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Thoracican barnacles represent a unique group that has evolved in parallel

identical somatotype s (sessile, stalked and asymmetric) in both normal and

chemosynthetic environments. Hydrothermal vents and methane seeps are

typical extreme deep-sea chemosynthetic habitats for marine macrobenthos.

Characterizing the evolutionary history and adaptive strategy of barnacles is

fundamentally important for understanding their origin, speciation, and

diversification. Herein, we performed a series of phylogenetic analyses

focusing on the mitochondrial genomes of the main extant barnacle

lineages. Phylogenetic inferences and topology tests contradict the view of

the sister relationship between verrucomorphs and balanomorphs, instead

revealing that pollicipedids, calanticids and balanomorphs share common

ancestor. Selective pressure analyses indicate that the two barnacle lineages

of chemosynthetic ecosystems exhibit similar patterns in their evolution of

adaptive characters, but have diverse and specific positive substitution sites of

mitogenomes. Divergence times suggest that chemosynthetic barnacles

originated in the Cenozoic, coinciding with the origins of other metazoan

animals in chemosynthetic habitats as well as the Paleogene mass extinction

and oceanic anoxic events. It is reasonable to suppose that ecological niche

vacancy, sitotaxis, gene specificity in adaptive stress responses, and the

subdivision of the ecological niche contributed to the origin and

diversification of barnacles in chemosynthetic ecosystems.
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Introduction

The deep-sea ecosystem is generally characterized by high

hydrostatic pressures, darkness, hypoxic, low temperatures, and

limited food resources (Danovaro et al., 2014). Typical

chemosynthetic habitats, such as deep-sea hydrothermal vents

and cold seeps, sustain highly productive biocoenoses (Grassle,

1985; Zhao et al., 2020), despite these environments having higher

levels of hydrogen, sulfide, methane, anoxia, heavy metals and other

suffused chemicals than the surrounding deep-sea environments

(Le Bris et al., 2017). Mounting evidence indicates that some

modern metazoan species in chemosynthetic ecosystems radiated

during the Cenozoic; examples include mytilid mussels (Lorion

et al., 2013), alvinocarid shrimp (Yang et al., 2013), and siboglinid

tubeworms (Chevaldonné et al., 2002). These findings challenge

the traditional hypothesis that chemosynthetic species represent

relic taxa (Little and Vrijenhoek, 2003). Nevertheless, the factors

and mechanisms shaping their speciation, diversification and

evolution remain unclear. Barnacles (Cirripedia: Thoracica) are

not only organisms that are distributed throughout normal

and chemosynthetic environments (e.g., neolepadoids,

probathylepadids, and Eochionelasmus are found in

chemosynthetic environments (Herrera et al., 2015; Ren &

Sha, 2015)), but also represent a distinct group that have

convergently evolved into various somatotypes (i.e., sessile,

stalked, and asymmetric somatotypes) in both photosynthesis-

supporting and chemosynthesis-supporting biotopes.

Barnacles represent excellent models for evolutionary and

ecological studies in the oceans, as most of their adults are

almost permanently attached to the substrate, and confined in

relatively narrow marine zones. Nonetheless, no studies to date

have investigated the molecular adaptive characters of these

sessile taxa surviving in the severe deep-sea chemosynthetic

habitats, although a variety of potential mechanisms were

detected in studies of organisms that thrive in harsh deep-sea

habitats (Lan et al., 2017; Wang et al., 2019; Gan et al., 2020a).

Since at least Darwin time, the phylogenetic history of

thoracican barnacles has been recognized as both fascinating and

controversial, owing to their unique configuration, morphological

diversity, convergent evolution, and ubiquity in ocean habitats

(Newman & Ross, 1976; Jones, 2012; Gan et al., 2020b).

However, the origin, diversification and other evolutionary

process of barnacles have remained poorly understood, especially

at higher taxonomic levels (Newman, 1987; Newman&Yamaguchi,

1995; Buckeridge, 1996; Gale, 2015). The main issues concern the

evolution of the peduncle, asymmetry, and the origin of the

chemosynthetic group. Several different evolutionary scenarios

have been proposed on the basis of resemblant morphological

features, ontogeny, and the fossil record. The most influential

hypotheses have been those of the polyphyletic evolution (Pilsbry,

1916; Utinomi, 1968; Ghiselin & Jaffe, 1973; Newman & Ross, 1976;

Newman, 1982) and monophyletic evolution (Newman &

Yamaguchi, 1995; Buckeridge, 1996) of sessile and asymmetric
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barnacles. The latter was deemed more plausible on the basis of

the barnacles (Neoverruca and Neobrachylepas) found in the

hydrothermal vents; nonetheless, this hypothesis was soon

rejected through the establishment of modern molecular

phylogeny (Pérez-Losada et al., 2008; Linse et al., 2013; Rees

et al., 2014; Herrera et al., 2015; Lin et al., 2015; Kim et al., 2022)

as well as paleontological evidence (Gale, 2014a; Gale, 2014b; Gale

& Sørensen, 2014). Building on these molecular results, as well as

morphological and paleontological arguments, Chan et al. (2021)

recently documented the thoracican phylogenetic tree (see Figure 10

in Chan et al., 2021), and proposed a comprehensive taxonomic

framework for barnacles. This was the first attempt to integrate,

update, and revise the taxonomy of barnacles since the work of

Martin & Davis (2001). Nonetheless, some evolutionary issues have

remained unresolved. As mentioned above, the findings of previous

molecular researches (Spears et al., 1994; Harris et al., 2000; Pérez-

Losada et al., 2004; Pérez-Losada et al., 2008; Pérez-Losada et al.,

2012; Linse et al., 2013; Pérez-Losada et al., 2014; Rees et al., 2014;

Herrera et al., 2015; Lin et al., 2015) significantly challenged the

classical view of barnacle evolution, but some relationships for

higher taxa remain unresolved due to their low confidence values,

or inconsistent topology (Chan et al., 2021). This is possibly because

all these analyses employed few, identical, or similar molecular

markers (i.e., mostly 18S, 28S, H3 and COI). The use of

mitogenomes has great advantages, owing to their universal

homology, low recombination and various genome-level

characters, in evolutionary analyses of organisms (Larget et al.,

2002; James et al., 2016; Tsang et al., 2017; Kong et al., 2020;

Bartáková et al., 2021).

