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Typhoons threaten individuals’ lives and property. The accurate prediction of

typhoon activity is crucial for reducing those threats and for risk assessment.

Satellite images are widely used in typhoon research because of their wide

coverage, timeliness, and relatively convenient acquisition. They are also

important data sources for typhoon cloud image prediction. Studies on

typhoon cloud image prediction have rarely used multi-scale features, which

cause significant information loss and lead to fuzzy predictions with insufficient

detail. Therefore, we developed an enhanced multi-scale deep neural network

(EMSN) to predict a 3-hour-advance typhoon cloud image, which has two

parts: a feature enhancement module and a feature encode-decode module.

The inputs of the EMSN were eight consecutive images, and a feature

enhancement module was applied to extract features from the historical

inputs. To consider that the images of different time steps had different

contributions to the output result, we used channel attention in this module

to enhance important features. Because of the spatially correlated and spatially

heterogeneous information at different scales, the feature encode-decode

module used ConvLSTMs to capture spatiotemporal features at different scales.

In addition, to reduce information loss during downsampling, skip connections

were implemented to maintain more low-level information. To verify the

effectiveness and applicability of our proposed EMSN, we compared various

algorithms and explored the strengths and limitations of the model. The

experimental results demonstrated that the EMSN efficiently and accurately

predicted typhoon cloud images with higher quality than in the literature.

KEYWORDS
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1 Introduction

Typhoons are synoptic-scale storms that originate in the

tropical oceans. They absorb large amounts of water vapor from

warm tropical oceans that condense at high altitudes and form a

low-pressure center (Anduaga, 2019). As the pressure changes and

the earth moves, the incoming air swirls, resulting in a tropical

cyclone that can eventually evolve into a typhoon if the sea

temperature is sufficiently high. Typhoons are one of the most

destructive weather events in coastal areas (Defu et al., 2009) and

can cause direct disasters, such as gales, rainstorms, and storm

surges, as well as secondary disasters, such as floods, landslides, and

mudslides, all of which seriously threaten the safety of individuals

and property (Zhang and Chen, 2019; Yu et al., 2020; Jia et al.,

2020). During 1970–2010, there were 637 landfalling typhoons

worldwide, 195 of which reached major intensity (Weinkle et al.,

2012). The average number of typhoons in individual countries is

46 per year, and many typhoons affect multiple countries (Shultz

et al., 2005). In addition, the intensity of typhoons is likely to

increase (Hoque et al., 2017). Therefore, typhoon research is

essential to reducing the damage from typhoon disasters. In

addition to developing and establishing typhoon engineering

works and reinforcing defenses, accurately predicting typhoon

activity is the most fundamental measure.

Typhoons are large-scale meteorological systems that

require the observation of vast geographical areas. They also

demand real-time responsiveness to minimize damage. Based on

these considerations, satellite data are highly suitable for

typhoon research owing to their wide coverage, timeliness, and

relatively convenient acquisition. Satellite-based techniques have

been an effective means of typhoon research because the

movement and density of typhoons can be determined based

on cloud patterns. Specifically, the outer bands of cumulonimbus

clouds indicate the direction of movement, and the cloud pattern

surrounding the typhoon eye reflects the location and intensity

of the typhoon (Kovordányi and Chandan, 2009) .

Meteorologists use satellite images to analyze and predict

various aspects of typhoons. Zhang et al. (2005) located

typhoons using a rotational location method by finding feature

points. Jaiswal et al. (Neeru and Kishtawal, 2010) used the helix

fitting method to determine typhoon centers based on the special

structure of mature typhoons. In addition to traditional

morphological methods, deep learning technologies have been

used for typhoon detection and location. Wang et al. (Wang

et al., 2021) detected typhoon centers using a fast R-CNN.

Because typhoons can be located using satellite images,

typhoon tracks can also be calculated using imaging

sequences. Hong et al. (2017) predicted the typhoon position

from a single satellite image and then calculated the typhoon

track based on subsequent consecutive images. Thus, future

typhoon behavior can be predicted using continuous

satellite images.
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With the development of artificial intelligence, image

prediction technology has significantly improved. For example,

convolutional neural networks are a widely used deep learning

method for extracting spatial features and are extensively used in

image research (Khan et al., 2020). Sequence-learning problems

are often solved using recurrent neural networks (RNNs)

(Salehinejad et al., 2017). Based on RNNs, Ranzato et al.

