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Storm surge inundation can induce great disasters in coastal regions, and

Laizhou Bay (LZB), located in the Bohai Sea, is a bay that frequently experiences

coastal storm flooding. In this study, we perform a numerical study of the

effects of wind and waves on the storm surge-induced coastal inundation in

the LZB using the coupled model ADCIRC+SWAN. Two historical typhoons

(No. 9216 Typhoon Polly (TY9216) and No. 1909 Typhoon Lekima (TY1909)) are

considered, wave effects in terms of wind-wave-induced surface stress and

radiation stress are included, and two widely used wind data sources (CFS and

ERA5) are used. The results indicate that the total inundation area and average

inundation depth in the LZB during TY1909 are 10.70%-19.16% larger than

during TY9216, and the CFS wind field reproduces a 14.31%-23.05% more

intense inundation simulation than does the ERA5 wind field. The wave-

induced surface stress plays the primary role in increasing the inundation

area and average depth by up to 11.42%-18.50% and 5.82%-8.75%,

respectively, and the wave-induced radiation stress also increases the

inundation area and average depth by 3.80%-6.60% and 3.70%-4.57%,

respectively. The results highlight the importance of considering wave effects

in storm surge-induced coastal inundation simulations, and we demonstrate

that the wave effects on the inundation area can be quite sensitive to the choice

of wind field source.

KEYWORDS

storm surge, inundation, wind field, wave-induced radiation stress, wave-induced
surface stress, Laizhou Bay
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Introduction

Laizhou Bay (LZB) is a semi-enclosed shallow bay in the

Bohai Sea located in the northwestern Shandong Peninsula,

which is vulnerable to typhoon-induced storm inundation

(Figure 1). It possesses approximately 320 km of shoreline

from the Qimu Cape to the Yellow River Estuary, and its area

range is approximately 6000 km2 (Wang et al., 2016; Xu et al.,

2021). According to historical records, many typhoons, such as

No. 9216 Typhoon Polly (TY9216) and No. 1909 Typhoon

Lekima (TY1909), caused severe disasters and serious storm

surge flooding in the coastal area of the LZB (Ministry of Natural

Resources of the People’s Republic of China, 1989-2021; Li et al.,

2019). TY9216 passed through Taiwan Island and made landfall

again in Changle (Fujian Province) at 6:00 (UTC+8) on August

31, 1992, then, it moved north, which resulted in direct

economic losses of approximately 1.5 billion yuan along the

coastal region of the Bohai Sea, and the storm surge inundation

area only in Dongying (Shandong Province) reached 960 km2 (Li

et al., 2019). TY1909 was formed at 14:00 (UTC+8) on August 4,

2019, making landfall in Wenling (Zhejiang Province) at 1:45

(UTC+8) on August 10, 2019, then landing again in Qingdao

(Shandong Province) and moving north into the Bohai Sea,

which induced severe inundation along the LZB coast and

caused 2.163 billion yuan in direct economic loss in Shandong

Province alone (Fu et al., 2021; Ministry of Natural Resources of

the People’s Republic of China, 1989-2021).

Numerical models are commonly used in studying coastal

storm inundation (Hubbert and Mclnnes, 1999; Peng et al., 2004;

Wang et al., 2014; Yin et al., 2016; Yang et al., 2019; Du et al.,

2020a), such as some surge models, including the Finite-Volume

Coastal Ocean Model (FVCOM, Rego and Li, 2009; Wang et al.,
Frontiers in Marine Science 02
2017), Semi-implicit Eulerian–Lagrangian Finite-Element