Due to next-generation sequencing technology, the complete

mitochondrial genome can now be more easily and precisely

captured. In this study, we first sequenced and annotated the

complete mitogenomes of 13 barnacle species from various

families and habitats. Next, by integrating the data with

publicly available mitogenome data on GenBank (http://www.

ncbi.nlm.nih.gov/genbank), we performed a comprehensive

mitogenomic analysis of barnacles. The main objectives were

to explore the evolutionary history of major taxa within the

barnacle lineage, to characterize the genetic adaptive features of

chemosynthetic barnacles living in harsh marine environments,

and to understand how the origin and diversification of

chemosynthetic barnacles were associated with historical

ecological events and other factors.
Materials and methods

Sample collection, DNA extraction
and sequencing

Individual barnacles were collected in the Indian Ocean and the

West Pacific from habitats such as mid-oceanic ridges, basins,

trenches, hydrothermal vents, seamounts, shelf seas, and tidal
frontiersin.org
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zones. Of these, the deep-sea samples were collected duringmultiple

expeditions led by the Institute of Oceanology Chinese Academy of

Sciences, the Second Institute of Oceanography Ministry of Natural

Resources, the Institute of Deep-sea Science and Engineering

Chinese Academy of Sciences and Tongji University. The samples

were obtained using a variety of remotely operated vehicles and

manned submersibles. All samples were preserved in either 75%

ethanol or at -80°C, and deposited in the Marine Biological

Museum Chinese Academy of Sciences, Qingdao, China, and the

Sample Repository of the Second Institute of Oceanography

Ministry of Natural Resources, Hangzhou, China (Table 1).

Total genomic DNA was extracted from pedunculate or

abdominal muscle using a modified cetyltrimethylammonium

bromide method (Allen et al., 2006), and a 500-bp paired-end

library was constructed using the NEBNext Ultra DNA Library

Prep Kit for Illumina (NEB, Ipswich, United States). Next-

generation sequencing was performed on the Illumina NovaSeq

6000 platform (BIOZERON Co., Ltd, Shanghai, China).
Mitogenome assembly and annotation

The raw data, 150 bp paired-end reads, were filtered by

removing the following: reads with adaptors, reads with a quality
Frontiers in Marine Science 03
score of below 20 (Q<20), reads containing a percentage of

uncalled bases (“N” characters) that was equal to or greater than

10%, and duplicated sequences. A combination of de novo and

reference-guided assemblies was used to reconstruct the

mitochondrial genome. The filtered reads were first assembled

into contigs using GetOrganelle v1.6.4 (Jin et al., 2020). Next, the

contigs were aligned with mitogenomes of closely related

barnacle species using BLAST searching, and were also

optimized using scaffolds from SPAdes 3.13.0 (Bankevich

et al., 2012). Finally, the assembled sequence was reordered

and oriented according to the reference mitochondrial genomes,

thus generating the final assembled mitochondrion

genomic sequence.

The assembled mitogenomes were annotated using the

online MITOS tool (http://mitos.bioinf.unileipzig.de). The

default parameters were used to predict protein coding genes

(PCGs), transfer RNA (tRNA) genes, and ribosome RNA

(rRNA) genes. These genes were further verified using the

Open Reading Frame Finder on NCBI (https://www.ncbi.nlm.

nih.gov/orffinder), tRNAscan-SE 2.0 (Chan & Lowe, 2019) and

rRNAmmer 1.2 (Lagesen et al., 2007), respectively. Manual

corrections of genes for start/stop codons were performed in

SnapGene Viewer (https://www.snapgene.com) by referencing

the reference mitochondrial genome. The circular mitochondrial
TABLE 1 Collection and mitogenome information for the newly sequenced specimens used in this study.

Species Collection detail Voucher ID Mitochondrial
genome size

GenBank accession
numbers

Ashinkailepas
seepiophila

Okinawa Trough, hydrothermal vent, 27°33.16′N 126°56.55′E depth
1260 m, 14 Jul. 2018

MBM286888 20,032 bp OM009257

Calantica studeri Southwest Indian Ridge, 37°21.47′S 52°06.16′E, depth 2288 m, 10
Jun. 2018

SRSIO18060316 14,910 bp OM009255

Gibbosaverruca
weijiai

Weijia Guyot, 156°41.26′E, 12°47.37′ N, depth 1935 m, 21 Sep. 2017 SRSIO17090314 16,681 bp OM009260

Glyptelasma gigas Zhongjiannan Basin, 15°19.17′N, 110°37.84′E, depth 731 m, 20 May
2018

NHS-SY-075-
11-06

16,172 bp OM009258

Glyptelasma
robustum

Huangyanxi seamount, 117°34.87′E 15°16.97′N, depth 2987 m, 27
Apr. 2018

SRSIO18040311 15,970 bp OM009267

Ibla cumingi The South China Sea, 21°29.87′N 108°13.23′E, depth 1–2 m, 28 Oct.
2015

