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Periodic Lagrangian Coherent
Structures around a tidal inlet

Annalisa De Leo1, Francesco Enrile1

and Alessandro Stocchino2,3*

1Dipartimento di Ingegneria Civile, Chimica e Ambientale, Universita degli Studi di` Genova,
Genova, Italy, 2Department of Civil and Environmental Engineering, Hong Kong Polytechnic
University, Kowloon, Hong Kong SAR, China, 3State Key Laboratory on Marine Pollution, City
University of Hong Kong, Kowloon, Hong Kong SAR, China
We present an extensive experimental campaign dedicated to the identification

of coherent trajectory patterns owing to flow occurring in tidal environments,

characterized by a tidal inlet and a channel with lateral tidal flats. Single and

multiple harmonics tides are here reproduced on a large-scale physical model.

The study of the large scale macro-vortices, generated by vortex shedding

during the flood phase from the inlet barrier, is performed employing the

Lagrangian Average Vorticity Deviation (LAVD). The presence of large-scale

vortices with a complex dynamics within a tidal period suggested a deeper

understanding on the possible environmental implications in terms of transport

connections or barriers. Finite Time Lyapunov Exponents are employed in

order to recognize stable and unstable manifolds within the flow that are

defined as preferred paths along which particles are repelled (forward

integration) or attracted (backward).

KEYWORDS

tidal flows, tidal inlet, Lagrangian Coherent Structures, coastal macrovortices, water quality
1 Introduction

In environmental mixing processes, spatial inhomogeneities may occur owing to

obstacles in the flow field and changes in the geometry (Wolanski et al., 1984; Hasegawa

et al., 2004; Cenedese et al., 2005; Hasegawa et al., 2009; HE et al., 2022). The spreading of

material particles from their initial positions may be enhanced or weakened according to

the local velocity at which they are subjected. Typical tools employed for the study of

mixing processes are single and multiple particles statistics (LaCasce, 2008). However, the

great variability in space and time of the flow leads these homogeneous quantities lack of

some information, since they result from a spatial average of regions characterized by

different dynamical behaviors. As pointed out by Shadden et al. (2005), the detection of

large-scale coherent structures is still possible even despite the turbulent character of the

flow. In this way, a deeper understanding of the flow dynamics can be performed also

retaining the spatial dependence. The Lagrangian Coherent Structure theory was firstly
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introduced by Haller and Yuan (2000) with the aim to reveal of

revealing the skeleton of turbulence (Mathur et al., 2007; Haller,

2011; Haller and Beron-Vera, 2012; Haller, 2015). As underlined

by Haller (2015), classical dynamical systems theory gives

insights on Lagrangian Coherence in time independent, time

periodic and quasi-periodic velocity fields. Even with the

simplified geometry and forcing used in the present

experiments, the resulting flow fields show complex dynamical

processes at different scales.

As seen in the critical comparison paper by Hadjighasem

et al. (2017), coherent structures are able to imprint observable

paths in a variety of geophysical processes. In their work, they

studied twelve different coherent structure detection methods,

distinguishing between diagnostic and analytical methods.

FTLE-LCS approach, indeed, claims that coherent structures

in a flow represent surfaces of large separations, i.e. they act as

transport barriers, and allow for differentiating flow regions with

complex dynamical behaviors. Then, in order to analyse the flow

in a consistent mathematical way and identify the so-called

tubular material surfaces, i.e. regions characterized by high

coherence and vorticity, we calculate the Lagrangian Averaged

Vorticity Deviation (LAVD). In particular, Haller et al. (2016)

defined the LAVD-based vortices as an objective identifier and

thus independent from the observer. This last property

guarantees the frame-independence of the stretching and

rotational measures calculated from particle advection. As a

result, a direct application on non-periodic flows is

straightforward. Indeed, LCSs are able to describe the

transport mechanism among different regions of the domain

in time dependent flows. In particular, the Lagrangian approach,

which employs particle trajectories that necessarily retain the

time-dependence in the velocity field, is more effective in

identifying persistent coherent structures than the Eulerian

methods, such as the Q-criterion, swirling strength and the

Okubo-Weiss parameter r (Okubo, 1970; Hua and Kline, 1998;

Adrian et al., 2000; Liu et al., 2018). Previous works dealt with

large scale geophysical problems, employing LCSs also in terms

of water quality management. Coulliette et al. (2007), for

instance, studied the complex flow patterns in Monterey Bay

(California) inferred from high-frequency radar measurements,

in order to identify hidden dynamical structures useful for

predicting the impact of industrial releases. Through the use of

the FTLE, they reveal that the repelling LCS induces the fluid

particles to quick escape toward the open ocean, reducing the

coastal area contamination. Similarly, Olascoaga et al. (2013)

applied the LCS theory on geostrophic velocities derived from

drifter motion, finding that an attracting LCS cores persisted

resembling the “tiger tail” shape of the Deepwater Horizon oil

slick, confirming that a fluid skeleton at the mesoscale

circulation exists. Enrile et al. (2018b) employed the FTLE

with the aim to detect Lagrangian transport barriers in the

Gulf of Trieste, finding the analysis can be used as a powerful
Frontiers in Marine Science 02
tool for nowcasting applications, i.e. describe the present state of

a system. Tarshish et al. (2018), indeed, performed the analysis

for the recognition of the LCS using the LAVD, that allows for

systematic vortex identification.

As a diagnostic tool, to fully understand the role of the non-

homogeneous character of the flow, we apply Haller’s theory for

the computation of the Finite Time Lyapunov Exponents (FTLE)

fields seeking for the identification of possible LCSs.