(SELFE, Wang et al., 2014; Chen and Liu, 2016), Regional

Ocean Modeling System (ROMS, Li et al., 2016), Princeton

Ocean Model (POM, Xie et al., 2004; Xia et al., 2008), and

Advanced Circulation (ADCIRC, Gayathri et al., 2016; Shi et al.,

2021), and some surge-wave coupled model, including the

Delft3D (Veeramony et al., 2017; Kumbier et al., 2018),

Simulating Waves Nearshore (SWAN) + POM (Xie et al.,

2008), Curvilinear-grid Hydrodynamics in 3D Storm Surge

Modeling System (CH3D-SSMS, Sheng et al., 2010), Semi-

implicit Cross-scale Hydroscience Integrated System Model

Wind Wave Model version III (SCHISM-WWMIII, Yang

et al., 2019), ADCIRC+SWAN (Murty et al., 2020; Wang

et al., 2020). These models make it convenient for researchers

to study storm inundation. Moreover, studies on storm

inundation have always been popular research topics in recent

years. Many factors contributing to storm inundation, such as

storm surge barrier installation (Shim et al., 2013), resolution of

unstructured mesh (Kress et al., 2016), wave setup (Krien et al.,

2017; Murty et al., 2020), storm incident angles (Sahoo and

Bhaskaran, 2018; Wu et al., 2018), typhoon translation speed

(Sahoo and Bhaskaran, 2018; Wu et al., 2018; Du et al., 2020b),

typhoon path (Peng et al., 2006; Du et al., 2020b), typhoon

intensity (Shi et al., 2020), radius of maximum winds (Rego and

Li, 2009), sea level rise (Zhang et al., 2013; Pan and Liu, 2019;

Miller and Shirzaei, 2021), storm surge temporal variability

(Höffken et al., 2020) and subsidence (Miller and Shirzaei,

2021), have been explored.

The wind field plays a significant role in simulating storm

surge and coastal inundation (Wang et al., 2017). Many studies

have compared the characteristics of storm surge simulations

using different wind sources (Afshar-Kaveh et al., 2017; Akbar
FIGURE 1

Track information of TY9216 and TY1909, the four tide station locations, the LZB location and the cities along the LZB.
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et al., 2017; Mao and Xia, 2017; Chu et al., 2019; Hsiao et al.,

2019; Musinguzi et al., 2019), but the best wind source varies

with simulated regions and typhoon cases. The wave-stress

effects on storm surge and storm inundation, including wave-

induced radiation stress, wave-induced surface stress and wave-

induced bottom stress, are also important. Sheng et al. (2010)

and Bertin et al. (2015) discussed the impacts of these three wave

stresses on storm surge, and their results showed that wave-

induced surface stress and radiation stress obtained more

significant improvement in storm surge. In addition, the

effects of these three wave stresses on storm inundation area

have also been investigated (e.g., Xie et al., 2008; Wang et al.,

2020), in which the wave-induced surface stress shows the most

significant effect, followed by the wave-induced radiation stress.

The storm inundation research in the LZB is quite rare and

only a few researchers (Liu et al., 2018; Li et al., 2022a) focus on

the risk assessment of storm inundation in this region. For

example, Liu et al. (2018) used the inundation data simulated by

numerical model to make the risk assessment of extratropical

storm surge in Weifang (Shandong Province) along the LZB; Li

et al. (2022a) created the risk assessment framework in the LZB

based on storm inundation data simulated by MIKE21 model.

ADCIRC+SWAN model has been widely used in the literature,

for example, using ADCIRC+SWAN model, Bilskie et al. (2016)

studied the storm inundation in the northern Gulf of Mexico,

Deb and Ferreira (2017) studied the coastal inundation in

Bangladesh, Suh and Kim (2018) simulated the coastal

inundation in Busan of Korea, Du et al. (2020b) analyzed the

storm inundation in the Pearl River Estuary; Murty et al. (2020)

explored the storm inundation in the east coast of India, Wang

et al. (2020) studied the storm inundation in the southwestern

Hangzhou Bay, and Wang et al. (2021) assessed the coastal

inundation in Huizhou (Guangdong Province).

In previous studies that consider the wave effects, the studied

regions are mainly located in relatively open water, such as the

Charleston Harbor (Xie et al., 2008), the Outer Banks and

Chesapeake Bay (Sheng et al., 2010), the east coast of India

(Murty et al., 2020), and the southwestern Hangzhou Bay (Wang

et al., 2020). LZB is an inner shallow bay that is located in a semi-

enclosed Bohai Sea, so it can communicate some advances in the

understanding of the wave effects on the storm inundation in

regions of this kind. Meanwhile, previous studies investigate the

wind and wave effects on storm inundation separately, while their

combined effects are not well addressed. This study mainly

considers flooding scenarios in the coastal regions of the LZB,

and a numerical study is performed by considering two dominant

wave effects and two commonly used wind fields to investigate their

influence on coastal inundation in the LZB. This manuscript is

organized as follows: Section “Materials andmethods” describes the

data used, model information and numerical simulation validation.

