blank controls, and

therefore only the results of the solvent control are shown in

the figures.
Data description

The digestive gland of P. viridis showed the maximum activity

of cytochrome c reductase at the highest concentration of

naphthalene examined, while the mussels subjected to 1mg/L

showed the lowest activity, with no significant difference from the

control group after 28 d of exposure (Figure 1A). Among the two

organs studied, digestive gland exhibited comparatively higher

cytochrome c reductase activity than gill samples. However, both

the organs showed up to 4-fold increase in cytochrome c reductase

activity when compared to the respective control group after 28 d of

exposure to 4mg/L of naphthalene, and such increase was

statistically significant (p < 0.001). Gills exhibited a dose-

dependent increase in cytochrome c reductase activity when the
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(Figure 1A). Such increase in this marker enzyme in both the organs

could be due animal detoxification mechanism and needs to be

elucidated further. Harlocker et al. (1991) opined that gill tissue

might not be primarily important for carbon flow control but rather

for detoxification reactions as evidenced by alterations to these

enzymes in the gill. However, because the enzyme activity trend was

strongly associated with other tissues like the digestive gland, this

study highlights the fact that mussel gill tissue enzyme might be a

biomarker for naphthalene exposure. Furthermore, changes in the

activity of the cytochrome c reductase enzyme under naphthalene

stress possibly indicate physiological changes in the organisms.

These results suggest the possible use of cytochrome c reductase as a

biomarker for studying the impact of organic pollutants in mussels.

The activity of cytochrome c oxidase was shown to be increased

in mussels exposed to various concentrations of naphthalene over

28 d. The highest level of cytochrome c oxidase enzyme activity in

both organs was recorded when the mussels were exposed to the

highest concentration of naphthalene (4 mg/L), and the digestive

gland showed the highest amount of induction of this

biotransformation enzyme. When mussels were exposed to

naphthalene, the activity of cytochrome c oxidase in their

digestive glands increased in a dose-dependent manner

(Figure 1B). Gills on the other hand, showed a significant (p <

0.001) increase in cytochrome c oxidase only when themussels were

exposed to the highest naphthalene (4 mg/L) concentration.

Furthermore, the current study demonstrated that the

cytochrome c oxidase activity in the mussel digestive gland was

greater than that in the gills. Fontanesi et al. (2006) found that

cytochrome c oxidase biogenesis and activity were controlled by

changing environmental or physiological factors in the metabolism

of adaptive cells. Increased cytochrome c oxidase activity may

indicate increased mitochondrial high energy bond Adenosine

triphosphate (ATP) production, which is required for highly

synthetic processes including DNA synthesis, mitosis, and cellular

proliferation (Zorov et al.,2014). When the mitotic index and

proliferation (epithelialization) grow dramatically in regenerated

tissues, cytochrome c oxidase activity spikes (Saprunova et al.,

2008). This represents changes in mitochondria and other sub-

cellular components that occur during tissue breakdown (Li et al.,

2006). Similar induction of cytochrome c oxidase due to PAH was

reported in mussels (Xavier Michel et al., 1994).

DNA damage in the gill and digestive gland was observed

when mussels were exposed to naphthalene (Figure 1C). After

28 d of exposure of mussels to 4 mg/L naphthalene, there was a

significant reduction (p < 0.001) in the DNA integrity in the gill.

A similar trend was observed for DNA integrity in the digestive

gland of P. viridis when exposed to naphthalene (Figure 1C).

However, the digestive gland had a greater loss in terms of DNA

integrity than gill after 28 d exposure and all these changes were

statistically significant (p < 0.001). The changes observed in

DNA integrity were attributed by Brooks et al. (2009) to
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FIGURE 1

Showing the level of (A) Cytochrome c reductase, (B) Cytochrome c oxidase, (C) DNA damage, (D) GST activity and (E) Factor loading F1 and F2
for different biomarkers analyzed in mussel exposed to different concentration of naphthalene. The line in each box represents median and
whiskers represents the upper and lower 95% confidence intervals of the mean of six determinations using samples from different preparations.
One-way analysis of variance (ANOVA) followed by Tukey’s post hoc test was used. The significant difference between control and exposure
groups were indicated with asterisks (P < 0.05); NS, No significant difference with respective control group. The Z-represent that the data is
normalized. DG, Digestive gland.
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variations in the concentration and/or activity of xenobiotic

metabolizing enzymes such as cytochrome P450, which are

known to alter substantially with seasons and environmental

conditions. Ching et al. (2001) reported that mussels exposed to

benzo (a) pyrene showed a similar increase in DNA damage.

The GST activity was significantly induced in the digestive

gland of mussels after 28 d of exposure to all the naphthalene

concentrations. However, such induction was not significant when

the mussels were exposed to the lowest naphthalene concentration.

A similar increase was also observed in the gill after 28 d of exposure

to naphthalene (Figure 1D). Phase II of the metabolic process

includes GST activity in mussels in response to an organic

contaminant as has been previously reported (Fitzpatrick et al.,

1997). According to our findings, GST activity was ineffective in

preventing DNA damage after 28 d of naphthalene exposure. This

could be due to electrophilic intermediates formed by phase I mixed

function oxidase being able to bind to nucleophilic sites of DNA

during naphthalene metabolism.