The paper is organized as follow: Section 2.1 describes the

experimental apparatus here employed for the collection of the

Eulerian velocity field; a brief section on the Lagrangian theories

used anticipates the Results section (4). Sections 4 and 5

conclude the paper.
2 Material and methods

2.1 Experimental datasets

The experimental campaign was conducted on a physical

model in the hydraulic Laboratory of the Department of Civil,

Chemical, and Environmental Engineering at the University of

Genova, Italy. Figure 1A) shows a sketch of the overall

experimental setup. It is composed of a tidal channel, closed

on one side and connected to a rectangular basin representing

the sea on the other end. The tidal channel (23 m long) has an

overall width wch equal to 2.42 m and a symmetrical compound

cross-section (see detail in Figure 1B). The main channel of the

compound geometry has a 2.5‰ longitudinal slope and a

landward decreasing width, starting from about 70 cm at the

tidal inlet (wi), reaching about 11 cm atthe channel end.

Consequently, the two tidal flats have a varying width between

0.86 m and 1.16 m on each side. The tidal flats lie at a constant

elevation hch of 0.24 m from the bottom of the main channel.

Two thin vertical plates (lw= 0.86 m) separate the tidal flats from

the outer sea-basin. Hence, the water exchange between the

basin and the tidal channel is only allowed at the inlet cross

section. The basin has a depth equal to 0.5 m and a rectangular

section 6 m long by 2.20 m wide (wb). Contrary to the tidal

channel, the basin is characterized by a flat bottom.

The entire experimental campaign was performed

maintaining a constant mean water depth equal to 0.36 m at

the channel inlet. The estimate of the conductance coefficient C

is about 12, which corresponds to a Manning’s resistance

coefficient of about 0.0167 sm1/3.

In order to reproduce tides, regular volume waves with

variable period and amplitude were generated using an

oscillating cylinder inside a feeding tank. Wave reflections

were minimized by a dissipative sloping mound installed at

the end of the channel. A digital signal acquisition-generation

system remotely controlled the cylinder. The generated free

surface elevation (h) can be described as
frontiersin.org
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h tð Þ =o
i
aisin(wit + fi) (1)

where t is the time, ai is the amplitude, fi is the phase shift and wi =

2p/Ti the tidal angular frequency of the ith tidal component, being Ti
the tidal period. In the following, we take advantage of this general

formulation in order to distinguish between single component tides

and multiple components tides.

During a first set of experiments, the tidal channel was

forced with a series of single harmonic tides of the kind h(t) =a
sin (wt). In particular, 5 different amplitudes a for 4 tidal periods

T [editor]hashave been considered, resulting in a total of

20 experiments.

A second series of experiments, consisting of a total of 19

runs, aimed to mimic more realistic tidal waves using multiple

constituents for the tidal forcing signal. A simplified form for the

astronomical tidal free surface oscillation has been imposed as:

tð Þ = asdsin (wsdt) + adsin
wsd

2
t + f

� �
(2)

where asd and ad represent the amplitude of a semidiurnal and

diurnal component respectively, and wsd = 2p/Tsd is the angular
frequency of the semidiurnal component of period Tsd. For

simplicity, we imposed a diurnal period exactly double of the

semidiurnal one. The form factor F was used to express the

relative importance of semi-diurnal and diurnal components. It

is defined as Lee and Chang (2019):

F =
ad
asd

(3)

Specifically, the form parameter can be used to distinguish

different astronomical tides: F < 0.25, semi-diurnal tides; 0.25 < F <

1.25, mixed tides, but mainly semi-diurnal; 1.25 < F < 3.0 mixed

tides, but mainly diurnal; F > 3.0, the tide is diurnal. To represent
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real-world scenarios, we varied the form factor F in a range between

0.08 and 1.6 (see Table 1).

In addition, the phase shift f introduced in equation (2) was

varied to understand the effect of the phase lag between semi-

diurnal and diurnal constituents on the tidal wave shape. In

particular, fixing F, we imposed three values of the phase shifts,

namely 0, –p/4 and, –p/4.
Large Scale Particle Image Velocimetry (LS-PIV) (Raffel et al.,

1998) was employed to measure the two-dimensional time

dependent free surface velocity fields u(x,y,t) = [u(x,y,t) v(x,y,t)].

Following the notation of Figure 1A), we denote by x the landward

oriented longitudinal axis of the channel with the origin located in

the basin at a distance of [editor]34m from the channel inlet and by

y the lateral coordinate; u and v are the x and y velocity

components, respectively. The large dimension of the area of

interest required specific modifications to the equipment respect

to the standard PIV technique. Polyethylene particles (940 kg m-3,

mean dimension 3 mm), used as PIV tracers, were distributed

uniformly and densely on the channel surface. Lighting was

produced using eight 500W white-light halogen lamps. LS-PIV

acquisitions were recorded employing five high-resolution

GigaEthernet digital camera (Teledyne Dalsa Genie Nano C1280

and C2450). Depending on the camera model, the resolutions

varied between 2448×2048 pixels and 1280×1024 pixels. 6-mm

lens have been mounted on the cameras. Cameras were fixed on

rigid supports at an elevation of 4 m from the bottom of the

channel, pointing downwards, yielding a field of view (FoV) that

covered a large area of about 13 × 2 m. The FoV extended from

about the last 4 m of the basin to about the first 9 m of the channel

for the entire width, with cameras overlapping in the longitudinal

direction of about 20%. The LS-PIV acquisition frame rate was set

equal to 10 fps and, depending on the experimental parameters,

each camera recorded between 5000 and 13000 images, for a total of

about five tidal periods.
A

B C

FIGURE 1

Panel (A) Sketch of the experimental set up and measuring systems. Panel (B) Sketch of channel cross-section. Panel (C) Example of panoramic
view after merging process of the five camera acquisitions.
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The images from the five digital cameras were then

processed in order to obtain a single panoramic image

(Figure 1C) of the entire FoV before PIV analysis, performed

using the proVision-XSTM software (Integrated Design Tools

Inc). The spatial resolution obtained was about 0.06 m in the x-
Frontiers in Marine Science 04
direction and 0.03 m in the y-direction leading to vector velocity

fields evaluated on a grid 211×71.