(2014) presented a recurrent convolutional neural network

architecture that connects convolutional layers at the

beginning and end of an RNN. Shi et al. (Xingjian et al., 2015)

proposed a convolutional LSTM (ConvLSTM) architecture and

combined convolutional and recurrent layers to extract dynamic

temporal and spatial information. They later proposed a new

model, trajectory GRU (TrajGRU), which dynamically learns the

location-variant structure of recurrent connections (Shi et al.,

2017). Based on ConvLSTM, Wang et al. (2017) proposed a new

structure called spatiotemporal LSTM (ST-LSTM), in which

spa t i a l and tempora l in format ion can be s tored

simultaneously. Autoencoders (Tschannen et al., 2018) and

generative adversarial networks (GANs) (Zhaoqing et al.,

2019) are also widely used for image and video prediction.

However, because of the absence of high-quality processed

satellite datasets and the complex evolution of satellite images

(Moskolaï et al., 2021), predicting satellite data remains difficult,

and simply applying the image prediction models to this

problem cannot yield satisfactory results.

For example, Xu et al. (2019) combined WGAN and LSTM

to predict satellite images, but their evaluation method only

evaluates the shape of clouds, not their density. Hong et al.

suggested an autoencoder model that uses convolutional and

ConvLSTM layers to extract features and generate future satellite

images. Their study also explored the application of LSTM and

ConvLSTM in the model and found that the former was

unsuitable for feature extraction from images, which also

called into question the efficacy of the model of (Xu et al.,

2019) in overcoming the satellite image prediction problem.

However, the spatial resolution of the satellite data used in their

research was too low to observe clouds. Lee et al. (2019) referred

to (Hong et al., 2017b) and proposed an advanced model with

better image prediction than those in (Xu et al., 2019) and (Hong

et al., 2017b), but it was insufficient. Typhoon research involves

large-scale problems that require downsampling operations to

mitigate calculation costs. However, repeated downsampling of

data results in the loss of detail and the production of poor-

quality predicted images. Notably, satellite image prediction

models rarely consider this factor.

To solve this problem, we constructed an enhanced multi-scale

deep neural network (EMSN) with a feature enhancement method

and a multi-scale feature fusion strategy to discover the

relationships between historical and future images and predict

clearer typhoon cloud images than in the literature. Through the

channel attention mechanism, the network extract features from
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the input images and focuses on important features. Next, the

encode-decode module captures the spatiotemporal relationships

of the enhanced features at different scales. Additionally, to further

improve the quality of the predicted images, we used skip

connections between the encoder and decoder to account for

information loss caused by downsampling.

A summary of the contributions of this study is as follows:
Fron
(1) Input images from different time steps have different

contributions to the model. Hence, we designed a feature

enhancement module that uses a channel attention

module to extract useful characteristics to enhance

important features and suppress useless features.

(2) To consider the variability of typhoon motion and the

complexity of feature maps, we designed a symmetrical

encode-decode module to capture spatiotemporal rules.

A multi-scale feature fusion strategy was implemented

to reduce information loss during downsampling and

fully use the features of different scales.

(3) Based on the steps, we propose a novel EMSN to predict

typhoon cloud images. Extensive experiments based on

the Himawari 8 dataset demonstrate the effectiveness of

the proposed model.
The remainder of this paper is organized as follows: Section

2 describes the problem and introduces the dataset and the

proposed network for typhoon cloud image prediction. Section 3

describes the experiments conducted to demonstrate the

effectiveness of the proposed model and discusses the results,

and Section 4 presents the conclusions.
2 Methodology

In this section, we describe the data and network structure used

in this study. Specifically, we model the typhoon cloud image
tiers in Marine Science 03
prediction problem, introduce the study data, area, and our

proposed network, and describe the experimental environment.
2.1 Statement of the problem

Typhoon cloud image prediction can be regarded as a video

prediction problem for forecasting subsequent frames based on

previously observed frames. Our observation area was anM × N

grid, and we used the vector I ∈ RM × N to represent the satellite

image. We recorded j observed satellite images as X = {It − j + 1,

…,It − 1} and used Y = {It + 1,…,It + k} to represent the next k

frames generated by the prediction model; Ŷ =  fÎ t   +   1,…,

Î t   +   kg represents the corresponding ground truth frames.