Section “Inundation results” provides the simulated results of storm

inundation. Section “Discussions” presents the discussion and

Section “Conclusions” presents the specific conclusions.
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Materials and methods

Data source

The National Centers for Environmental Prediction (NCEP)

and European Centre for Medium-Range Weather Forecasts

(ECMWF) are two popular meteorological agencies that provide

many meteorological products (Li et al., 2022b). This paper uses

hourly meteorological data from the NCEP Climate Forecast

System (CFS) and the ECMWF ERA5, and they possess different

constituent models, assimilation schemes and grid resolutions

(Stopa and Cheung, 2014). The CFS consists of Climate Forecast

System Reanalysis (CFSR) data and CFS Version 2 (CFSv2)

reanalysis data, which depends on the coupled atmosphere-

ocean-sea ice-land system using the three-dimensional

variational data assimilation (3D-Var) scheme, including the

NCEP Global Forecast System (GFS), the Noah land surface

model, the global ocean data assimilation system (GODAS) and

the Geophysical Fluid Dynamics Laboratory (GFDL) Modular

Ocean Model (MOM) version 4 (Saha et al., 2010a; Saha et al.,

2014; Gramcianinov et al., 2020). The CFSR provides wind data

with a resolution of 0.312° × 0.312° and a temporal range of 1979-

2010 (Saha et al., 2010b; https://rda.ucar.edu/datasets/ds093.1/);

CFSv2 data begins in 2011 and has 0.205°×0.204° resolution in

wind products (Saha et al., 2011; https://rda.ucar.edu/datasets/

ds094.1/). ERA5 reanalysis data are the fifth-generation ECMWF

reanalysis products, which depends on the Integrated Forecasting

System (IFS) Cy41r2 version in 2016 using the four-dimensional

variational data assimilation (4D-Var) scheme (Hersbach et al.,

2020; Gramcianinov et al., 2020), providing wind products with a

resolution of 0.25° × 0.25° (Hersbach et al., 2018; https://cds.

climate.copernicus.eu/cdsapp#!/home). In previous study (Li

et al., 2022b), we have compared the wind speed, wind direction

and simulated wave height of the two reanalysis data sets during

Typhoons Lekima and Muifa, and they match the buoy data well,

which shows that CFS and ERA5 wind fields are reliable in

simulating typhoon process.

We plot the spatial distribution of wind speed and direction

during the intense typhoon wind forcing periods of TY9216 and

TY1909 inside the LZB in Figures 2, 3 respectively. As seen, the

CFS winds are generally higher inside the intense wind forcing

regions, while the situation does not persist in the outer regions,

such as in the Yellow Sea, because the ERA5 winds can be higher.

So there do not exist systematic differences between the two

wind products, but the CFS did predict systematically higher

wind speeds within the intense wind forcing regions during these

two typhoon cases.

The bathymetry data used in the LZB is a compound of

electronic navigation charts whose spatial resolution is variable

and the land elevation data using Digital Elevation Model (DEM,

1:50000) from Department of Natural Resources of Shangdong

Province (http://dnr.shandong.gov.cn/). For other regions, we use

the General Bathymetric Chart of the Oceans (GEBCO, https://
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www.gebco.net/) data whose resolution is 15 arc-seconds. The

typhoon track information is provided by the China

Meteorological Administration (CMA, Ying et al., 2014; Lu

et al., 2021; http://tcdata.typhoon.org.cn/).

Simulated region
Figure 1 shows the typhoon tracks and central maximum

wind speed information of TY9216 and TY1909; the locations of

four tide stations, including HHA, WFG, LKO and PLI, in the
Frontiers in Marine Science 04
Bohai Sea and information on the coastal cities of the LZB are

also illustrated. Figure 4 provides a high-resolution inundation

mesh which is created by Surface Water Modeling System (SMS)

software and the distribution of water depth.