MBM286891 15,053 bp OM009261

Leucolepas longa Manus Basin, hydrothermal vent, 3°42.35′S 151°46.52′E depth
1896 m, 18 Jun. 2015

MBM286889 17,431 bp OM009256

Octolasmis
warwicki

Weizhou Island, 20°53.95′N, 109°0.61′E, depth 3–5 m, 6 Jul. 2018 MBM286893 15,248 bp OM009262

Neoverruca
intermedia

Okinawa Trough, hydrothermal vent, 27°32.68′N 126°58.36′E depth
1250 m, 14 Jul. 2018

MBM286890 17,186 bp OM009263

Paralepas cf.
quadrata

The East China Sea, 28°17.1′N 121°52.78′E, depth 46 m, 4 Jan. 2021 MBM286892 15,306 bp OM009264

Poecilasma litum Zhongjiannan Basin, 15°19.17′N, 110°37.84′E, depth 500–810 m, 20
May 2018.

NHS-SY-075-
12-03

16,065 bp OM009259

Regioscalpellum
regium

Mariana Trench, 10°51.691’N, 141°57.110’E, depth 5462 m, 1 Jun.
2016

JL-Dive114-
S01-01

15,962 bp OM009266

Smilium sinense The East China Sea, 27°21.28′N 121°2.43′E, depth 69 m, 25 Nov.
2020

MBM286895 15,561 bp OM009264
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genome map was drawn using the CGview Server (Grant &

Stothard, 2008).
Phylogenetic analyses

The analyses were achieved using the mitogenomes of the

13 species obtained in the present study, as well as the open-

access mitogenome datasets of other barnacle species,

including an iblomorph, three asymmetrical barnacle

species (including one chemosynthetic species), 17 stalked

barnacle species (including three chemosynthetic species),

and 31 acorn barnacle species (including two chemosynthetic

species). A first-pass phylogenetic inference based on all the

functional genes, (i.e., concatenated 13 PCGs as well as 22

tRNA and two rRNA sequences) was conducted using the

Flowchart analyses of PhyloSuites v1.2.2 (Zhang et al., 2020)

with the maximum-likelihood optimality criterion. However,

this produced a phylogenetic tree that was poorly supported,

possibly owing to noise from gene heterogeneity and

mutational saturation. Next, we retained only the 13 PCGs.

An inspection of the substitution status of these 13 PCGs

using DAMBE v5.3 (Xia & Xie, 2001) indicated that all had

mutational saturation at the third codon. Thus, we excluded

the third codons in subsequent analyses on the concatenated

nucleotide data. Bayesian inference (BI) and maximum

likelihood (ML) methods were used to analyze the data

from both the concatenated nucleotide and the putative

amino acid sequences of the 13 PCGs.

Nucleotide and amino acid sequences of each 13 PCGs were

aligned using MAFFT v7 (Katoh & Standley, 2013) with default

parameters, and the nucleotide sequences were aligned in codon

manner. MACSE v2 (Ranwez et al., 2018) and Gblocks (Talavera &

Castresana, 2007) were used to optimize alignments and to

eliminate segments that were divergent and ambiguously aligned.

Finally, the trimmed nucleotide and amino acid sequences were

concatenated into independent dataset respectively. The best

partitioning schemes and best-fit substitution models of each

partition in the concatenated dataset were determined using

ModelFinder (Kalyaanamoorthy et al., 2017) and PartitionFinder

2 (Lanfear et al., 2017) according to the Bayesian information

criterion. All the above analyses were performed using the

integrated and scalable desktop platform PhyloSuites v1.2.2. The

ML tree was reconstructed using RaxML-NG (Kozlov et al., 2019),

and branch support was assessed by transfer bootstrap expectation

(TBE) with 1,000 replicates (Lemoine et al., 2018). The Bayesian

analysis was conducted using a parallel version of Mrbayes v3.2.6

(Ronquist et al., 2012). Two independent runs were executed with

four Markov Chain Monte Carlo (MCMC) for 10 million

generations (beginning with a random tree, chains were sampled

every 10,000 generations). Convergence of the analyses was ensured
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partition frequencies (<0.01). The resultant outputs were further

validated by using Tracer 1.7.1 (Rambaut et al., 2018) to diagnose

the effective sample size (ESS) values of all sampled parameters. The

first 25% of trees generated prior to the achievement of stationarity

of the log-likelihood values were discarded as burn-in. The

remaining trees were used to construct a 50% majority rule

consensus tree and to estimate the posterior probabilities (PP)

simultaneously. FigTree (http://tree.bio.ed.ac.uk/software/figtree/)

was used to visualize the phylogenetic trees. Linearized

mitochondrial gene arrangement patterns were superimposed on

the phylogenetic trees using the iTOL webserver (Letunic &

Bork, 2021).