The present experiments were designed applying rigorous

physical scaling laws preserverving the friction parameter as

described in Toffolon et al. (2006), c = ϵLg/(2pC2D0), where ϵ =
TABLE 1 Main experimental parameters. SC refers to the single component cases and MC to the multi components series of experiments. For the
single component experiments, 7 preliminary runs were performed with the aim to tune the PIV system whereby they are not reported in the
table.

exp. a [m] [m] T [s]

 s
in
g
le
 c
o
m
p
o
ne

nt
 s
er
ie
s 08-SC 0.0010 0.12 160

09-SC 0.0037 0.12 160

10-SC 0.0055 0.12 160

11-SC 0.0081 0.12 160

12-SC 0.0093 0.12 160

13-SC 0.0013 0.12 100

14-SC 0.0026 0.12 100

15-SC 0.0044 0.12 100

16-SC 0.0076 0.12 100

17-SC 0.0118 0.12 100

18-SC 0.0013 0.12 130

19-SC 0.0027 0.12 130

20-SC 0.0044 0.12 130

21-SC 0.0062 0.12 130

22-SC 0.0079 0.12 130

23-SC 0.002 0.12 180

24-SC 0.0039 0.12 180

25-SC 0.0055 0.12 180

26-SC 0.0076 0.12 180

27-SC 0.0091 0.12 180

exp. asd[m] ad[m] Tsd[s] j F

m
ul
ti
 c
o
m
p
o
ne

nt
s 
se

ri
es 01-MC 0.017 0.0015 100 0 0.08

series 1 02-MC 0.013 0.003 100 0 0.2

03-MC 0.013 0.0035 100 0 0.3

04-MC 0.012 0.0046 100 0 0.4

05-MC 0.0075 0.006 100 0 0.8

06-MC 0.006 0.007 100 0 1.2

07-MC 0.005 0.008 100 0 1.6

series 2 08-MC 0.013 0.003 100 −j/4 0.2

09-MC 0.013 0.0035 100 −j/4 0.3

10-MC 0.012 0.0046 100 −j/4 0.4

11-MC 0.0075 0.006 100 −j/4 0.8

12-MC 0.006 0.007 100 −j/4 1.2

13-MC 0.005 0.008 100 −j/4 1.6

series 3 14-MC 0.013 0.003 100 j/4 0.2

15-MC 0.013 0.0035 100 j/4 0.3

16-MC 0.012 0.0046 100 j/4 0.4

17-MC 0.0075 0.006 100 j/4 0.8

18-MC 0.006 0.007 100 j/4 1.2

19-MC 0.005 0.008 100 j/4 1.6
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a/D0 is the dimensionless tidal amplitude, D0 is the mean water

depth, Lg = T
ffiffiffiffiffiffiffiffi
gD0

p
is the inviscid wavelength and C is the Chézy

coefficient that represents the ratio between friction and inertia. For

details on the scaling arguments and the applicability of the results

to realistic contexts we refer to De Leo and Stocchino (2022).
2.2 Lagrangian Coherent Structures
background and identification strategy

Here we introduce Lagrangian Coherent Structures (LCS) by

means of the Finite-Time Lyapunov Exponents (FTLE). The

concept of LCS was first developed by Haller and Yuan (2000)

among others, and then further studied by Shadden et al. (2005);

Lekien et al. (2005); Haller and Beron-Vera (2012), among many

others. The time-dependence of the velocity field inferred by the

particle trajectories employed in the Lagrangian approach is

more effective in identifying persistent coherent structures than

the Eulerian methods, although the Eulerian and the Lagrangian

framework share some important links s (Enrile et al.,

2020).Moreover, LCS has the advantage that can be directly

applied to non-periodic flows, and to flows that are defined by

discrete data sets over a finite time interval (Haller, 2002).

Applying the conservation laws of continuummechanics, we

will introduce Finite Lyapunov Exponents. In order to describe

the position of a particle x of a fluid body B, we define a one-to-

one correspondence between the particles and the coordinates of

a reference system. The Lagrangian coordinates then read x =

(x1,x2,x3) and define a label for fluid particles as a material

coordinate system. At this point, it is possible to define a

continuous and differentiable transformation f, called flow

map, that allows a link between the Lagrangian and the

Eulerian coordinate system:

x = F t, t0, xð Þ : (4)

This transformation can be inverted in a point neighbourhood,

provided that Jacobian exists and does not vanish (Aris, 1962).

Note that the study of fluid flows cannot be fulfilled disregarding

the velocity fields. Indeed, velocity fields are the core of fluid

mechanics and time-dependent velocity fields are generally written

as v(x,t). The trajectories of particles are curves solutions of

dx
dt

= u x, tð Þ (5)

with initial conditions x(t0,x) = x. With the aim to evaluate

the distance that two initial close particles x0 and x0 + ϵ may

experience on a finite time interval T = (t0,t1), we can apply a

linearisation (Allshouse and Peacock, 2015) such as:

dx = F t1, t0, x0ð Þ −F t1, t0, x0 + ϵð Þ ≈ ∇F t1, t0, x0ð Þϵ (6)

where ∇F(t1,t0,x0) is the tensor flow map gradient and it is

defined as
Frontiers in Marine Science 05
∇F i
j = ∂ xi= ∂ xj (7)

We impose that an infinitesimal material element dx must not

split along its evolution and coalescence of two material

elements does not occur: this is the physical interpretation of

the condition on the Jacobian of equation (4).Moreover, the

deformation must preserve orientation, that is three right-

handed material elements dx, dy and dz satisfying dx ∧ dy
dz >0 are transformed into three material elements satisfying

dx ∧ dy · dz = ∇Fdxð Þ∧ ∇Fdyð Þ · ∇Fdð Þ
= det ∇Fð Þdx ∧ dy · dz > 0:

(8)

This second restriction implies that the Jacobian of equation 4

must satisfy:

J = det ∇Fð Þ > 0 (9)

The magnitude of the final distance can be evaluated as

(Shadden et al., 2005):

dx t1ð Þj j = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx t1ð Þ · dx t1ð Þp

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇Fdx t0ð Þ½ � · ∇Fdymbolx½ � t0ð Þp

=  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx t0ð Þ · Cdx t0ð Þ½ �p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ · Cϵð Þp