Therefore, our prediction problem was modeled as a pixel-

to-pixel regression problem from X to Y , which aimed to

minimize the error between Y and Ŷ as follows:

Î t+1,…, Î t+k = argmax
It+1,…,It+k

 p It+1,…, It+kjIt−j+1,…, It−1
� �

1ð Þ
2.2 Dataset and study area

Our research was based on satellite images from Japan’s

eighth geostationary meteorological satellite, Himawari 8, which

generates images with spatial resolutions of 2 km (6,001 × 6,001)

and 5km (2,401 × 2,401) every 10 min. The Advanced Himawari

Imager on Himawari 8 has 16 bands: three visible bands, three

near-infrared bands, and 10 infrared bands (Bessho et al., 2016).

In general, according to the wavelength range, satellite cloud

images can be divided into visible light, water vapor, and

infrared images (Figure 1). Visible images have the clearest

cloud texture, but visible bands can only be measured during

the daytime. Water vapor images only reflect water vapor

information in the upper-middle troposphere. Infrared bands

most effectively detect clouds of various layers at any time of day
FIGURE 1

Satellite images of H8: left, a visible image; middle, a water vapor image; and right, an infrared image. The country borders in yellow show the
spatial scale of the satellite data.
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and are suitable for our research. Our work focuses more on

building a model for typhoon cloud image prediction than

exploring the differences between infrared bands. To conduct

calculations efficiently, we used band 13 as the source of

experimental data.

Our study aimed to predict future satellite images and

observe typhoon activity. Hence, we used only satellite images

of typhoon clouds. Data were collected between July 2015 and

October 2021, and they comprised 145 typhoons (Japan

Meteorological Agency (JMA), 2018). At each location,

observations were made at 6-hour intervals. However, because

typhoons occurred between these observations, we filtered

typhoon-related satellite images at 1-hour intervals. The

geographical range of an H8 image is between 60°S–60°N

latitude and 80°E–160°W longitude and includes many areas

where typhoons have never occurred. Thus, we used part of the

Northwest Pacific to collect observations (15°S–50°N, 100°E–

165°E) because strong typhoons frequently occur in this

area (Figure 2).
2.3 Data processing

Satellite images inevitably have some missing data; thus,

we filtered the abnormal data. After sorting by time, the

sliding window method was used to create the dataset. A

time interval of 3 h (Xu et al., 2019) was used to build

sequences. We used this interval because it contained more

variation between two adjacent satellite images than the 1-

hour interval did (Hong et al., 2017b) and used less training

time for the model than the 6-hour interval did (Rüttgers

et al., 2019). To determine the hyperparameter of the

historical frames (denoted by m ), we trained and tested

cases with m = 4 (Rüttgers et al., 2019), 6 (Hong et al., 2017b),

8 (Xu et al., 2019), and 10. For each case, we used an ( m + 1
Frontiers in Marine Science 04
)-frame wide sliding window and an (m/2) -frame sliding step

to create the sequences. Ultimately, m = 8 produced the best

results. In the cases ofm = 4 and 6, the movement of typhoons

was not sufficiently captured; for m = 10, model performance

worsened owing to the reduced size of the training dataset.

Therefore, we used a 9-frame wide sliding window and a 4-

frame sliding step to create the sequences. The resulting

dataset contained 5,160 sequences, each comprising eight

input frames and one ground truth. These sequences were

then divided into training, validation, and test datasets at a

ratio of 6:2:2 (i.e., 3,096 for training, 1,032 for validation, and

1,032 for testing).

The original pixel size of H8 satellite images would have

caused memory limitations; thus, we resized the images to 481 ×

481 pixels and selected patches of 260 × 260 pixels that

corresponded to the research area (15°S–50°N, 100°E–165°E).

To facilitate multiple downsamplings in the experiments, we

cropped the data to 256 × 256 pixels from the upper left corner

before normalizing the training, validation, and test datasets by

setting I = I−min(I)
max (I)−min(I) to accelerate model convergence.
2.4 Network structure

2.4.1 Overview
We used several lightweight modules to build the model,

considering its effectiveness in practical applications. As shown

in Figure 3, the proposed EMSN used eight observed satellite

images (i.e., t1,t2,…,t8 ) as inputs and predicted the subsequent

image (i.e., t9 ) as output. EMSN consists of mainly of feature

enhancements and encode–decode modules.