To test the hypothesis that sessile barnacle species (i.e.,

verrucomorphs and balanomorphs) form a monophyletic

group, we performed a likelihood-based approximately

unbiased (AU) test in IQ-TREE v2.0 (Nguyen et al., 2015)

with 1,000 repl icates to assess the P-value of the

test topology.
Divergence time estimation

The divergence times of barnacle lineages were estimated

from the partitioned nucleotide dataset using BEAST v2.6.3

(Bouckaert et al., 2014). Variation in mutation rates amongst

branches was allowed by assuming an uncorrelated relaxed

lognormal molecular clock model. The birth-death model

(Gernhard, 2008) was set as the tree’s priors. Unlinked site

models were set for each partitioned dataset to allow

independent substitution rates and base frequencies, and

determined by bModelTest (Bouckaert & Drummond, 2017)

implemented in the BEAST v2.6.3. Six fossil calibration points

[C1: Praelepas jaworskii, 306.5–311.7 million years ago (MYA);

C2: Calantica (Scillaelepas) ginginensis, 83.5–85.5 MYA; C4:

Arcoscalpellum fossula, 70.6–89.3 MYA; C5: Pollicipes

abor i g ina l i s , 83 . 5–85 .8 MYA; C9 : Pachyd iadema

(Catophragmus) cretacea, 70.6–89.3 MYA; C11: Tetraclitella

sp. cf. purpurascens, 20.4–23.0 MYA] were selected to calibrate

the divergence time estimation; all points had been tested with

high confidence in previous studies (Pérez-Losada et al., 2008;

Linse et al., 2013; Herrera et al., 2015). Fossil ages were used as

lower boundary constraints, and their prior exponential

distribution were assumed with estimated mean values. The

default prior distribution settings were assumed for all other

parameters. The MCMC analysis was run for 10 million

generations with a sampling frequency of 10,000 generations.

Convergence diagnosis was examined by Tracer. After the first

25% of trees were discarded as burn-in, the maximum clade

credibility tree with median nodal height was generated using

TreeAnnotator 2.6.3 (Bouckaert et al., 2014). The time-scaled
frontiersin.org
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tree was mapped against geological time and visualized using the

R packages phytools (Revell, 2012), PHYLOCH (http://www.

christophheibl.de/Rpackages.html), strap (Bell & Lloyd, 2015),

and CODA (Plummer et al., 2006).
Selective pressure analyses

Signatures of natural selection on the 13 PCGs were detected

using the codon-based maximum likelihood (CodeML)

implemented in the PAML 4 package (Yang, 2007), based on

the tree that was reconstructed with the concatenated amino acid

sequences. Both branch and branch-site models were used to

identify the variation in selective pressures acting on the branch

lineages and individual sites of PCGs. For the branch model, a

one-ratio model and a two-ratio model were used to estimate the

w values across the whole lineage and foreground lineages (i.e.,

the chemosynthetic barnacles). The branch-site model assumed

w values to be alterable among sites in the proteins as well as

across branches on the tree, and could detect any positive

selection affecting a few sites along the foreground branches.

Bayes Empirical Bayes (BEB) analysis was used to calculate the

Bayesian posterior probability of the positively selected sites

(w>1). All the assumed models were compared against their

corresponding null hypotheses using the Likelihood Ratio Test

(LRT); the LRT P-values were then calculated using a Chi-square

(c2) analysis. Models with LRT P-values less than 0.05 and BEB

larger than 95% were considered as the best-fit models for

evolution and positive selection.

To achieve a more intuitive understanding of the

significance of the sites under positive selection, we mapped

the sites onto the three-dimensional (3D) structure of

mitochondrial proteins. The SWISS-MODEL (Waterhouse

et al., 2018) server and I-TASSER (Yang et al., 2015) server

was used to model the 3D structure of the target proteins based

on the sequence reconstructed using the PAML 4 package. Next,

PyMOL (The PyMOL Molecular Graphics System, V2.5,

Schrödinger, LLC.) was used for visualizing and depicting the

positive selection sites in the proteins.
Results

The mitogenomes of 13 barnacle species (including three

hydrothermal vent barnacles and two asymmetrical barnacle

species) were successfully recovered. Of these, the mitogenome

of Regioscalpellum regium was partially recovered with gaps in

the putative control regions, and that of Octolasmis warwickii

was partially recovered with gaps between the tRNA-P and

tRNA-T genes. The lengths of complete mitogenomes were

between 14,910 (Calantica studeri) and 20,032 bp

(Ashinkailepas seepiophila). Nearly all mitogenomes contained
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the typical 13 PCGs, two rRNAs, and the 22 tRNAs, except for

Glyptelasma gigas, which was missing a tRNA-Q gene. The

annotated sequences of mitogenomes are stored in GenBank

(Table 1), and the mitochondrial genome maps are shown in

the Figure 1.
Phylogenetic analyses

The final aligned datasets for nucleotide and amino acid

sequences consisted of 7,178 bp and 3,563 characters,

respectively. The best partitioning schemes and best-fit

substitution models as determined by ModelFinder and

PartitionFinder are listed in the Supporting Information,

Supplementary Table 1. Tree topologies resulting from the BI

and ML analyses were identical for the same dataset, and only a

few weakly supported internal nodes of Balanidae and

Calanticidae were different between the two datasets.

Furthermore, the topology that was revealed from the amino

acid dataset (Figure 2) received higher nodal support than that

from the nucleotide dataset (Supplementary Figure 1). But

consistently, all orders received monophyletic support, and all

families formed a monophyletic group except Balanidae in the

phylogenetic analyses. Fortuitously, a conflict between the

topologies of the nucleotide and amino acid datasets was

found in the position of Smilium sinense. This species was

recovered as a sister group of verrucids in the nucleotide

topologies, which contrasted its coordinal species Calantica

studeri in the amino acid topologies as well as in the topology

generated by all the functional genes. Furthermore, the nodal

support for S. sinense in nucleotide topologies was very poor

(PP=0.55, BP=59) (Supplementary Figure 1). Comparisons

across different barnacle species revealed that they have a

highly conserved gene order that corresponded to their

families, except for Chthamalidae and Calanticidae, which

displayed conspicuous translocations or inversions of some

gene blocks (Figure 3).