 

(10)

where C is the Cauchy-Green tensor evaluated as

C = (∇F)T ∇F (11)

where (•)
T

denotes the transpose. It is possible to prove that

matrix C is positive definite and symmetric. Since we analyse 2D

velocity fields, C has two eigenvectors e1 and e2 associated with

two eigenvalues0 < l1 ≤ l2, respectively. This means that two

main directions can be recognized, tangent to the eigenvectors

associated with the maximum and minimum eigenvalues and

called unstable and stable directions respectively, and in

particular the magnitude of a concentration gradient will

decay in time along the unstable direction (Thiffeault and

Boozer, 2001). In particular, let us consider for example a

saddle point p within an initial tracer distribution D(t0), with

its unstable manifold Wu intersecting the boundary of D(t0) at a

nonzero angle. The material will be transported exponentially

fast by the flow map along this unstable manifold, leading to a

fingering-type instability (Olascoaga and Haller, 2012). The

unstable manifold is thus a stretching line. When dx(t0) is

aligned with the eigenvector associated to the maximum

eigenvalue of C, the maximum stretching occurs:

max dx t1ð Þj j = es
t1
t0

tj j �ϵj j (12)

where

s t1
t0 =

1
tj j log

ffiffiffiffiffi
l2

p
=

1
2 tj j log l2 (13)

represents the (maximum) Finite-Time Lyapunov Exponent

(FTLE) calculated on a finite integration time t and �ϵ is the
frontiersin.org
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initial perturbation aligned with the eigenvector associated with

the maximum eigenvalue of C. Note that a coordinate

transformation does not produce any changes in FTLE

calculation: for this reason FTLE are considered objective

quantities. Computing s in forward time (t» t0), repelling

manifolds at t0 are recognized to be the local maxima (i.e.

ridges) of the s t1
t0 and, similarly, the attracting ones correspond

to ridges in the s t1
t0 , calculated in backward time (t« t0).

(Shadden et al . , 2005; Haller and Beron-Vera,

2012).describe and quantify the material transport, and

forecast large-scale flow features and mixing processes (Haller,

2015). Following the definition of Mathur et al. (2007), a ridge in

FTLE field, that behaves as an attractor, is the solution of

dx0
ds

= ∇s t1
t0 x0ð Þ (14)

with s the arclength along the gradient lines. As pointed out by

[46], LCS ridges are FTLE’s gradient lines transversal to the

minimum curvature direction, across which the flux is usually

negligible (even if non zero) and hence they act as transport

barriers. Haller (2011) improved the above definition stating

that, in order to be recognized as a LCS, two key properties must

be respected: FTLE should be a material surface [as already said

by Shadden et al. (2005)] and should exhibit locally the strongest

attraction, repulsion, and shearing in the flow. This latter aspect

is linked with the hyperbolicity criterion: it enables to observe

LCS as cores of Lagrangian patterns. In particular, finding the

local maxima in FTLE does not identify LCS, indeed it has been

found out by Lekien et al. (2005) and Tang et al. (2010) that

FTLE in real-data sets could also not attract or repel nearby

trajectories. Thus, four condition must hold in order for an FTLE

to be a LCS ridges:
Fron
• l2 of s
t1
t0 must be larger that one with one-multiplicity,

l1 ≠ l2 > 1;

• FTLE ridge has to be normal to the eigenvector of l2, e2
(x0), field;

• the gradient of l2 in directions parallel to e2(x0) must be

small 〈 ∇l2(x0,t0,T),e2(x0) 〉=0;
• FTLE must be steep, i.e. the Hessian of the Cauchy-

Green tensor evaluated on the strongest strain

eigenvector field is positive, ∇2C−1(x0)>0.
2.3 Lagrangian-averaged vorticity
deviation (LAVD)

A peculiar type of LCS are Elliptic LCS, closed and nested

material surfaces that act as building blocks of the Lagrangian

equivalents of vortices, i.e., rotation-dominated regions of

trajectories that generally traverse the domain without

substantial stretching or folding. Geodesic vortex detection
tiers in Marine Science 06
Haller and Beron-Vera (2012) seeks time t0 positions of

Lagrangian vortex boundaries as outermost closed stationary

curves of a specific material-line-averaged tangential stretching

functional. A computationally easier approach to Elliptic LCSs

consists in obtaining a well-defined bulk rotation for each

material element by employing the unique left and right polar

decompositions of the flow gradient. The former approach

(geodesic) ismore stringent than the latter. Both capture the

same Lagrangian vortex regions but the former yields tighter

vortex boundaries (Hadjighasem et al., 2017).

Polar decomposition is here adopted in order to overcome

issues related to non-objectivity and dynamical inconsistency.

We refer to Dynamic Polar Decomposition (DPD) in the form

(Haller, 2016):

∇F t1, t0, xð Þ = O t1, t0, xð ÞM t1, t0, xð Þ

= N t1, t0, xð ÞO t1, t0, xð Þ (15)

where the proper orthogonal tensor O is the dynamic rotation

tensor and the non-singular tensors M and N are the right

dynamic stretch tensor and left dynamic stretch tensor,

respectively. Just as the classic polar decomposition, the DPD

is valid in any finite dimension. We write the velocity gradient

∇u as

∇ u x, tð Þ = D x, tð Þ +W x, tð Þ (16)

whereD is the rate-of-strain tensor andW is the spin tensor. The

proper orthogonal dynamic rotation tensor O=∇a0a(t) is the

deformation gradient of the purely rotational flow

_a = Wa (17)

and the non-degenerate right dynamic stretch tensor M=∇b0b(t)

is the deformation gradient of the purely straining flow

_b = O t0, t1, xð ÞDO t1, t0, xð Þb (18)