The feature enhancement module is a preprocessing module

that receives inputs and obtains a set of enhanced feature maps.

Subsequently, the encode–decode module captures the

spatiotemporal relationships of the feature maps and encodes
FIGURE 2

Research area map. Part of the Northwest Pacific (15°S–50°N, 100°E–165°E).
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them into hidden states, which are decoded into the output

image. The detailed structure of the proposed network is listed

in Table 1.

2.4.2 Feature enhancement module
The feature enhancement module is the preprocessing

module of the EMSN, which comprises two convolutional

layers and a channel attention module. Figure 4 shows the

module structure. First, the convolutional layers extract scale-

invariant features from the input images. These feature maps

have multiple channels, some of which are not useful. A channel

attention module was implemented after the convolutional

layers to enhance important features and suppress useless
Frontiers in Marine Science 05
features. As shown in Figure 4, the channel attention we used

was a squeeze-and-excitation network (Hu et al., 2018) that

automatically determined the relevance of each channel and

then assigned appropriate weights.

2.4.3 Encode–decode module
The encode–decode module is the core of the EMSN and has

two parts: the basic model and the multi-scale feature fusion

module. The basic model is a symmetrical autoencoder. A multi-

scale feature fusion module was applied between the encoder

and decoder to pass the information on (Figure 5).

Both the encoder and decoder of the basic model consisted of

three blocks, each of which had three layers: the convolutional layer
TABLE 1 Architecture of EMSN.

Module Block Layer Kernel size Stride Output size

Feature Enhancement Module

– Conv 1 3×3 (1, 1) 256×256×16

– Conv 2 3×3 (1, 1) 256×256×32

– Channel Attention 3×3 (1, 1) 256×256×32

Encoder

E-Block 1
Conv 3×3 (2, 2) 128×128×64

ConvLSTM 3×3 (1, 1) 128×128×64

E-Block 2
Conv 3×3 (2, 2) 64×64×128

ConvLSTM 3×3 (1, 1) 64×64×128

E-Block 3
Conv 3×3 (2, 2) 32×32×256

ConvLSTM 3×3 (1, 1) 32×32×256

Decoder

D-Block 3
ConvLSTM 3×3 (1, 1) 32×32×256

TransposeConv 4×4 (2, 2) 64×64×128

D-Block 2
ConvLSTM 3×3 (1, 1) 64×64×128

TransposeConv 4×4 (2, 2) 128×128×64

D-Block 1
ConvLSTM 3×3 (1, 1) 128×128×64

TransposeConv 4×4 (2, 2) 256×256×32

Feedforward Module
– Conv 1 3×3 (1, 1) 256×256×16

– Conv 2 3×3 (1, 1) 256×256×1
FIGURE 3

Overview of EMSN. EMSN consists of a feature enhancement module, encode–decode module, and feedforward module.
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(or transposed convolutional layer) for changing feature map sizes,

the activation function layer for adding nonlinear factors, and the

ConvLSTM layer to capture spatiotemporal relationships.

Owing to the large observation area and complex

evolutionary rules of the typhoon cloud image sequences

mentioned in Section 1, we used the multi-scale feature fusion

module to acquire additional details. The inner structure of the

module is shown in Figure 6.

As shown in Figure 6, the multi-scale feature fusion module

has two parts: multi-scale spatiotemporal feature capturing and

same-stage feature reuse. The encode–decode module uses {X1,

X2,…,X8} as inputs, where Xi is the enhanced feature of the

ith (i=1, 2,…, 8) observed image. Each time the data passed

through the convolutional layer; the feature sizes were reduced

by half. Thus, the resized features of the three different scales

were obtained through the three blocks. These feature maps of

different scales contain information at different granularities. As

shown in Figure 6, these resized feature maps were passed

through the ConvLSTM layers to learn spatiotemporal rules.

In Figure 6, hni is the hidden state of the ith (i=1,2,…,7) input

frame at the nth (n=1,2,3) ConvLSTM layer, which was used in

the encoder to pass spatiotemporal information from the

previous frame to the subsequent frame.
Frontiers in Marine Science 06
Downsampling of the encoder by convolutional layers

results in the loss of information on typhoon clouds, and the

feature maps obtained by multiple blocks are highly abstract.