Model configuration
The model in this study applies the widely used coupled

Advanced Circulation (ADCIRC) and Simulating Waves

Nearshore (SWAN) model (Du et al., 2020b; Wang et al.,
FIGURE 3

Comparisons of wind field snapshots between CFS and ERA5 at 12:00 (UTC) on August 11, 2019 (A, C) and at 18:00 (UTC) on August 11, 2019
(B, D) during TY1909.
FIGURE 2

Comparisons of wind field snapshots between CFS and ERA5 at 12:00 (UTC) on September 1, 1992 (A, C) and at 18:00 (UTC) on September 1,
1992 (B, D) during TY9216.
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2020; Shi et al., 2021; Wang et al., 2021). The ADCIRC model is

an advanced hydrodynamic model (Luettich et al., 1992), that

obtains water level data and current data depending on the

Generalized Wave Continuity Equation (GWCE) and the

vertically integrated momentum equations. The SWAN model

is a third-generation wave model for shallow water (Booij et al.,

1999) that describes wave characteristics through the wave

action density spectrum. Their main governing equations can

be found in Dietrich et al. (2011). The coupling process includes

the following steps: in our inundation mesh, ADCIRC gains a

wind speed, simulated water level and current field that are

passed to SWAN; simultaneously, SWAN translates the wave-

induced radiation stress and wave parameters to ADCIRC, and

some wave parameters (e.g., wave height, wave length) are

involved in the calculation of the surface wind stress in

ADCIRC, namely, the wave-induced surface stress.

The wave radiation stress (Sxx, Sxy, and Syy, Longuet-Higgins

and Stewart, 1964; Dietrich et al., 2011) in the coupled model is

denoted as:

Sxx = r0g
ðð

ncos2q + n −
1
2

� �
sN

� �
dsdq (1)

Sxy = r0g
ðð

nsinqcosqsNð Þdsdq (2)

Syy = r0g
ðð

nsin2q + n −
1
2

� �
sN

� �
dsdq (3)
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in which r0 is the reference water density, g is the gravitational
acceleration, N is the wave action density spectrum, q is the wave
propagating direction, s represents the relative frequency, and n

stands for the ratio of wave group speed to wave phase speed.

The surface wind stress (ts) in this coupled model is

described by the bulk formula:

ts = raCdu
2
10 (4)

where ra is the air density, Cd is the drag coefficient, and u10
stands for the wind speed at a height of 10 m above the

Earth’s surface.

The default drag coefficient Cd1 in the model is calculated as

follows (Garratt, 1977):

Cd1 = 0:00075 + 0:000067u10 (5)

We modify the the default drag coefficient in the coupled

model. The new drag coefficient Cd2 considering wave-induced

surface stress uses wave steepness, and it is expressed as

(Takagaki et al., 2012; Li et al., 2020):

Cd2 =
0:4

ln10 − ln 10:87 Hs
Lp

� �3
Hs

h i
0
B@

1
CA

2

(6)

where Hs represents the significant wave height and Lp
represents the dominant wavelength.

In SWAN, we set the third-generation mode (GEN3) using

Komen scheme; and we consider wind input, depth-induced
FIGURE 4

The bathymetry distribution and the total mesh including 109436 nodes and 215189 triangular elements, which possesses a resolution varying
from 100 m to 20 km along the inland coastline to the open boundary; the mesh near Laizhou Bay has a resolution from 100 m to 1 km.
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breaking, whitecapping, triad wave-wave interactions, quadrant

wave-wave interactions, and bottom friction dissipation, in

which they are applied with the default settings, such as

whitecapping effect using Komen scheme and bottom friction

dissipation using JONSWAP scheme. In ADCIRC, we use eight

tide constituents (K2, N2, Q1, M2, S2, O1, K1, and P1) from

Oregon State University Tidal Prediction Software (OTPS). The

time step of ADCIRC is one second and that of SWAN is one

hour. The outputs of ADCIRC and SWAN are both at an

interval of one hour. The inundation model begins the

simulation with a cold start. The physical parameters of the

numerical models are the same in following numerical

simulations. The simulation times of the two typhoons are

both 9 days. TY9216 lasted from 0:00 (UTC) on August 26,

1992, to 00:00 (UTC) on September 4, 1992, and TY1909 lasted

from 0:00 (UTC) on August 5, 2019, to 00:00 (UTC) on August

14, 2019.