The dynamic rotation tensor O can further be factorized into

two deformation gradients related to rigid-body rotation and to

deviations from uniform rotation, respectively. As a result

O t1, t0, xð Þ = W t1, t0, xð Þz t1, t0, xð Þ (19)

where the proper orthogonal relative rotation tensor W(t1,

t0,x)=∇a0
a(t) serves as the deformation gradient of the relative

rotation flow

_a = W − �Wð Þa (20)

where�· denotes a spatial mean over a time-dependent spatial

domain. On the contrary, the proper orthogonal mean-rotation

tensor z=∇b0
b is the deformation gradient of the mean-rotation

flow

_b = W t0, t1, xð Þ �WW t1, t0, xð Þb : (21)

W(t1,t0,x) is dynamically consistent and the total angle swept by
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this tensor around its own axis of rotation y(t1,t0,x0) satisfies

y t1, t0, x0ð Þ = y t1, s, x0ð Þ + y s, t0, x0ð Þ (22)

The intrinsic rotation angle y(t1,t0,x0) is also objective, and is

equal to half of the Lagrangian-averaged vorticity deviation

(LAVD) defined as (Haller et al., 2016)

LAVD t1, t0, x0ð Þ =
Z t1

t0
w x s, x0ð Þ, sð Þ − �wj jds, (23)

where w is the local vorticity and �w is the spatial mean of

vorticity defined as

�w =

Z
U tð Þ

w x, tð ÞdV
vol U tð Þð Þ (24)

U(t) is the time-dependent spatial domain and vol(·) denotes the

volume for three-dimensional flows or the area for two

dimensional flows.
3 Results

This Section is devoted to present the result of the research.

The main focus is related to the Lagrangian interpretation of the
Frontiers in Marine Science 07
dynamics of the flow according to the theoretical background

introduced in Section 2.2.

Firstly, the general flow pattern is presented through FTLE

maps. This representation gains major insights by looking

specifically at lobe dynamics, shear structures and the classical

attracting and repelling barriers. Subsequently, vortex

interaction is studied directly by applying LAVD.
3.1 The periodical flows around the tidal
inlet

Firstly, a general study of FTLE distribution is carried out in

agreement with Huhn et al. (2012) and Tang and Boozer (1996).

Figure 2 shows the probability distribution function of FTLE

fields. At the increasing of t, pdfs tend to narrow. Similarly, mean,

standard deviation and skewness tend to decrease, as shown on

Panels b) and c). For large times the pdf converges to its

asymptotic form (Abraham and Bowen, 2002; Huhn et al.,

2012), which in the case of a delta function denotes a uniform

FTLE field without any spatial information and a vanishing

variance. This limit in the present case is only hypothetical.

However, pdfs behave as expected by the theory. Meaningful

LCSs can thus be obtained adopting a value of t for which pdf’s
B

C

A

FIGURE 2

Experiment 24. Panel (A) The probability distribution of the Finite-Time Lyapunov Exponents. Panel (B) Mean value µs and standard deviation ss
of FTLE as function of the integration time. Panel (C) skewness parameter of the probability distribution as function of the integration time.
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mean and standard deviation start to superimpose one over each

other. In correspondence of approximately 100 s these quantities

start to converge: there exists a change in the slope of these curves,

pointing out the characteristic integration time that allows for the

emerging of the most prominent LCSs (Enrile et al., 2018b).

Figures 3A–D), show forward FTLE computed for increasing

tidal period T, i.e. for experiments 24-SC, 09-SC, 19-SC and 14-

SC. The integration time t is kept constant and equal to 100 s. It is
worth noting the general features that characterize the flow: the

generation of two opposite vortices on the tidal floodplains behind

the walls, the presence of quasi-rectilinear structures along the
Frontiers in Marine Science 08
tidal channel which appear approximately at the inlet and a

barrier that surrounds the inlet in the tidal bay. In the

Supplementary material, a movie showing the evolution of the

Eulerian flow fields of experiment 24SC has been provided. The

generation of the flood macrovortices is clearly visible as well as

their disruption during the ebb phase. In analogy, Figure 4 shows

the previous features on backward calculations. The quasi-

rectilinear structures along the inlet and the barriers enclosing

part of the tidal bay are still present. The vortices are represented

as two opposite mushroom-shaped structures (Peng and Dabiri,

2009) on the floodplains that periodically appear and fade out,
A

B

D

C

FIGURE 3

FTLE fields in forward integration of the maximum flood phase. Results are shown maintaining the amplitude of the tide and changing the tidal
period. Experiments panel (A) 24, (B) 09, (C) 19 and (D) 14.
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depending on the flow direction. Both Figures 3, 4 show the

increasing of structure-length from Panel a) to Panel d), i.e. at the

decreasing of the tidal period, at the maximum flood phase (in

Supplementary material, the ebb phase is provided). This justifies

the greater flux through the inlet at the decreasing of T with an

enhanced entrainment. In particular, for a fixed value of the tidal

amplitude, if the period decreases, an increasing velocity intensity

occurs. Experiments 24-SC, 09-SC, 19-SC and 14-SC have a tidal

period equal to 180 s, 160 s, 130 s and 100 s, respectively. When

the integration time t tends to equal the tidal period T, the

interpretation of FTLE fields is harder since particles tend to
Frontiers in Marine Science 09
complete a tidal cycle in the integration time-interval. This results

in a break-up of symmetry since, in a tidal cycle, vortices in the

floodplains are generated and fade similarly to the barriers that

arise in the tidal bay.

Superposition of forward and backward structures is

fundamental in order to understand the mutual interaction.

Figure 5 shows LCSs of experiment 24-SC calculated in

agreement with Mathur et al. (2007). The peculiar presence of

superimposed forward and backward structures guaranties leads

to the birth of shear LCSs (Beron-Vera et al., 2010; Enrile et al.,

2018a; Enrile et al., 2018b).
A

B

D

C

FIGURE 4

FTLE fields in backward integration of the maximum flood phase. Results are shown maintaining the amplitude of the tide and changing the tidal
period. Experiments panel (A) 24, (B) 09, (C) 19 and (D) 14.
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Shear and Shearless LCSs have a peculiar behavior among

the LCS family. The former maximizes shear whereas the latter

marks absence of it. Shearless LCSs can be identified as trenches,

i.e. minima, of FTLE fields that superimpose on forward and

backward computations. For example, Enrile et al. (2018a) and

Beron-Vera et al. (2010) identify shearless LCSs in this manner.

