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Introduction

The moniker “Mudskipper” typically refers to four genera of the family Oxudercidae,

including Scartelaos, Boleophthalmus, Periophthalmodon, and Periophthalmus (Patzner

et al., 2011; Nelson et al., 2016). Mudskippers are amphibious teleosts that can be found

on mudflats and mangroves across the Indo-Pacific and Southeastern Atlantic Ocean.

They have many morphological and physiological traits that allow for their amphibious

life history. Dorsally protruding eyes and other adaptive physiological traits provide clear

vision in both air and water (Clayton, 1993; Sayer, 2005; Hu et al., 2022). Developed

capillaries in the epidermis (Zhang et al., 2000; 2003) and specialized gill structure aid in

respirations during prolonged out-of-water periods (Pan et al., 2010). Modified

musculature and skeletal structures such as well-developed pectoral fins provide

support for crawling or jumping on mudflats to feed and escape predation (Pace and

Gibb, 2009; Wang et al., 2013; You et al., 2018). This terrestrial life history is also

important in biogeographical patterns of these fishes (Corush et al., 2022). Together,

these adaptive strategies make mudskippers ideal for studying evolutionary transitions

between land and water.

Across these four genera, a decrease in time spent in aquatic environments occurs in

the following order: Scartelaos > Boleophthalmus > Periophthalmodon > Periophthalmus

(Zhang, 2001). These genera have different degrees of terrestriality resulting in variation

in evolutionary pressures and ecological niches. Currently, only two Periophthalmus

species have chromosome-scale genome data. In this study, we produced a high-quality
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chromosome-level reference genome of S. histophorus using

PacBio CCS (circular consensus sequencing) and Hi-C (high-

throughput chromosome conformation capture) technology.

These genome data provide the necessary resource to address

questions pertaining to water-to-land transition including aerial

vision, terrestrial locomotion, and ammonia tolerance, with

respect to not only the molecular mechanism but also

evolutionary trajectories of chromosomes.
Data

We produced a high-quality chromosome-level genome of

the Walking goby using PacBio CCS and Hi-C technology. Full
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DNA sequencing resulted in a total of 21.06 gigabases of PacBio

HiFi reads, 99.88 gigabases of Hi-C reads, 50.64 gigabases

Illumina reads generated. For RNA-seq, a total of 29.50

gigabases of Illumina reads were generated (Supplementary

Table 1). Genome survey results show that the genome sizes of

S. histophorus was ~817.12 Mb, with a heterozygosity ratio of

~0.62%, and the repeat sequence ratio was ~47.54%

(Supplementary Figure 1; Supplementary Table 2). The final

assembly genome size is 869.5 Mb, with contig N50 and scaffold

N50 values of 9.02 and 35.28 Mb, respectively. A total of 616

contigs, which accounted for 91.42% (~794.9 Mb) of the total

assembled genome, were anchored into 24 chromosomes

(Figure 1; Supplementary Table 3). This is consistent with

previous research (Arai, 2011). Based on BUSCO analysis, the
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FIGURE 1

(A) A picture of Walking goby (Scartelaos histophorus). (B) Assembly metric visualizations (https://github.com/rjchallis/assembly-stats): The inner
radius (red) represents the longest scaffold in the assembly genome. The arcs that connect to the radial axis indicate N50 (dark orange) and N90
scaffold (light orange) lengths. Segments plotted from the circumference (gray) and the length of segment at a given percentage indicate the
cumulative percentage of the assembly that is contained within scaffolds of at least that length; the angle indicates the percentage of the
assembly. The cumulative number of scaffolds within a given percentage of the genome (purple) originates at the center of the plot. (C) Hi-C
matrix of the S. histophorus genome. For a more detailed, within-chromosome visualization, see Supplementary Figure 2. (D) Circos plot of S.
histophorus genome. Numbers along the outermost circle represent number of base pairs in millions. (A) GC content, (B) gene density, (C)
Repeat sequence density; all statistics use the 100-kb window. (D) Collinear gene blocks in the genome.
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final genome assembly included 96.7% and 97.4% of complete

conserved orthologs within vertebrates and Actinopterygii,

respectively (Supplementary Table 4). Illumina short reads

were mapped onto the assembled genome, and a total of

99.05% of the reads were mapped covering 99.87% in the

genome (Supplementary Table 5).