Most of the phylogenetic relationships among species

recovered from the present analyses were consistent with the

results of previous studies based on multilocus molecular

markers (Pérez-Losada et al., 2008; Linse et al., 2013; Rees

et al., 2014; Herrera et al., 2015; Lin et al., 2015). Barnacles

from deep-sea chemosynthetic ecosystems can be divided into

two strongly supported clades (PP=1, BP=100). Clade A,

containing Ashinkailepas seepiophila, Leucolepas longa,

Neoverruca intermedia and Vulcanolepas fijiensis, was well

supported as the sister group to the scalpellids clade. Clade B,

containing Eochionelasmus coreana and E. ohtai, was strongly

supported as the basal clade of the balanomorphs (Figure 2,

Supplementary Figure 1). This result was highly congruent with

the findings of Herrera et al., (2015), who suggested that deep-

sea chemosynthetic barnacles have colonized hydrothermal
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FIGURE 1

The organization of the mitogenomes of the newly sequenced specimens used in this study.
FIGURE 2

Phylogenetic topology inferred from the combined amino acid sequences of the complete mitogenomes of barnacles. Clades A and B indicate
the two chemosynthetic barnacle lineages. The color of the species name and branch denotes the family classification of the taxon. The digits
after the species name correspond to sample photos. Posterior probabilities (PP) and transfer bootstrap expectation (TBE) values from both the
nucleotide and amino acid data are annotated using different colored dots.
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https://doi.org/10.3389/fmars.2022.964114
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gan et al. 10.3389/fmars.2022.964114
vents and/or cold seeps at least twice in the history of thoracican

evolution. The verrucomorph clade occupied the basal position

in the topologies of all the trees recovered (Figure 2;

Supplementary Figure 1), and the hypothesis that sessile

barnacles (verrucomorph and balanomorph) form a

monophyletic group was clearly rejected by the AU tests (P-

value=3.73e-07 in the amino acid dataset, P-value=8.67e-06 in

the nucleotide dataset).
Divergence time

The topology of the tree reconstructed from the divergence

time estimation by BEAST2 was nearly identical to the topologies

of trees recovered from the BI and ML analyses based on the

nucleotide and amino acid data. Minor differences also appeared

in a few shallow nodes of the Balanidae and Tetraclitidae.

Divergence times of the barnacle lineages estimated under the

prior settings are shown in Figure 4. Nearly all the node times lay

between the corresponding values estimated by Linse et al. (2013)

and Herrera et al., (2015). The occurrence time of the most recent

common ancestor (MRCA) of Clade A was estimated at 46.8

million years ago, with the 95% highest posterior density interval

(HPD) occurring at 25.5–74.1 MYA. This clade diverged from its

sister clade at 168.4 MYA (95% HPD: 126.3–220.4). Within Clade

A, the origin of the Neolepadidae was estimated to have occurred

29.3 MYA (95% HPD: 13.7–49.2). The MRCA of Clade B was

older than that of Clade A, had occurred 65.3 MYA (95% HPD:

34.6–101.7), where it split from other balanomorphs at 124.6
Frontiers in Marine Science 07
MYA (95% HPD: 91.2–158.9). In general, the extant deep-sea

chemosynthetic barnacles most probably originated from the early

Paleogene or upper Cretaceous, and speciated during the

subsequent periods.
Positive selection

To test if any selective pressure occurred specifically in

chemosynthetic barnacle lineages, we compared the alternative

model (a two-ratios model, with different lineages assigned

different w values) and the null model (a one-ratio model,

with all lineages assigned the same w value) by labelling the

foreground branches in two different ways. The first involved

labelling the entire clades of Clade A and Clade B respectively;

the second involved labelling the individual branches of Clade A

and Clade B. Both approaches produced very significant results

(P<10-8) (Table 2). The results also showed that chemosynthetic

barnacle species had a higher w value than other barnacle species

(Table 2, Figure 5), suggesting they had accumulated more

nonsynonymous substitutions throughout their evolution and

their adaptation to extreme environments. Notably, the w values

of the common ancestor to Clade A and Clade B were distinctly

high. This could indicate that the ancestors of chemosynthetic

barnacles had undergone relatively high selective pressures when

they colonized the chemosynthet ic biotope during

their emergence.

Studies suggest that positive selection always occurs

episodically at a few sites or lineages in response to
FIGURE 3

Mitogenomic gene arrangement patterns of barnacles superimposed on the phylogenetic tree. Genes encoded by the light-strand are initiated
by a “-”. The symbol “a” represents the heavy-strand gene block “S2–C–Y”, while “b” represent the light-strand gene block “C–C”.
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variation of the surrounding environment (Yang, 2007; Shen

et al., 2010). Thus, we performed a series of branch-site model

tests (w>1 along the foreground branch vs. w≤1 along the

foreground and background branches) among individual

branches of Clade A and Clade B. However, only the results

of tests along branches leading to Clade A, Clade B, internal

branches of Clade A and the Eochionelasmus ohtai branch

received statistically significant support (P<0.05) (Table 2).