On the contrary, shear LCSs can be detected as forward and

backward ridges of FTLE fields that superimpose one over each

other. Enrile et al. (2018a) find both shear and shearless

structures following this approach. Sanderson (2014) finds

shearing material lines, such as the boundaries of a riverbed in

a 3D model of the New River Inlet, Onslow, North Carolina

Figures 5A, B show ebb and flood phases, respectively. The

zoomed regions in Panels a1) and b1) magnify the inlet where

quasi-rectilinear structures are superimposed. A shear

dominated area arises where normal attraction and repulsion

are no more the key features of the flow. Ridges of forward and

backward FTLE fields superimposed one over each other are

here identified. Interpretation of FTLE ridges here should be

careful since the usual pattern consisting in attracting and

repelling barriers could be enriched by shear structures.

Indeed, particle paths are normal to the entrance and aligned

with LCSs. Dashed ovals in A1, B1 show shear LCSs whereas

solid ovals identifies typical attracting and repelling structures,

which tend to intersect at right angles. Forward structures tend

to mark barriers beyond which particle advection is inhibited.
Frontiers in Marine Science 10
On the contrary, backward structures show lines of

accumulation, where mass transfer is enhanced. Forward

structures tend to mark separation lines along which particles

are repelled to each other. On the contrary, backward structures

show lines of accumulation, along which particles tend to be

collected, without transfer of mass. Attracting structures mark

preferential lines along which transport is likely to develop. It

worth noting that changing the tidal period the size of the

structures increase, as already pointed out. However, the

particle-accumulation areas and the barrier behaviors are

consistent for all experiments taken into account.
3.2 Vortex dynamics

Vortex dynamics is usually carried out from an Eulerian

reference of frame (Okubo, 1970; Hua and Kline, 1998; Liu et al.,

2018; Adrian et al., 2000). However, the Lagrangian point of

view allows for a deeper insight in terms of mass transport. A

very interesting approach relies on the use of Lagrangian

Averaged Vorticity Deviation. LAVD is computed over a

finite-time interval and its evolution should be studied upon

such a time frame by the advection of closed contours of LAVD

fields. However, a FTLE-like approach is here devised in order to

highlight vortex shedding from solid edges, evolution and

eventual fading of vortex formations. Figure 6 shows
A

B

A1

B1

FIGURE 5

Ridges in superposition of forward (red) and backward (blue) integration of FTLE field: Experiment 24. Panel (A) ebb phase; panel a1) focus of
shear (dashed oval) and barrier (solid oval) structures. Panel (B) flood phase; panel b1) focus of shear (dashed oval) and barrier (solid oval)
structures.
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subsequent LAVD fields from flood [(Panels a) to d)] to ebb

[(Panels e) to f)]. The several time-instances are reported on the

top Panel where the plot velocity vs. time is depicted in non-

dimensional form. In particular, in Panel 1) the time evolution of
Frontiers in Marine Science 11
the normalized velocity is shown within the point marked in

blue in Panel a). The red dots in Panel 1) depict the different

Panels in Figure 6. The detachment of the boundary layer at the

solid edge of the inlet is very well captured in Panels a) and b).
F

A B

D

E

C

FIGURE 6

Panel 1) Non dimensional horizontal velocity u/umax as a function of the ratio between time and tidal period. The time signal is extracted at a
coordinate x = 4 m and y = 0 m, marked by a blue dot in panel (A). Red dots correspond to panel names below. Panels (A–F) Contours of LAVD
at different times. In particular panels (A–D) correspond to flood phase and panels (E, F) to ebb phase. Note that domain reported is restricted
to the region around the inlet. Data from experiment 24.
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The vortex shedding appears well marked in Panel c), whereas in

Panel d) only the core vortices appear, with no vortex shedding

phenomenon highlighted. Panels e) and f) show the destruction

of the two counter-rotating vortices due to the ebb phase. This

approach shows LAVD fields calculated over different, even if

adjacent, time intervals, thus not belonging to the same time-

domain. Despite being formally not consistent with a rigorous

dynamical approach (Farazmand and Haller, 2013), this

approach is straightforward in highlighting vortex formation,

interaction and fading and the possible error is negligible thanks

to the controlled laboratory conditions.

A particular insight on vortex interaction is presented in

Figure 7A, B show a dynamically consistent approach where

LAVD contours and LAVD fields are advected on the time-

interval of calculation. The integration time here is chosen to be

equal to 15 s, which is characteristic period of the emission of

vortices from the solid boundaries. Vortices are born from the

solid edge and advected to the floodplains where they interact,

tend to group and finally coalesce.

A quantity commonly employed for describing the vortex

shedding mechanism is the Strouhal number, defined as:

St =
fL
U

(25)

where f is the typical frequency of vortex shedding, L and U are

typical length and velocity scale, respectively. However, in

previous studies on tidal flows the frequency f has been

introduced as the inverse of the dominant tidal period d

(Wells and van Heijst, 2003; Nicolau del Roure et al., 2009;

Vouriot et al., 2019). In the present case, the length scale is the

inlet barrier dimension li andthe velocity scale is the peak

velocity at the inlet. Using the values for the different

experiments, the Strouhal number ranges between 0.05 and

0.2, which implies an emission of about 10 vortices per tidal

period. Thus, the integration time for the LAVD was

chosen accordingly.

A similar phenomenon was already captured by Haller et al.

(2016), however on satellite measures. Here, PIV instrumentation

is employed in order to detect LCSs and vortices on a laboratory

scale. It is worth mentioning that the LAVD field is also advected

with the vortices showing a strong coherence demonstrated by the

preservation of rotational coherence inside the material

boundaries of the vortices. Panel b) of Figure 7 shows a strong

filamentation, too. This filamentation is due to major tangential

velocity that stretch the vortex boundary without a global

breakaway of material.
4 Discussion

A comprehensive study of vortex shedding and interaction is

here carried out from a laboratory experimental campaign. The

interplay between a tidal flow and a barrier island inlet is studied
Frontiers in Marine Science 12
applying Lagrangian Coherent Structures (LCSs). In particular,

the research adopted a heuristic diagnostic, i.e. Finite-Time

Lyapunov Exponent (FTLE), and Lagrangian-Averaged

Vorticity Deviation (LAVD). LAVD is employed in order to

study vortex detachment from the solid boundaries of the tidal

inlet and their subsequent interaction.