Therefore, we implemented the same-stage feature reuse strategy

to use other low-level features in the decoder. In Figure 6, Hn is

the hidden state of the last memory unit in the nth ConvLSTM

layer (i.e., hn8), which is used as the input of the corresponding

ConvLSTM unit in the decoder. Furthermore, Fn is the feature

map of the last input frame at the nth convolution layer, and On

is the output of the ConvLSTM layer in the nth block of the

decoder . These values are then summed to acquire the new

input of the convolution layers in the nth block of the decoder.

Through the encode–decode module, both detailed information

and global information were conserved, and the model

generated a clear prediction frame.
2.5 Implementation details

We implemented all the models based on Python 3.8 with an

NVIDIA GeForce RTX 3090 GPU card. We chose the Adam

optimizer for gradient optimization, with a batch size of 16 and

L1 loss. The initial learning rate was set to 1e−3, and the learning
FIGURE 5

Encode–decode module. The symmetric basic model comprises convolutional layers and ConvLSTM layers. A multi-scale feature fusion module
is added between the encoder and the decoder.
FIGURE 4

Feature enhancement module: two simple convolutional layers and a channel attention module.
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rate was reduced by half when the valid loss did not decrease

over 10 epochs. The total training epoch was set to 500, with an

early stopping strategy of 75 epochs.
3 Experiments and results

3.1 Evaluation metrics

The mean squared error (MSE), peak signal-to-noise ratio

(PSNR), and structural similarity index (SSIM) were used to

evaluate the performance of the models. We use and to denote

prediction and ground truth, respectively. The criteria are

expressed as follows:

MSE p, gð Þ = 1
WHo

W

i=1
o
H

j=1
pi,j − gi,j
� �2

2ð Þ

PSNR p, gð Þ = 10� log10
MAX2

MSE p,gð Þ 3ð Þ

SSIM p, gð Þ = 2mpmg+c1ð Þ� 2spg+c2ð Þ
m2
p+m2

g+c1ð Þ� s 2
p +s 2

g +c2ð Þ 4ð Þ

where W and H are the width and height of the image,

respectively; MAX is the maximum pixel value in the image;
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mp and mg are the average pixel values of p and g respectively; sp
and sg are the variances of p and g , respectively; and spg is the
covariance of p and g . In addition, c1=(k1L)

2 and c2=(k2L)
2 both

of which are constants used to maintain stability; L is the

dynamic range of pixel values; and k1=0.01 and k2=0.03 .

MSE and PSNR are the most widely used image quality

assessment algorithms and reflect the difference in pixel values.

SSIM evaluates the structural similarity between two images.

Small values of MSE or large values of PSNR and SSIM indicate

that the predicted images are similar to the ground-truth images.
3.2 Experiments on the proposed
network

In this section, we introduce the process of finding the best

model structure and hyperparameters for our proposed EMSN.

All models were trained using the same hyperparameters.
3.2.1 Exploration of the basic model
Because of the state-of-the-art performance achieved by

using convolutional and ConvLSTM-based models (Lee et al.,

2019), we analyzed various model structures and network

hyperparameter settings of the convolutional and ConvLSTM
FIGURE 6

Inner structure of feature fusion module, including multi-scale spatiotemporal feature capturing and same-stage feature reusing.
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networks. Table 2 lists the experimental results of the basic

model under various settings.

First, we reproduced the model proposed in (Lee et al.,

2019), and experiment 1 used the structure of MCSIP’s satellite

image predictor. Next, we gradually modified the model settings

in MCSIP. As mentioned in Section 2.4.3, MCSIP is a

feedforward neural network with a structure that results in

inevitable information loss. In experiment 2, we applied the U-

Net (Siddique et al., 2021) structure to the model. A symmetric

three-layer ConvLSTM structure was added before upsampling,

and the three hidden states of the encoder ConvLSTM layers

were used as inputs to the decoder ConvLSTM layers. The

results demonstrated that the hidden states of each

ConvLSTM layer benefited the network, and their use in the

decoder improved model performance. The MCSIP used nearest

neighbor sampling to enlarge the image sizes but, experiment 3

used deconvolution layers. The results showed that

deconvolution was superior to nearest neighbor interpolation

in our model, possibly because the deconvolution layers

dynamically learn the resizing parameters. We then compared

the impacts of stacking different numbers of ConvLSTM layers

on model performance. The results of experiments 3–6 revealed

that the three-layer ConvLSTM module most effectively

captured the spatiotemporal relationships among satellite

images. As the number of ConvLSTM layers increased, model

performance first improved before worsening after this

optimum. This initial improvement in performance may have

been due to increasing ConvLSTM layers, deepening the

network, and—thus—strengthening its ability for nonlinear

fitting. The later deterioration of performance may have been

due to limited quantities of data and overfitting resulting from

too many layers.