This pattern reflected the pattern observed in the results of

the branch model analysis. BEB analysis showed that positive

selection sites occurred in all mitochondrial PCGs of Clade A,

except in cox2 and atp8. In contrast, for Clade B, positive

selection sites occur in cox3, atp6, nad1, nad2, nad3, nad4 and

nad5. No common positive selection site between the two

lineages was found (Table 2). The predicted 3D structure of

the proteins revealed that these positive selection sites

appeared as both conformation of a-helix structures and

random coils (Supplementary Figure 2).
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Discussion

Phylogeny and evolutionary history
of barnacles

Our findings pertaining to barnacle evolutionary history

largely corroborated those of previous studies, particularly

with regards to the independent origins of the two

chemosynthetic barnacle lineages. However, our findings also

suggested alternative evolutionary scenarios for other

thoracicans. Most apparent among these was the phylogenetic

position of verrucomorph barnacles. Our analysis indicated that

verrucomorphs were basal to all barnacles except iblomorphs

(Figure 2; Supplementary Figure 1). This partly corresponded to

the initial speculation that verrucomorphs and balanomorphs

were of independent origins (Pilsbry, 1916; Newman & Ross,

1976). The sister relationship between verrucomorphs and

balanomorphs was clearly rejected by the monophyletic test in
FIGURE 4

Maximum clade credibility time-scaled tree generated under the birth-death model based on the partitioned protein coding genes of barnacle
mitogenomes. Fossil calibration points (C1, 2, 4, 5, 9, and 11) follow those used by Pérez-Losada et al. (2008) and Herrera et al., (2015). Species
highlighted in red belong to the two chemosynthetic barnacle lineages.
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our analysis. It had also not been confirmed in the mitochondrial

genome analyses of Kim et al. (2018); Kim et al., (2019) and Lee

et al. (2019), or the multiple gene analyses of Linse et al. (2013);

Rees et al. (2014), Herrera et al., (2015), and Kim et al. (2022).

Furthermore, the mitogenome arrangement of verrucomorph

species, which displayed unique gene blocks (Figure 3), was

distinctly different from that of the balanomorphs and other

barnacles. The ontogeny of verrucomorph species (Verruca

stroemia) also differed from that of balanomorph species

(Semibalanus balanoides) owing to a lack of lateral plates in

individual development (Newman, 1989). Although limited
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evidence of morphology and fossil records to fully support

current phylogenetic result, there were some clues to

speculate that verrucomorphs might originate from

archaeolepadomorphs. Archaeolepadomorphs (such as

Archaeolepas and Bosquetlepas) and verrucomorphs only

possess six plated capitula (i.e., the paired scuta and terga, a

carina, and a scutum) and lack any lateral plates, the

arrangement thus provides the most parsimonious

evolutionary interpretation. Moreover, our analysis indicates

that the origin of verrucomorphs is in the upper Triassic

(Figure 4), which corresponds with the divergence time of the
TABLE 2 Results of models of selective pressure acting on deep-sea chemosynthetic barnacles.

Model with positive selection Null model 2DLa P-
value

Model Likelihood Parametersb Positively selected sitesc Model Likelihood Parametersb

Branch models: analysis for positively selected along Clade A(wA)/Clade B (wB)

two-
ratios

-267206
np=105

k=2.053;
w0 = 0.026
wA=0.038;
wB=0.040

one-
ratios

-267265
np=103

k=2.056
w0 = 0.027

117 <10-9

Branch models: analysis for positively selected along individual branches of Clade A(w1-w7)/Clade B (w8-w10)

two-
ratios

-267062
np = 113

k=2.038; w0 = 0.026; w1 = 0.416; w2 = 0.053; w3 = 0.058; w4 = 0.021;
w5 = 0.023; w6 = 0.027; w7 = 0.019; w8 = 1.873; w9 = 0.044; w10 = 0.021

one-
ratios

-267265
np=103

k=2.056
w0 = 0.027

405 <10-9

Branch-site models: analysis for positively selected along branch leading to Clade A (wA)

A -263519
np=106

k=2.383
p0 = 0.873;
w0 = 0.024
pA=0.126;
wA=2.609

cox1: 460M; cox3: 3S, 53L; atp6: 53L, 108T, 109S; cob: 64N,
245Q; nad1: 164Y; nad2: 104T, 151S, 163S, 175S, 203F,

206S; nad3: 10T, 27L, 78A; nad4l: 36L, 82V; nad4: 33I, 34G,
69K, 308S, 377N; nad5: 74K, 327V, 396V, 451S, 475M;

nad6: 104N, 145I

Anull -263581
np=105

k=2.374
p0 = 0.941
w0 = 0.023

125 <10-9

Branch-site models: analysis for positively selected along branch leading to the clade of A. seepiophila, L. longa and V. fijiensis (wA1)

A -263638
np=106

k=2.392
p0 = 0.942;
w0 = 0.024

pA1 = 0.058; wA1

= 2.171

nad5: 403F Anull -263659
np=105

k=2.396
p0 = 0.941
w0 = 0.024

40 <10-9

Branch-site models: analysis for positively selected along branch leading to the clade of L. longa and V. fijiensis (wA2)

A -263620
np=106

k=2.394
p0 = 0.989;
w0 = 0.024

pA2 = 0.010; wA2

= 40.933

nad2: 200T; nad5: 437S, 479S Anull -263659
np=105

k=2.396
p0 = 0.941
w0 = 0.024

78 <10-9

Branch-site models: analysis for positively selected along branch leading to Clade B (wB)

A -263606
np=106

k=2.394
p0 = 0.899;
w0 = 0.024
pB=0.100;
wB=1.867

cox3: 158S; atp6: 193I; nad1: 103M, 236L; nad2: 207I; nad3:
80G; nad4: 210G; nad5: 536T

Anull -263659
np=105

k=2.396
p0 = 0.941
w0 = 0.024

105 <10-9

Branch-site models: analysis for positively selected along branch Eochionelasmus ohtai (wB1)

A -263641
np=106

k=2.397
p0 = 0.989;
w0 = 0.024

pB=0.010; wB1 =
2.248

nad2: 219I Anull -263659
np=105

k=2.396
p0 = 0.999
w0 = 0.024

35 <10-8
frontier
a2DL is twice the difference of model log-likelihoods for Chi-Square test.
bk is the transition/transversion rate ratio; w is the dN/dS ratio; w1-10, A, A1, A2, B, B1 is the dN/dS ratio in a class specified as foreground branches; p0 and pA, A1, A2, B, B1 are the proportion of
codons with w<1 and w>1, respectively. p is parameter of beta distribution in the range (0, 1).
cSites listed are those at which positive selection is detected at the significance level of >95%, or >99% in bold.
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archaeolepadomorphs indicated by Chan et al. (2021). However,

considering that incongruent phylogenetic position of

verrucomorphs was present in molecular phylogeny. The

natural evolutionary history of verrucomorphs must be further

verified with more evidence from added data analysis.