An extensive literature is available where FTLEs and LCSs

are applied to geophysical flows (Lekien et al., 2005; Haller,

2015): their ability to characterize the main features of the flow is

indeed guaranteed has been several time proved in the literature

and a significant degree of confidence relies on LCSs nowadays.

Forward and backward structures in Figures 3, 4, respectively,

are able to recognize repelling, attracting, shear and vortex LCSs.

The peculiarity of this flow consists in the generation, growth

and eventual dissipation of all these features in a periodic

manner. (Lekien et al., 2005; Haller, 2015): studied the dipole

formation caused by the interaction of a tidal flow in a physical

model. In particular, they studied two bays connected by a

narrow channel arguing that when fluid flows out of the inlet,

the no-slip condition leads to the growth of viscous boundary

layers, which contain strong vorticity compared to the ambient

fluid. At the sharp corner, the flow separates and the detached

sheet of strong vorticity curls in order to create a vortex. Two

such vortices are created at the opposite sides of the channel

mouth, which may couple together and form a dipole. The

present laboratory settings differs from the one of [56] since the

tidal mouth links a bay with a compound channel and moreover

the connection between the two is made by a thin wall (recalling

a barrier island geometry) instead of a finite length channel. In

riverine compound channels, LCSs are generated by a shear

instability mechanism (Soldini et al., 2004; 357 van Prooijen and

Uijttewaal, 2002; van Prooijen et al., 2005; Enrile et al., 2018a) at

the transition from the main channel to the floodplains and it is

maintained by the river slope. Here, LCSs are generated by the

tidal flow which interacts with the inlet mouth. In this

geophysical application, a 2D vortex dipole is generated owing

to a mechanism which heuristically conforms to the 3D

formation of vortex rings. Krieg and Mohseni (2021) 361

studied vortex rings formation through a nozzle in which the

3D vortex is generated by a jet that carries a shear tube which

extends in the ambient fluid. At a critical velocity, the shear tube

becomes unstable and the vortex ring drives the shear layer to

the axis of symmetry. As a result, the shear layer breaks and a

complete pinch-off of the vortex ring is obtained. This

representation of vortex rings generation is axisymmetric and

a 2D section of this 3D phenomenon well represents the

application in this research. In Panel a) of Figure 7 four small

scales vortices can be recognized and in Panel b) the high LAVD

signal (associated to strong vorticity) shows the path followed by

the detached vortices. This path is associated with shear

instability due to a meandering pattern characteristic of a

complete vortex pinch-off. This analogy is cast in order to

introduce a physical mechanism of vortex formation in
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geophysical contexts. The description carried out by Wells and

van Heijst (2004); Nicolau del Roure et al. (2009) must therefore

be enhanced by the presence of shear LCSs here detected. Their

instability determines the migration of the vortices in the

floodplains. These vortices then tend to occupy the total depth

of the channel generating vortex macro structures that persist

until the ebb phase. In our experiments, none of the vortices

generated during the flood phase endure in the channel and they

are always flushed away at the inversion of the tide.

At the inversion of the flow from ebb to flood phase, the

shear LCSs are generated in the channel and during the flood

phase vortices are emitted from the corners of the solid

boundaries. These vortices propagate towards the floodplains

and eventually fade with the subsequent inversion of the flow

(from flood to ebb). Attracting and repelling structures can be

detected as the main boundaries for particles moving around the
Frontiers in Marine Science 13
inlet domain. Mixing and advection is enhanced inside the

boundaries of these LCS.

Figure 8 shows particle paths and FTLEs together. Backward

manifolds (Figure 8A, B, E, F) detect attracting structures along

which particles tend to accumulate, whereas the forward

manifolds (Figure 8C, D, G, H) correspond to flow barriers. In

particular, the left column shows the initial position of a set of

particles in two different configurations (A, C, E, G)

superimposed to the FTLE fields in backward (white lines on

black background) and forward (black lines on white

background) integration. Their evolution in time after a single

tidal period is then shown on the right hand column (B, D, F H).

Note that the complete trajectory has been highlighted just for a

couple of particles for clarity sake. The time evolution of the two

deployments over an entire tidal cycle can be found in the

movies in the Supplementary Material. Inspecting carefully,
FIGURE 7

Panel (A) initial time of particle releasing 1 on backward FTLE field; panel (B) final time. Panel (C) initial time of particle releasing 1 on forward
FTLE field; panel (D) final time. Panel (E) initial time of particle releasing 2 on backward FTLE field; panel (F) final time. Panel (G) initial time of
particle releasing 2 on forward FTLE field; panel (H) final time.
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particles tend to align with attracting structures and being

repelled by the repelling ones, but the real mechanism is

indeed more complicate. The boundary which repelling LCSs

form is well characterized in panels D, H) where the particles

cannot cross the LCS that enclose the inlet. On the contrary,

panels B, F show the accumulation of particles on attracting LCS.

The transition from the channel (right part) to the tidal bay (left

part) occurs along the shear LCSs which are generated along the

inlet. In Figure 5, the superposition between forward and

backward FTLE fields is shown. Regions in which the two

manifolds appear aligned highlight shear structures whereas

the intersection between the two recognize saddle point and

thus transport barrier (Mathur et al., 2007). Note that this

pattern of LCS is repeatedly generated and destructed at every

tidal period. The concurrent presence of shear and barriers

determine that particles may be trapped between different

manifolds, driving them far from each other ending up in

different parts of the domain. This pattern is represented

through a sketch. Figure 9 shows forward and backward

structures in red and blue, respectively. Their intersection is

labeled as a time-dependent saddle point. This representation

aims to summarize the mutual interaction between repelling and

attraction structures and the presence of shear in the inlet. The

external borders of these structures tend to expand and shrink in

size alternatively in time in agreement with the tidal signal.