As listed in Table 1, six experiments are used to simulate

storm inundation processes during TY9216 and TY1909.
Water level validation

Error metrics, including root mean square error (RMSE),

maximum error (MAXE) and relative error of the maximum

(REM) are employed to evaluate the simulated storm water level

at the tide gauge stations.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
Simi − Obsið Þ2

s
(7)

MAXE = max Simð Þ −max Obsð Þ (8)

REM =
max Simð Þ −max Obsð Þj j

max Obsð Þ � 100% (9)

where Sim is the simulation, and Obs is the observation.

As illustrated in Figure 5 and Table 2, the CFS and ERA5

wind fields both reproduced the dynamic variations in storm

surge levels at the tide gauge stations well. The Exp1 results

indicated that CFS wind data underestimated the peak surge

level except at the HHA and LKO stations during TY1909, and
Frontiers in Marine Science 06
the Exp3 results indicated that ERA5 wind data underestimated

the peak surge level during the two typhoons; however, the CFS

peak surge was higher than the ERA5 peak surge. The wave-

induced radiation stress effect (Exp5 and Exp6) only slightly

changed the peak surge, but the wave-induced surface stress

effect (Exp2 and Exp4) significantly enhanced the peak surge and

resulted in a better peak simulation.

In summary, both ERA5 and CFS data can reproduce

hydrodynamic processes well during TY9216 and TY1909, but

the CFS produces a stronger peak water level, and no consensus

can be gained on which wind field source is the best choice, as

CFS produces a better simulation in the case of TY9216, while

the ERA5 simulations are better in the case of TY1909; wave-

induced surface stress significantly enhances the peak storm

surge level, and the effects of wave-induced radiation stress are

comparably small.
Inundation results

The storm inundation distributions are illustrated in

Figures 6, 7 during TY9216 and TY1909, respectively, in

which the difference between Exp2 and Exp1 represented the

effect of wave-induced surface stress on storm inundation using

CFS wind data, and the corresponding CFS increasing rate was

this difference divided by Exp1. The difference between Exp4

and Exp3 indicated the effect of wave-induced surface stress on

storm inundation using ERA5 wind data, and the corresponding

ERA5 increasing rate was this difference divided by Exp3. The

difference between Exp1 and Exp6 represented the effect of

wave-induced radiation stress on storm inundation using CFS

wind data, and the corresponding CFS increasing rate was this

difference divided by Exp6. The difference between Exp3 and

Exp5 indicated the effect of wave-induced radiation stress on

storm inundation using ERA5 wind data, and the corresponding

ERA5 increasing rate was this difference divided by Exp5. When

quantitatively analyzing inundation depth, for avoiding

abnormal values, we took the average value of inundation

depth in this region for research, namely, average inundation

depth. In addition, Laizhou City in the LZB was not included in

the inundation area and average inundation depth.
TABLE 1 Design of simulation experiments.

Experiments Wave-induced surface stress Wave-induced radiation stress Wind source

Exp1 No Yes CFS

Exp2 Yes Yes CFS

Exp3 No Yes ERA5

Exp4 Yes Yes ERA5

Exp5 No No ERA5

Exp6 No No CFS
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As shown in Figures 6, 7, the two typhoons both caused

extensive inundation along the LZB. The inundation extent was

not consistent from west to east along the coastline of LZB, as

larger coastal inundation mainly occurred in the northwest top

and southwest bottom of LZB. The inundation area of the Kenli

District was the largest among the LZB cities during the two

typhoons, which might be attributed to the lower elevation and

the longer coast. In addition, the overall characteristics of

inundation distributions along the LZB between the two

typhoons were similar, and this seemed to indicate that the

inundation distribution in the LZB were mainly affected by the

topography, followed by the typhoon characteristics.