Another controversial issue in thoracican phylogeny

concerns the calanticids and pollicipedids, which were

traditionally placed in Scalpelliformes, until Chan et al. (2021)

proposed the orders Calanticomorpha and Pollicipedomorpha

for them, however, their phylogenetic status is uncertain owing

to the incongruent results of separate molecular analyses. (Pérez-

Losada et al., 2008; Linse et al., 2013; Rees et al., 2014; Lin et al.,

2015; Herrera et al., 2015). Our mitogenome data indicate that

the pol l ic ipedids diverged immediate ly before the

balanomorphs, and were followed closely by the calanticids

(Figure 2, Supplementary Figure 1) with robust support. These

findings coincide with the Bayesian results of Linse et al. (2013),

as well as the relatively constant position occupied by the

pollicipedids in all mitochondrial genome-based phylogenetic

analyses (Song et al., 2017; Cai et al., 2018; Kim et al., 2018; Kim

et al., 2019; Chen et al., 2019; Lee et al., 2019; Tian et al., 2020).

The mitogenome arrangement of calanticids and pollicipedids

more closely resembles the patterns of balanomorphs, except for

Smilium sinense which shows remote inversion events of the

gene blocks, C–Y–nad1–L1–rrnL–V–rrnS and I–M (Figure 3).

Anderson (1983) demonstrated that the evolution of

balanomorphs from calanticids was functionally feasible. Gale

(2014b) indicated that Etcheslepas was morphologically

intermediate between Capitulum and Pycnolepas, which

suggested that pollicipedomorphs and brachylepadomorphs
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shared a close relationship. He further proposed a

phylogenetic hypothesis for balanomorphs based on their

morphology and paleontology, with calanticomorphs and

pollicipedomorphs located at the basal position (Gale &

Sørensen, 2014). In the morphometric analyses on antennule

of cyprid larvae, Al-Yahya et al. (2016) showed similar structures

among pollicipedomorphs and balanomorphs. Collectively, the

evidence indicates that balanomorphs, pollicipedomorphs and

calanticomorphs might share a common ancestor before

radiating into the respective lineages observed today.
Origin and adaptive evolution to extreme
deep-sea environments

Our result indicates the chemosynthetic barnacles diverged

from the early Cenozoic (Figure 4). A similar divergence time

has been proposed by Linse et al. (2013) and Herrera et al.

(2015), and the divergence time of neolepadoids is also in

accordance with the fossil records (Carriol et al., 2016; Gale

et al., 2020). During the same period, other marine

chemosynthetic taxa also emerged and radiated. For instance,

mytilid mussels 45 MYA (Lorion et al., 2013), alvinocarid

shrimp 48.4–55.9 MYA, bythograeid crabs 51.5–69.7 MYA

(Yang et al., 2013) and siboglinid tubeworms 60 MYA

(Chevaldonné et al., 2002). These divergence times occurred

just posterior to the Cretaceous-Paleogene mass extinction (K-

Pg extinction), which caused a near 50% decline in marine

generic diversity (Sepkoski, 1996; D’Hondt, 2005) and over 50%

of cirripede genera extinction (Gale & Sørensen, 2014). Jacobs &
FIGURE 5

Barnacle tree (based on amino acid sequences) annotated with selective pressure. Different colors indicate different chemosynthetic barnacle
lineages. w is the ratio of non-synonymous to synonymous substitutions with a different branch or lineage. The number of adaptive substitutions
(determined by PAML) is shown below each branch.
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Lindberg (1998) have proposed that the oceanic anoxic/dysoxic

events occurring at the Cenomanian/Turonian boundary as well

as the latest Paleocene led to the elimination of much of the

contemporary deep-sea benthos, as well as vent faunas; this

argument has also been supported by Little & Vrijenhoek (2003).

Accordingly, an abundance of empty ecological niches would

have been created following these mass extinctions and anoxic/

dysoxic events. Hsü et al. (1982); Zachos et al. (1989), and

D’Hondt (2005) showed that the flux of organic matter to the

deep seafloor declined tremendously during the K-Pg extinction.

All these ecological events may have driven food scarcity among

the contemporary deep-sea benthos. Hence, it is possible that the

colonization of deep-sea chemosynthetic habitats by

chemosynthetic animals was promoted by ecological niche

vacancy and food scarcity. Furthermore, hydrothermal vents

or cold seeps are widespread, energetic and highly productive

ecosystems supported by chemoautotrophic microbes rather

than by the sinking of photosynthesis-based organics (Grassle,

1987; Little & Vrijenhoek, 2003; Baker et al., 2016). Nonetheless,

these extreme habitats are also characterized by hypoxic,

chemical release, and more extreme temperature gradients in

comparison with the surrounding deep-sea environments

(Hourdez & Lallier, 2007; Le Bris et al., 2017). These

conditions may have promoted the development of specialized

adaptations in the genomes of chemosynthetic species.