Multi component tides were considered in the experimental

campaign. Figures of the FTLE fields in forward and backward

integration are reported in the Supplementary Materials. From

the synthetic signals, see Figure S3, it is possible to appreciate

three different compositions of the two tidal components

(exp05MC, exp11MC and exp17MC), that result in different

flood and ebb tidal excursions. From the FTLE fields it is possible

to see that the intrusion of the LCS is larger after most intense

flood phases, disregarding the water level reached. The same
Frontiers in Marine Science 14
effect occurs in the ebb cases, not shown for sake of brevity.

However, the features underlined by the multi-component

experiments do not differ as far as the LCSs pattern is

concerned. It is possible that different experimental conditions

could lead to a series of multiple jets in the flood phase. For

example, spring and neap tides could generate a flow pattern

richer in features and structures. Such experimental conditions

could be pursued in another experimental campaign.

(Lekien et al., 2005; Beron-Vera et al., 2008; Gough

et al., 2016).

Moreover, the different dynamical characteristics of the flow

domain, strain or vorticity dominated, are linked to the energy

and enstrophy fluxes as observed in De Leo and Stocchino

(2022). Indeed, the major outcome of the study was the

transitional character of the energy/enstrophy cascades during

a single tidal period and this aspect was linked to the presence of

vorticity or strain dominated flow structures, in accordance with

previous studies (Chen et al., 2003; Chen et al., 2006).
5 Conclusion

Generation, accretion and fading of coherent structures and

vortices in fluid flows have always been a very lively scientific

research topic (Hussain, 1983; Ottino, 1989; Colagrossi et al.,

2021). Since Okubo (1970), researchers laid much of their efforts

in detecting vortices applying Eulerian approaches. However, a

Lagrangian approach (Haller, 2015) is the most viable way of

visualizing coherent structures in unsteady flows. The

Lagrangian-approach strength stems out from its foundations:

the analysis of particles paths.

This research focuses on a laboratory-scale tidal flow

generated through the periodic oscillation of the water level,

mimicking tidal waves, across a barrier island inlet that links a
FIGURE 8

Sketch of forward and backward structures in red and blue, respectively. Their concurrent presence in the inlet generates shear LCSs. Their
length and size tend to increase and shrink recursively in time in agreement with the tidal signal.
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bay and a tidal compound channel. Among the multiple

Lagrangian diagnostics at our disposal (Hadjighasem et al.,

2017), the finite-time Lyapunov exponent (FTLE) (Shadden

et al., 2005) and the Lagrangian averaged vorticity deviation

(LAVD) are here adopted. The former is chosen thanks to its

very versatile characteristics: repelling, attracting and shear

structures can be easily detected in forward and backward

integrations. The latter presents an intrinsic ability to define

vortex boundaries (Haller et al., 2016).

FTLEs here manage to detect a wealth of structures, as

depicted in Figures 3, 4, whom most struggling ones are shear

structures at the inlet and mushroom-like structures on the

floodplains of compound channel behind the walls. Structures

calculated in forward and backward time that mainly

superimpose one over each other are shear structures. This

case occurs at the inlet where quasi-linear barriers are detected

at the center of the main channel. Tidal currents that periodically
Frontiers in Marine Science 15
flow through the inlet generate these structures. The detachment

of boundary layer from the solid edge of the walls and the

concurrent instability of the shear structures which protrude

toward the compound channel determine the complete

occurrence of two symmetric vortices on both floodplains.

LAVD manages to capture vortex interactions on the

floodplains as shown in Figure 7. Their mutual interaction is

depicted as vortices are advected in forward time. Moreover, high-

LAVD signal meanders as it outdistances the inlet walls. This

behavior is a consequence of the shear LCS instability mechanism

(Krieg and Mohseni, 2021). Previous studies characterized the

behavior of tidal vortices (Wells and van Heijst, 2004), even if in a

slightly different geometry. However, this is the first time that

shear structures and LAVD are computed from a laboratory

experiment on a tidal flow, at least at the author’s knowledge.

This work manages to clarify the role played by LCSs in the

generation of these tidal vortices, enhancing the scientific
FIGURE 9

Vortex interaction identified through LAVD. Panel (A) shows LAVD computed in flood phase with vortices identified with closed contour. Panel
(B) shows advection of LAVD alongside with the particles that constitute the vortex boundary. Typical filamentation in vortex advection is visible.
However, vorticity coherence is maintained inside vortex boundaries. A trail of strong vorticity is depicted in Panel (B), too. Detachment of
boundary layer with vortex formation is clearly visible together with the most probable path followed.
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knowledge on the subject. In addition, the general behavior of

numerical particle paths is studied, both in the tidal bay and in the

compound channel. FTLE ridges influence the crossing of the inlet

by the particles and define the maximum distance particles can

travel on both areas by assessing the extension of attracting LCSs

evaluated as backward FTLE ridges.

The analysis described in the present study shed light on the

complex interaction of tidal current and geometrical features

(e.g. tidal inlet) very often present in natural estuarine and

coastal environments. The generation of LCSs might play a

fundamental role in the exchange of water masses between the

open sea and the tidal channels, possibly increasing the residence

time of mass parcels (water, nutrients and pollutants) around the

tidal inlet by creating dynamical separations in the flow domain.

Thus, this study could have a direct impact on real-world

applications related to water quality and sediment transport.

As seen in different contributions LCSs are recognized to be

useful tools in the recognition of transport barrier r (Lekien et al.,

2005; Beron-Vera et al., 2008; Gough et al., 2016). Mixing could

be enhanced or prevented by the presence of these structures and

vortices. Concentration of pollutant could therefore vary

depending on their presence. In addition, sediment transport

at the bottom could be altered with possible localized erosion or

accumulation areas nearby the inlet.
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