Based on our results, we applied the symmetric autoencoder

as the basic structure of our model, in which the encoder uses

five convolutional layers to downsample and three ConvLSTM

layers to capture spatiotemporal relationships. The decoder uses

three additional ConvLSTM layers and five deconvolution layers

for upsampling.
Frontiers in Marine Science 08
3.2.2 Ablation experiments on multi-scale
components

Typhoon cloud image prediction is a large-scale problem.

Features of different scales that contain different information are

obtained through convolution layers. Using features computed

at multiple scales facilitates detailed predictions. Therefore, to

fuse these features, we attempted to add several components to

the basic model, the experimental results of which are listed

in Table 3.

The models in Section 3.2.1 followed the structure of MCSIP,

which downsampled images with several convolution layers

before capturing spatiotemporal relationships with ConvLSTM

layers. In this structure, models only learn the spatiotemporal

rules of the most abstract features because the ConvLSTM layers

assess feature maps at the smallest scale. To enable our model to

use detailed geometric information, we attempted to capture

spatiotemporal relationships at large scales using convolutional

layers and ConvLSTM layers in a staggered arrangement. The

results of experiments 1 and 2 illustrate that interleaving

convolutional layers and ConvLSTM layers helped the model

learn more details and improve performance.

In addition, to explore the most suitable feature extraction

scale for the typhoon cloud image prediction problem, we

conducted experiments on four downsampling scales based on

a cross-arranged network. In each iteration, we maintained the

total number of convolution layers (i.e., five) but changed the

number of convolution layers that halved the feature sizes.

According to the results of experiments 2–5, as the scale of the

downsampling decreased, the model performance first improved

and then worsened after an optimum of 3 as the best

downsampling scale.

Furthermore, images inevitably lose information during

downsampling, and reusing these large-scale features during

the upsampling process can enrich the details of the final

output. Therefore, we implemented a skip connection module

at the same stage. After considering computational complexity,

we chose the add operation (He et al., 2016) rather than the

concatenation operation (Huang et al., 2017). Because the input
TABLE 2 Experimental results of basic model with various settings.

No. ConvLSTM Symmetric Deconv MSE ↓ PSNR ↑ SSIM ↑

1 3 × × 0.014252 18.515 0.77405

2 3 √ × 0.013397 18.805 0.79977

3 3 √ √ 0.012571 19.099 0.81418

4 2 √ √ 0.013060 18.937 0.80917

5 4 √ √ 0.013051 18.909 0.80050

6 5 √ √ 0.013161 18.869 0.80078

No. denotes the experiment number. ConvLSTM denotes the amount of ConvLSTM layers used in the encoder. Symmetric represents the use of a symmetric ConvLSTM structure in
the decoder. Deconv signifies the use of a deconvolution layer for upsampling. The best result is marked in bold.
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and output of the encode–decode module had different

dimensions (i.e., the input shape was 8 × 256 × 256 and the

output shape was 256 × 256), we attempted three additive

methods: only adding the last frame of inputs, separately adding

each frame of inputs with the same weights, and separately

adding each frame of inputs with learnable weights. Based on the

results of experiments 6–8, skipping connections was an effective

strategy, and only adding the last frame of inputs was the best

additive method.

To illustrate the effectiveness of the feature fusion module

more intuitively than in the prior experiment, we considered

Typhoon Yutu (October 2018) and visualized the predicted

images of the experiments in Table 3 (Figure 7). Our proposed

model predicted future typhoon satellite images in the Northwest

Pacific and performed well in terms of cloud shape and texture.

Figure 7A shows the predicted image of our basic model without

the feature fusion module (i.e., experiment 1). Although the basic

model effectively captured the overall distribution of clouds,
Frontiers in Marine Science 09
details were missing. Figure 7B shows the predicted image of

the model with multi-scale spatiotemporal feature capturing (i.e.,

experiment 4) and is substantially clearer than that in Figure 7A.