Repetitive sequences were annotated using both homology-

based search and de novo approaches. The integrated results

indicated that the S. histophorus genome contains 49.07%

repetitive sequences (Supplementary Table 6). A total of

24,223 protein-coding genes were predicted and annotated,

with an average exon number per gene of 9.59 and an average

CDS length of 1,613.28 bp (Supplementary Table 7). BUSCO

evaluation shows that the annotated protein-coding genes in the

genome covered 90.9% of complete conserved ortholog genes

within the vertebrate database and 90.7% of complete conserved

ortholog genes within the Actinopterygi i database

(Supplementary Table 8), and 93.72% of these genes could be

annotated by at least one of public database (NR, GO, KEGG,

Swiss-Prot databases) (Supplementary Table 9).

The genome of S. histophorus was first reported in 2014

(You et al., 2014); however, this genome used whole-genome

shotgun sequencing, and did not anchor reads to chromosomes,

limiting its use in further mudskipper genomic research. By

using three different methods, namely, shotgun short reads,

PacBio CCS reads, and Hi-C technology, the new whole-

genome quality was improved significantly. The contig N50

and scaffold N50 values of the previous genome are 8 and 14 kb,

respectively. Using the Hi-C technology in our study, the contig

N50 and scaffold N50 values of the genome were increased to

9.02 and 35.28 Mb, respectively. Furthermore, only 74.3%

(vertebrates database) and 75.5% (Actinopterygii database) of

the orthologs were detected in the previous genome from You

et al. (2014), whereas our new S. histophorus genome includes

96.7% and 97.4% of complete conserved ortholog genes within

the vertebrate database and Actinopterygii database. BUSCO

analysis also showed that more protein-coding genes were

predicted in our work and the chromosome-level genome

continuity and completeness have improved compared to the

previous study (Supplementary Table 8).

We used 4,280 single-copy homologous genes of Scartelaos

histophorus, and 19 other species were used to construct a

phylogenetic tree (Supplementary Table 10). All Gobiiformes

(Scartelaos histophorus, Boleophthalmus pectinirostris,

Periophthalmus magnuspinnatus , and Periophthalmus

modestus) were clustered into a monophyletic clade. Within

this clade, S. histophorus and B. pectinirostris were clustered into

a sister clade, P. magnuspinnatus, and P. modestus clustered into

a second sister clade with a 100% support rate for all nodes in

these clades. This topology is also supported in other

phylogenetic analyses (McCraney et al., 2020; Steppan et al.,

2022). The divergence time analysis shows that Gobiiformes
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diverged from Kurtiformes approximately 96 Mya and S.

histophorus diverged with B. pectinirostris approximately 30.9

Mya. Compared with the nearest ancestor, a total of 920

expanded and 1,594 contracted gene families were found in S.

histophorus (Figure 2).
Materials and methods

Ethics approval statement

Sample collection was carried out in accordance with the

approved guidelines of the Good Experimental Practices

adopted by the Institute of Zoology, Chinese Academy of

Sciences (CAS). All experimental procedures and sample

collections were conducted under the supervision of the

Committee for Animal Experiments of the Institute of

Zoology, CAS.
Sample collection

We collected one male and one female Walking goby

mudskipper from a beach in Xiapu County (26°52′N, 120°0′E),
Fujian Province, China. The female muscle sample was used for

genome sequencing, including Illumina, PacBio CCS, and Hi-C

sequencing. To protect the integrity of the DNA, all samples were

immediately frozen in liquid nitrogen for 20 min and then stored at

-80°C. For RNA sequencing, we selected the brain, eye, gill

filaments, heart, liver, pectoral fin, skin, and ovary of the female

sample and testis of the male sample; all tissues were preserved in

RNAlater solution and stored at -20°C. All samples were sent to

Novogene (Tianjin, China) for sequencing.