Hypoxic, sulfide, methane and heavy metals suffused in the

chemosynthetic ecosystem are toxic for the mitochondrial

electron transfer chain, and can inhibit aerobic metabolism

(Grieshaber & Völkel, 1998; Belyaeva et al. , 2008).

Mitogenome encode key enzymes involved in the process of

aerobic respiration. Changes in survival environments will create

selective pressures on genome to confront alternative

environmental conditions, and fix nonsynonymous mutations

as adaptive substitutions for species to cope with the new

demands. Our results show that the mitogenomes of

chemosynthetic barnacles encountered relatively high selective

pressures, especially in ancestral taxa, which were the first to

colonize chemosynthetic habitats (Figure 5, Table 2).

Remarkably, the w value of the ancestor of Clade B

(Eochione lasmus) is h igher than that of Clade A

(neolepadoids). It is possible that the MRCA of neolepadoids

was already a deep-sea dweller before it colonized deep-sea

chemosynthetic habitats (Figure 2; Linse et al., 2013; Herrera

et al., 2015). In contrast, Eochionelasmus is nested within the

shallow-water clade (Figure 2; Pérez-Losada et al., 2014),

indicating that its ancestor invaded into deep-sea

chemosynthetic habitats directly from shallow waters. This

means that the MRCA of Eochionelasmus likely encountered

more selective constrains than that of the neolepadoids. This

may also have accounted for the apparent differences in species

diversity between the two chemosynthetic barnacle lineages (i.e.,

three species vs. over 15 species). Positive selection in specific

sites of a functional protein is typically taken as evidence of an
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adaptive substitution responding to environmental changes

(Yang & Nielsen, 2002; Rausher & Huang, 2016). The branch-

site model analysis obtained a similar pattern as that from the

branch model analysis, most of the adaptive substitutions

occurred in their MRCAs of chemosynthetic barnacles

(Figure 4, Table 2). The 3D structure shows that these

adaptive substitutions are scattered throughout both a-helix
and random coil conformations, and that some sites are

located precisely in the transformation point of these two

conformations, such as 245Q of the Cytb in the neolepadoid

lineage, and 210G of the Nad4 of the Eochionelasmus lineage

(Supplementary Figure 2). Meanwhile, some amino acids

experienced radical substitutions in their physicochemical

properties. For instance, the 104th site of the neolepadoids’

Nad2 arose as a substitution of a hydrophobic and nonpolar

Valine with a hydrophilic and polar Threonine. These

substitutions would have caused dramatic changes to protein

conformation, in turn impacting their potency, just like the facts

verified by physiological and biochemical experiments (Paulus

et al., 2013; Laye et al., 2017). Interestingly, our findings also

suggest that there is no identical positive selection site shared by

neolepadoids and Eochionelasmus (Supplementary Figure 2),

which may imply that genomic response to environmental

change not only depends on external factors but also relates to

themselves (i.e., lineage-specific). Studies have shown that

diversifying selection on physiological process can reduce

intraspecific gene flow and promote population divergence,

ultimately incurring speciation (Ellegren & Sheldon, 2008;

Scott et al., 2011; Morales et al., 2015).

No studies have specifically discussed the morphological or

physiological adaptations of chemosynthetic barnacles for

surviving in extreme environments, but Yorisue et al. (2013)

showed potential strategies of larval development to settle down

in proper habitats developed by chemosynthetic barnacles. In

comparison with their deep-sea or shallow-water relatives,

chemosynthetic barnacles have a relatively larger number of

setae on the intermediate segments of the posterior three cirri

(i.e., generally more than six pairs vs. less than six pairs), and a

higher ratio of setal length to the width of the segment where the

setae are rooted (generally 2.8–14.1 vs. mostly 2.0–3.5) (primary

data summarized from Yamaguchi and Newman, 1990;

Buckeridge, 1998; Newman, 2000; Southward & Jones, 2003;

Buckeridge et al., 2013; Watanabe et al., 2021). We speculate that

these features represent morphological adaptations of

chemosynthetic barnacles, as the dense and long setae would

enhance the volume of water currents flowing into the mantle

cavity when their cirri are beating for respiration and feeding.

Buckeridge et al. (2013) have shown that the powerful

morphological plasticity of Vulcanolepas scotiaensis was

triggered by microenvironmental variation in chemosynthetic

habitats. Several chemosynthetic barnacle species, such as V.

osheai, V. buckeridgei and V. verenae, had developed

ectosymbioses with sulfur-oxidizing bacteria for feeding
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(Southward & Newman, 1998; Watanabe et al., 2021).

Furthermore, all barnacle somatotypes (e.g, sessile, stalked and

asymmetric) were developed in chemosynthetic habitats.

Together, these phenomena suggest that a subdivision of the

ecological niche may have also been conducive to the speciation

and diversification of chemosynthetic barnacles.
Conclusions

Over all, the present study demonstrates a robustly supported

tree for thoracican barnacles and outlines the evolutionary history

of main barnacle lineages. A potentially integrated speciation and

diversification mechanism, that is, one aroused by ecological

events (e.g., niche vacancy and food scarcity), then progressed

in specific responses of genome to environmental changes, and the

subdivision of ecological niches, likely shaped the emergence and

evolution of chemosynthetic barnacles. Such processes may also

have been important in shaping the evolutionary trajectory of

other modern chemosynthetic animals. Future studies involving

more representative samples, nuclear genomes, and fossil

investigations are needed to achieve a detailed understanding of

these enigmatic organisms.
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