As described in Table 3, the TY9216 inundation area could

reach 1279.2121 km2 by using CFS data and 1105.5596 km2 by

using ERA5 data, and those of TY1909 are larger, which could

reach 1469.3708 km2 by using CFS data and 1259.7890 km2 by

using ERA5 data. Namely, the TY1909 inundation area was

14.87% and 13.95% greater than that of TY9216 using CFS data

and ERA5 data, respectively. Systematical variation in the

inundation area is resulted from the different wind sources, as

the CFS simulation was larger than that of the ERA5 simulation

during the two typhoons, by 15.71% during TY9216 and by

16.64% during TY1909.

Table 4 shows the wave-induced inundation area differences

during the two typhoons. The wave-induced surface stress and

wave-induced radiation stress both enhanced the inundation
Frontiers in Marine Science 07
area. The enhancement of the inundation area caused by wave-

induced surface stress reached 18.50% by using CFS data and

11.42% by using ERA5 data during TY9216; it reached 11.73%

using CFS data and 11.42% using ERA5 data during TY1909.

The enhancement of the inundation area caused by wave-

induced radiation stress was up to 5.01% under the CFS

simulation and 4.44% under the ERA5 simulation during

TY9216, and up to 6.60% under the CFS simulation and

3.80% under the ERA5 simulation during TY1909. The

contribution of wave-induced surface stress is more significant

than that of wave-induced radiation stress, which has also been

numerically reported in previous studies (e.g., Xie et al., 2008;

Wang et al., 2020), and its relative contribution shows the

sensitivity on the choice of wind drag coefficient.

Figures 6, 7 also show the spatial patterns of inundation

depth during TY9216 and TY1909, respectively, and Table 5

provides the specific values of the average inundation depth. The

average inundation depth could reach 234.6368 cm (forced by

CFS) and 190.6881 cm (forced by ERA5) during TY9216 and

259.7421 cm (forced by CFS) and 227.2172 cm (forced by ERA5)

during TY1909. Similar to the characteristics of the inundation

area, the average inundation depth in the CFS simulation was

larger than that in the ERA5 simulation, where the depths in the

CFS simulations were 23.05% and 14.31% greater than those in

the ERA5 simulations during TY9216 and TY1909, respectively.

The average inundation depth of TY1909 was higher than that of
A B

D E F

C

FIGURE 5

Storm surge verification at the tide gauge stations, including HHA station (A), LKO station (B) and PLI station (C) during TY9216, and HHA station
(D), LKO station (E) and WFG station (F) during TY1909.
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TY9216, where the depth during TY1909 was 10.70% higher

than that during TY9216 using CFS and 19.16% higher than that

during TY9216 using ERA5.

The difference in the average inundation depth induced by

the wave effects is given in Table 6. The two wave-stress effects

also enhanced the inundation depth. Wave-induced surface

stress enhanced the average inundation depth by 8.75% using

CFS and 7.35% using ERA5 during TY9216, and it reached

5.82% using CFS and 8.41% using ERA5 during TY1909. Wave-

induced radiation stress enhanced the average inundation depth

by 4.23% using CFS and 3.74% using ERA5 during TY9216, and

it reached 4.57% using CFS and 3.70% using ERA5 during

TY1909. Again, the enhancement in the average inundation

depth caused by wave-induced surface stress was more

significant than that caused by wave-induced radiation stress,

and the sensitivity was shown for different wind sources.

Figure 8 and Table 7 illustrate the inundation difference

between the two wind fields. Obviously, CFS induced severer

storm inundation in Kenli District than ERA5 did during the

two typhoons, and the difference in other regions was weak,

which indicated that the impact of wind sources on coastal

inundation in the bottom regions of LZB was slighter than in

other regions. Besides, some regions also showed that the ERA5

data produced a greater inundation depth and inundation area,

such as Guangrao County and Shouguang City during TY9216

and Hanting District during TY1909. Therefore, the

performance of these two wind field sources in certain regions

is uncertain; thus, when studying coastal storm inundation,

reanalysis datasets should be selected appropriately.
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In summary, all the effects considered in this study are shown to