For short-read sequencing, sequencing libraries were

generated using the TruSeq Nano DNA HT Sample

Preparation Kit (Illumina USA) following the manufacturer’s

protocol. These libraries were sequenced by the Illumina

NovaSeq 6000 platform, and 150-bp paired-end reads were

generated with an insert size around 350 bp. For long-read

sequencing, the sample DNA constructs circular consensus

sequencing (CCS) libraries and sequences them using a

PacBio Sequel platform. The Hi-C (high-throughput

chromosome conformation capture) sequencing was

performed as follows: muscle tissues were cross-linked by

4% formaldehyde solution to capture the interacting DNA

segments, and chromatin was digested with the restriction

enzyme MboI, sequenced on the Illumina HiSeq 2500

platform (PE 125 bp) (Lieberman-Aiden et al., 2009; Belton

et al., 2012). For RNA sequencing, a paired-end RNA-

sequencing library was constructed and 150-bp paired-end

reads were produced on the Illumina NovaSeq platform.
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Estimation of genome size

To estimate the genome size of S. histophorus, we used

Illumina reads via kmerfreq (v. 4.0) (https://github.com/

fanagislab/kmerfreq) to count k-mer frequency with a k-mer

size of 17. Then, the genome size, repeat sequence percentage,

and heterozygosity ratio were estimated by GCE (v. 1.0.2) (Liu

et al., 2013).
Genome assembly and evaluation

The contig-level genome was assembled using PacBio HiFi

reads by hifiasm (v. 0.16.1-r375) (Cheng et al., 2021) with default

parameters. Next, to anchor the contigs into chromosomes, we

aligned the Hi-C sequencing data into contigs using Juicer (v.

1.6) (Durand et al., 2016). The contigs were finally linked into 24

distinct chromosomes by 3D-DNA (v. 180922) (Dudchenko

et al., 2017). A Hi-C contact matrix of the genome was

visualized in Juicebox software and manually corrected in view

of the chromosome interactions (Durand et al., 2016). BUSCO

(v. 5.2.2) (Manni et al., 2021) was used with the library

“vertebrata_odb10” and “actinopterygii_odb10” to evaluate the

final genome completion. Illumina short reads were mapped

onto the assembled genome used BWA (v. 0.7.17-r1188) (Li and

Durbin, 2009) to evaluate completeness and accuracy of

the genome.
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Repeats and transposable
element annotation

Repetitive sequences of the S. histophorus genome were

annotated using a combination of ab initio and homology-

based methods. First, LTR_FINDER (v. 1.07) (Xu and Wang,

2007) and RepeatModeler (v. 2.0.3) (http://www.repeatmasker.

org/RepeatModeler.html) were used to construct an ab initio

repeat library. The library and Repbase database (Bao et al.,

2015) were then used to detect repetitive sequences by

RepeatMasker (v. 4.1.2-p1) (http://www.repeatmasker.org/

RepeatModeler.html).
Gene prediction and annotation

Protein-coding genes were annotated using three

approaches, namely, homology-based, RNA-seq based, and

ab initio prediction. For homology-based annotation, the

protein-coding sequences of Larimichthys crocea, Lates

calcarifer, Oreochromis niloticus, Anabas testudineus, Danio

rerio, and Periophthalmus magnuspinnatus were downloaded

from NCBI (https://www.ncbi.nlm.nih.gov/assembly/), and the

Periophthalmus modestus genome and annotation files were

downloaded from http://gigadb.org/dataset/100957 (Yang

et al., 2022). We retained only the longest transcript from

each gene as a representative, and then BLAST was used to
FIGURE 2

Phylogenetic tree of Scartelaos histophorus with 19 other species. Black numbers at nodes represent divergence time. The orange numbers and
blue numbers represent the numbers of expanded and contracted gene families, respectively.
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align the gene to the genome with an E-value cutoff of 1E-5.