Figure 7C shows the predicted image of the model with both

multi-scale spatiotemporal feature capturing and same-stage

feature reuse (i.e., experiment 8), which performs better than

the model in Figure 7B in cloud shape prediction. From

Figures 7A-C, the image quality gradually improved, particularly

within the red box. Specifically, as shown in Figure 7A, the spiral

cloud bands around the center of the typhoon were fragmented

rather than coherent and complete. In Figures 7B, C, the spiral

characteristics of the typhoon clouds are more obvious than those

in Figure 7A. We compared Figures 7B, C, and the spiral cloud

bands of the latter are smoother than those of the former and

better show the typhoon movement trend than the former does.

Therefore, the multi-scale feature capturing strategy and the

same-stage feature reuse method excelled in typhoon cloud

image prediction.
TABLE 3 Experimental results of adding multi-scale components.

No. Cross Scale Skip
MSE ↓ PSNR ↑ SSIM ↑

Each Weighted Last

1 × 5 × × × 0.012571 19.099 0.81418

2 √ 5 × × × 0.012343 19.355 0.81741

3 √ 4 × × × 0.012275 19.525 0.81766

4 √ 3 × × × 0.011575 19.647 0.82954

5 √ 2 × × × 0.012152 19.432 0.82785

6 √ 3 √ × × 0.011886 19.481 0.82651

7 √ 3 × √ × 0.011565 19.641 0.83096

8 √ 3 × × √ 0.011394 19.672 0.83339

The best result is marked in bold.
fron
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FIGURE 7

Visual results of adding multi-scale components. First-row images are the inputs. Second-row images are outputs of different networks. (A) is
the basic model; (B) is the model with multi-scale spatiotemporal feature capturing; (C) is the model with both multi-scale spatiotemporal
feature capturing and same-stage feature reuse; and (D) is the ground truth.
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3.2.3 Ablation experiments on channel
attention

The input to our model was a sequence of consecutive

satellite images, and the closer an image is to the present time,

the greater its impact on the predicted image. After feature

extraction by convolution layers, we obtained multiple feature

maps with different representations; however, only some of these

feature maps benefited our model. Therefore, the dependency of

the output on each channel of the input differed; to refine the

intermediate features and assign relative importance to each

channel, we implemented a channel attention module before the

multi-scale feature capturing module. In this section, we review

s e v e r a l e xp e r imen t s on t h e impa c t o f c h anne l

attention (Table 4).

SENet is a classic channel attention module with a squeeze-

and-excitation structure. The original SENet (Hu et al., 2018)

adopted global average pooling to encode the entire spatial

feature of a channel as a global feature. It was proposed by

(Woo et al., 2018) that average pooling and maximum pooling

have different representation effects; thus, we used maximum

pooling alone and combined with average pooling in

experiments 3 and 4, respectively. Based on these results, the

best values of PSNR and SSIM belonged to models with channel

attention, demonstrating that it increased model performance.

Because the changes in the three indicators were inconsistent, we

further evaluated them through visualization and used Typhoon

Krosa (August 2019) as an example to increase the robustness of

our conclusions (Figure 8).

Figure 8 shows the visualized results of models with different

attentions. The cloud texture can be easily distinguished in

Figures 8B–D (i.e., models with channel attention), which are

clearer than those in Figure 8A (i.e., models without channel

attention). Moreover, Figure 8C (i.e., the model with channel

attention using maximum pooling) exhibits the highest

performance. The red box highlights the differences between

the predicted images. In Figure 8C, the details of the typhoon

clouds are most evident. The typhoon cloud marked by the red

box in Figure 8E (i.e., the ground truth) has a clear eye and ring-

shaped eyewall, which is also predicted only in Figure 8C.

Therefore, combining the experimental and visualization

results illustrates that channel attention improves model
Frontiers in Marine Science 10
performance and that using maximum pooling to squeeze can

result in the best performance.