have unnegligible contributions to the storm inundation in terms of

the inundation area and average inundation depth in the LZB. For

the two wind sources, the inundation area and average inundation

depth were greater in the CFS simulation than in the ERA5

simulation, with a 15.71%-16.64% larger inundation area and a

14.31%-23.05% greater average inundation depth. For the two wave

effects, the wave-induced surface stress effect induced more

inundation than the wave-induced radiation stress effect, as the

former increased the inundation area by 11.73%-18.50% (using

CFS) and 11.42% (using ERA5) and increased the average

inundation depth by 5.82%-8.75% (using CFS) and 7.35%-8.41%

(using ERA5). The wave-induced radiation stress effect increased

the inundation area by 5.01%-6.60% (using CFS) and 3.80%-4.44%

(using ERA5) and increased the average inundation depth by

4.23%-4.57% (using CFS) and 3.70%-3.74% (using ERA5). In

addition, considerable differences are shown between the two

typhoon cases, as the storm inundation during TY1909 is much

stronger than TY9216, with a 13.95%-14.87% larger inundation

area and a 10.70%-19.16% higher average inundation depth.
Discussions

The impact of wind source on the storm surge and waves has

been frequently documented in previous studies (Chu et al.,

2019; Hsiao et al., 2019; Li et al., 2022b). The generally stronger

inundation (greater inundation area and average inundation

depth) is not surprised because the CFS simulation predicts a
TABLE 2 Error metrics of storm surge.

Typhoon TY9216 TY1909

Tide station HHA LKO PLI HHA LKO WFG

MAXE
(cm)

Exp1 -35.6407 -15.3244 -33.5636 34.0031 10.7394 -9.2094

Exp2 -11.8148 6.2465 -15.8229 61.5318 33.9738 14.5422

Exp3 -92.0934 -48.7421 -57.8833 -25.1267 -13.3694 -47.1142

Exp4 -71.6400 -28.2890 -43.7290 -0.2144 8.0571 -20.7121

Exp5 -94.7346 -48.0376 -57.1342 -28.4273 -12.6643 -50.9735

Exp6 -39.4171 -14.2449 -32.5881 29.7075 11.9170 -11.5153

REM Exp1 15.25% 9.23% 21.97% 16.95% 7.56% 4.46%

Exp2 5.06% 3.76% 10.36% 30.68% 23.93% 7.04%

Exp3 39.40% 29.36% 37.88% 12.53% 9.42% 22.81%

Exp4 30.65% 17.04% 28.62% 0.11% 5.68% 10.03%

Exp5 40.53% 28.94% 37.39% 14.17% 8.92% 24.67%

Exp6 16.87% 8.58% 21.33% 14.81% 8.39% 5.57%

RMSE
(cm)

Exp1 22.0969 16.0434 22.1435 32.6343 9.7689 20.2407

Exp2 23.8975 21.1563 17.2012 45.0106 15.7899 21.3771

Exp3 35.5750 22.8719 30.9680 20.6863 13.3405 30.5284

Exp4 29.3816 18.1870 25.5368 25.8059 9.9650 24.5031

Exp5 36.6763 22.6517 30.7638 20.2659 13.0768 31.3526

Exp6 22.7037 16.2293 21.8299 30.3962 10.1300 20.9470
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larger peak surge at the tide gauge stations in comparison with

the ERA5 simulation, which is attributed to that the higher wind

speed of the CFS data. In recent years, many studies have

suggested that the CFS data have a tendency to show more

intense wind speeds and wave simulations (Stopa and Cheung,

2014; Hsiao et al., 2019; Li et al., 2022b), cyclones (Gramcianinov

et al., 2020) and storm surge simulations (Chu et al., 2019).

Although it is expected an overall more significant inundation

using CFS wind data, as seen in Figure 8 and Table 7,

conclusions should be made with caution in specific regions,

which is not so sensitive to the storm intensity but may be

related to small-scale wind structure.

The great contribution of surface wind wave to the storm

surge has been well realized because the storm surge level
Frontiers in Marine Science 09
simulations can be considerably improved using a wave-surge

coupled model (e.g., Xie et al., 2003; Sheng et al., 2010; Bertin

et al., 2015; Pineau-Guillou et al., 2020). In this study, the two

wave effects, i.e. the wave-induced surface stress effect and wave-

induced radiation stress effect, both show an increasing effect on

coastal inundation along the LZB; wave-induced surface stress

induces more inundation area by strengthening the wind

forcing, accounting for more than 10%, than that of wave-

induced radiation stress (~5%). This may be attributed to the

fact that the waves in the LZB are less developed due to the

limited fetch of that region compared to that of the open sea.