GeneWise (v. wise2-4-1) was used to predict gene structures

based on the homology alignments (Birney et al., 2004). For

RNA-seq-based annotation, the RNA-seq reads were

assembled using Trinity (v. 2.13.2) (Grabherr et al., 2011),

then the assembled transcripts and the genome with repeat

sequences masked used PASApipeline (v. 2.5.2) (Haas et al.,

2003) to generate the transcriptome evidence annotation.

TransDecoder (v. 5.5.0) (https://github.com/TransDecoder/

TransDecoder/wiki) was used to predict open reading frames.

For de novo prediction, GeneMark (v. 4) (Lomsadze et al.,

2005) and Augustus (v. 3.4.0) (Stanke et al., 2004) were used to

generate ab initio predicted gene sets. In the end,

EVidenceModeler (v. 1.1.1) (Haas et al., 2008) was used to

integrate the results from the above three methods producing

the final gene set. Circos software was used to visualize gene

density, repeat-sequence density, GC content, and collinear

gene blocks in the genome (Krzywinski et al., 2009). For gene

functional annotation, InterProScan (v. 5.55-88.0) (Jones et al.,

2014) was used to search in Pfam databases (Mistry et al., 2021)

to annotate the functional domains of the gene set. In addition,

each gene assigned by BLASTP against the Kyoto Encyclopedia

of Genes and Genomes (KEGG), NR, and Swiss-Prot databases

(Ogata et al., 1999) to get homology-based function

assignments with an e-value cutoff of 1 × 10-5.
Comparative phylogenomics of
S. histophorus

To clarify the evolutionary relationship between S.

histophorus and other related species, we reconstructed a

phylogeny with 19 species representing 16 orders. The

calibration times were Lepisosteus oculatus–Danio rerio (295–

334 Mya), Danio rerio–Esox Lucius (206–252 Mya), Thunnus

maccoyii–Larimichthys crocea (106–144 Mya), Larimichthys

crocea–Acanthopagrus latus (102–127 Mya), and Oreochromis

niloticus–Salarias fasciatus (82–131 Mya), which query from

TimeTree (http://www.timetree.org/). The detailed information

about the species used for comparative phylogenomics is shown

in Supplementary Table 10. A homologous gene set was

clustered using OrthoFinder (v. 2.5.4) (Emms and Kelly, 2019)

software with the msa method. Then, single-copy genes were

identified and aligned with muscle. Merged alignment results

were selected and used to identify the best-fit models of amino

acid replacement using ProtTest (v. 3.4.2). The results show the

best-fit models to be VT+F. The phylogenetic relationship

among these species was estimated using RAxML (v. 8.2.12)

(Stamatakis, 2014) with the VT+F models and 100 bootstrap.

Divergence times were estimated by the MCMCtree within the

PAML package (v. 4.9f) (Yang, 2007), and the reference

divergence times were checked in the TimeTree database

(Kumar et al., 2017). We measured the expansion and
Frontiers in Marine Science 05
contraction of orthologous gene families based on the

maximum likelihood tree using the software CAFÉ (v. 4.0.2)

(De Bie et al., 2006). For a full list of programs and parameters

used, see Supplementary Table 11.
Reuse potential

We present a chromosome-level high-quality genome

assembly and annotation of S. histophorus using Illumina,

PacBio HiFi, Hi-C, and RNA sequencing. The assembled

genome is ~869.5 Mb, with contig N50 and scaffold N50

values of 9.02 and 35.28 Mb, respectively; based on multiple

annotation strategies, a total of 24,223 protein-coding genes

were annotated. Our phylogenomic analyses infer the

evolutionary placement, divergence time, and gene family

change of S. histophorus. This newly annotated genome can be

a valuable resource for multiple avenues of the research on the

adaptive evolution of transitions between aquatic and terrestrial

environments. This is relevant not only within the mudskippers,

with show multiple transition to a terrestrial lifestyle, but also in

early tetrapods, across fishes (e.g., catfishes, killifishes, blennies),

and other major clades (e.g., turtle/tortoise, Cetaceans) that

exhibit this transition. Specifically, an annotated genome

assembly allows for identification of candidate genes involved

in these transitions.
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