Supplementary Figure 1 depicts changes in antioxidant

enzymes, ROS, and LPO levels in the digestive gland and gill of

mussels subjected to various naphthalene concentrations. SOD

activity in both organs dropped considerably after the mussels
Frontiers in Marine Science 05
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28 d. Similarly, when mussels were exposed to naphthalene

concentrations for 28 d, their CAT activity fell significantly,

however it was lower in the gills than in the digestive gland.

When mussels were exposed to naphthalene, GSH levels in their

gills and digestive glands dropped drastically. Similarly, GPx activity

also decreased in mussels exposed, and this reduction was

statistically significant (p<0.05) when the mussels were exposed to

a greater naphthalene concentration (4 mg/L).

Antioxidant enzyme activities in marine invertebrates are

affected by xenobiotic exposure (Cravo et al., 2012;

Gopalakrishnan et al., 2011). When toxicant concentrations are

low, the modulation of these enzymes is observed and returns to

normal, but when the time or dose of toxicant exposure is increased,

the modulation of these enzymes remains permanent, and they

respond by decreasing their level or becoming blocked in the

majority of cases. According to our results, antioxidant enzyme

activity in the digestive gland and gills decreased at all dosages,

implying an increase in the oxygen-free radical formation and

oxidative stress upon naphthalene toxicity (O2 and H2O2). The

Pearson correlationmatrix calculated for the digestive gland and gill

tissues is given in Table 1. The correlation between individual
TABLE 1 Correlation Matrix for measured parameters in digestive gland and gill of Perna viridis exposed to different concentration of Naphthalene.

Digestive gland

ROS LPO CAT SOD GPx GSH GST DNA CPR CPO

ROS 1 .514* -.431* -.396 -.378 -.261 .391 -.460* .589** .399

LPO 1 -.689** -.658** -.533** -.487* .765** -.866** .928** .861**

CAT 1 .778** .404 .307 -.474* .768** -.693** -.551**

SOD 1 .366 .305 -.416* .731** -.666** -.510*

GPx 1 .215 -.526** .507* -.457* -.483*

GSH 1 -.390 .579** -.463* -.418*

GST 1 -.648** .648** .591**

DNA 1 -.825** -.724**

CPR 1 .834**

CPO 1

Gill ROS LPO CAT SOD GPx GSH GST DNA CPR CPO

ROS 1 .428* -.433* -.273 -.468* -.752** .380 -.455* .636** .327

LPO 1 -.419* -.478* -.485* -.526** .646** -.577** .807** .743**

CAT 1 .344 .369 .618** -.419* .887** -.464* -.325

SOD 1 .539** .320 -.310 .341 -.596** -.412*

GPx 1 .431* -.492* .504* -.571** -.315

GSH 1 -.396 .644** -.716** -.288

GST 1 -.557** .636** .545**

DNA 1 -.527** -.313

CPR 1 .698**

CPO 1
frontier
*Correlation is significant at the p<0.05 level (2-tailed), ** correlation is significant at the p< 0.01 level (2-tailed). (CPR) - Cytochrome c Reductase and (CPO) Cytochrome c Oxidase.
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parameters produced similar results to those of PCAand showed

a significant (P<0.01; P<0.05) association between the

parameters in both the digestive gland and gill studied. There

were good correlations between LPO and all other parameters in

P. viridis. The correlation coefficients in most cases were greater

than 0.50. ROS generated in the digestive gland showed a

significant relationship with DNA damage and cytochrome c

reductase in the mussels exposed to naphthalene. Similarly,

cytochrome c reductase and cytochrome c oxidase showed a

correlation with both oxidative stress and corresponding

antioxidant response. Cytochrome c reductase in gill showed a

significant relation with DNA damage, oxidative stress, and

antioxidant responses (Table 1).

The KMO criterion values of 0.638 revealed that by factor

analysis (FA), a considerable diminution in the dimensionality of

the data set has been obtained (Wu et al., 2010). Through FA four

significant factors (Eigen value >1) were obtained which elucidating

76.67% of the total variation among the biomarker data in the gill

and digestive gland. The factor loadings and communality of the

dataset are given in Table S1 (supplemental material). Factor 1

elucidates 56% of the total variance and reveals strong positive

loading of DG-LPO (0.815), Gill-LPO (0.779), DG-CPR (0.796),

Gill-CPR (0.847), DG-CPO (0.86) and Gill-CPO (0.841)

(Figure 1E). It could be attributed to the influence of naphthalene

concentrations and the duration of exposure played a major role in

modulating the biotransformation enzymes. Factor 2 elucidates

8.2% of the total variance and revealed a strong positive loading

of Gill-CAT (0.783), Gill-GSH (0.816), DG-DNA (0.791), and Gill-

DNA (0.873). It might be explained by the various metabolites

formed from the organic pollutant during biotransformation could

impair the physiological system in the mussels. Further based on

this finding, we hypothesized that the duration of exposure

influenced the antioxidant response and increased oxidative

stress, potentially resulting in DNA damage.

In conclusion, cytochrome c reductase and cytochrome c

oxidase activities may provide insight into the general health

of an organism exposed to PAHs, more specifically to

naphthalene as per our study. As indicated by an increase

in DNA damage and other oxidative stress indicators, we may

deduce that exposing P. viridis to naphthalene elevates

reactive oxygen species and oxidative stress in mussels,

which may have an inverse influence on antioxidant

activity. Together these biomarkers could be vital tools for

assessing naphthalene exposure and toxicity in marine

animals and can be used in regular coastal and marine

environment monitoring programs.
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