3.2.4 Comparison of spatiotemporal capture
units

As mentioned in Section 1, convolutional GRU (Wang et al.,

2018; Tian et al., 2019) (ConvGRU), trajectory GRU (Shi, 2018;

Gan and Hui, 2020) (TrajGRU), spatiotemporal LSTM (Feng,

2019; Wang et al., 2021) (ST-LSTM), and convolutional LSTM

(Mukherjee et al., 2019; Lin et al., 2020) (ConvLSTM) are widely

used in video prediction. To prove that our proposed structure

applies to all spatiotemporal capture units and to determine the

best one for typhoon cloud image prediction, we compared the

variations in the RNN with the EMSN. The experimental results

are listed in Table 5.

The model using ConvLSTM had the best performance, with

one best result and two second-best results according to the

evaluation metrics. The model using ST-LSTM had the worst

performance, with the worst results in all three metrics. The

predictions were visualized (Figure 9). Each image is similar to

that in Figure 9E (i.e., the ground truth), which verifies the

effectiveness of the EMSN. However, in the comparison of

Figures 9A–D, the latter (i.e., ConvLSTM) shows greater detail

and clearer spiral cloud bands than the former. Mature Typhoon

Saola (October 2017) is marked with a red box. According to

Figure 9E, there is an obvious typhoon eye in the center of the

cloud, and the comma-shaped eye area points approximately in

the north-south direction. Except for Figure 9D, the images did

not predict eye structure well.

Furthermore, we generated different images between the

ground-truth satellite images and predicted satellite images

(Figure 10). In these images, the brighter the color, the larger

the pixel difference, and vice versa. The white box in Figure 10

and the red box in Figure 9 mark the same area (i.e., the typhoon

eye area). Figure 10D (i.e., ConvLSTM) is much darker than the

other images; thus, ConvLSTM outperforms other RNN

variations in the EMSN.

Based on the experimental results, visualization results, and

difference images, the proposed EMSN accurately predicts

typhoon cloud images, and ConvLSTM is the best

spatiotemporal capture unit for the EMSN.
TABLE 4 Experimental results of adding the channel attention module with different pooling methods.

No. AvgPool MaxPool Avg+Max MSE ↓ PSNR ↑ SSIM ↑

1 × × × 0.011394 19.672 0.83339

2 √ × × 0.011834 19.542 0.81879

3 × √ × 0.011435 19.733 0.82982

4 × × √ 0.011524 19.680 0.83446

The best result is marked in bold; the second-best result is underlined.
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4 Conclusion

In this study, an EMSN was developed for typhoon cloud

image prediction. To improve the extraction of useful

information from multiple input images, we designed a feature

enhancement module to focus on meaningful features and

remove worthless features. Additionally, to utilize both high-
Frontiers in Marine Science 11
level semantic features and low-level detail features to generate

clearer predicted images than in the literature, we designed a

symmetric structure to fuse features at different scales, which

used a multi-scale feature capturing strategy and a same stage

feature reusing method. Based on a typhoon cloud image dataset

collected from Himawari 8, extensive experiments were

conducted to demonstrate the effectiveness of EMSN. The
A B D EC

FIGURE 8

Visual results of adding the channel attention module with different pooling methods; the second row displays the outputs. (A) without channel
attention; (B) using average pooling; (C) using maximum pooling; (D) combining average pooling and maximum pooling; and (E) ground truth.
TABLE 5 Results of EMSN with different RNN variations. The best result is marked in bold; the second-best result is underlined.

Model MSE ↓ PSNR ↑ SSIM ↑

EMSN-ConvGRU 0.011450 19.657 0.83343

EMSN-TrajGRU 0.011366 19.711 0.82588

EMSN-STLSTM 0.012500 19.198 0.81007

EMSN-ConvLSTM (ours) 0.011435 19.733 0.82982
fron
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FIGURE 9

Visual results of the EMSN with different RNN structures; second-row images are the outputs. (A) EMSN-ConvGRU; (B) EMSN-TrajGRU; (C)
EMSN-STLSTM; (D) EMSN-ConvLSTM; and (E) ground truth.
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experimental results showed that EMSN efficiently and

accurately predicted typhoon cloud images with higher quality

than in the literature.

Although this study succeeded in predicting clear, accurate

typhoon cloud images, we did not consider meteorological

factors. This limited the model to only learning typhoon

movement rules from satellite images. In further research, we

intend to add meteorological data such as SST and MSL as

model inputs to expand the learnable information and enable the

model to learn how the surrounding environment affects

typhoons. We also plan to further explore the prediction of

typhoon position and intensity based on the predicted

cloud images.
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