Some differences in the wave-stress contribution are

demonstrated between the two typhoon cases and the usage of

the two wind data, while the differences appear to be quite small
A B

D

E F

C

FIGURE 6

Inundation distributions and inundation depth (unit: cm) of TY9216 under Exp1 (A), Exp2 (B), Exp3 (C), Exp4 (D), Exp5 (E), and Exp6 (F) along the
LZB.
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(Tables 4, 6), indicating that wave effects on coastal inundation

are not so sensitive to typhoon characteristics including the

track, landfall location, intensity and translation speed, it

appears to be largely related to the local topography
Frontiers in Marine Science 10
conditions. Of course, more typhoon cases are needed to verify

this finding in a further study.

These results also indicate that noticeable differences in the

coastal inundation between the two typhoon cases, as the
A B

D

E F

C

FIGURE 7

Inundation distributions and inundation depth (unit: cm) of TY1909 under Exp1 (A), Exp2 (B), Exp3 (C), Exp4 (D), Exp5 (E), and Exp6 (F) along the LZB.
TABLE 3 The total inundation areas (unit: km2) along the LZB during TY9216 and TY1909.

Area (km2) TY9216 TY1909

Exp1 1079.5488 1315.0995

Exp2 1279.2121 1469.3708

Exp3 992.2474 1130.6524

Exp4 1105.5596 1259.7890

Exp5 950.0443 1089.2319

Exp6 1027.9956 1233.6771
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inundation area and depth induced by TY1909 are greater than

those induced by TY9216. The differences may be attributed to the

typhoon characteristics, as shown in Figure 1, the TY9216 track

passed through the Shandong Peninsula from the right side of the

LZB, but the TY1909 track passed directly through the LZB, as a

result, the storm inundation are more directly forced during

TY1909. Similar results on the effects of different moving paths

(Peng et al., 2006; Xia et al., 2008; Du et al., 2020b) and different

landfall locations (Peng et al., 2006) on storm inundation have been

documented. In addition, the storm intensity and translation speed

further contribute to the difference, when the two typhoons passed

through the Shandong Peninsula, TY9216 showed a weaker central

maximum wind speed but a faster translation speed than TY1909

(Figure 1), and the stronger typhoon intensity (Rego and Li, 2009;

Shi et al., 2020; Du et al., 2020b) and slower typhoon translation

speed (Peng et al., 2006; Rego and Li, 2009; Sahoo and Bhaskaran,

2018) have been suggested to cause more severe coastal inundation.
Conclusions

Using the numerical model ADCIRC+SWAN, the storm

inundation processes of TY9216 and TY1909 in Laizhou Bay are
Frontiers in Marine Science 11
simulated, and the effects of two wind fields (CFS and ERA5)

and two wave stresses (surface stress and radiation stress) on

storm inundation during the two typhoons are explored. It is

found that TY1909 produces a larger inundation area and a

greater average inundation depth than TY9216 does; although

the CFS inundation simulation is larger than the ERA5

inundation simulation, the two wind field sources both

reproduce the hydrodynamic process of storm inundation

well, but they show clear differences in magnitude. In addition,

the enhancing effects of wave stress on coastal inundation cannot

be neglected, and the enhancing effects of wave-induced surface

stress on inundation area and average inundation depth are

stronger than those under wave-induced radiation stress.

The simulation results clearly show the influences of

different typhoons, different wind field sources and different

wave-stress effects on coastal inundation in Laizhou Bay, which

are believed to obtain some common sense on studying the

storm surge-induced inundation in the coastal region. Although

these two typhoons are representative, more typhoon cases

would be useful to further evaluate the wave effect and the

influence of the wind field. In addition, the effect of coastal levee

is not included in this study, inundation validation is also not

considered because the measured data and satellite images
TABLE 4 The differences in the total inundation areas along the LZB during TY9216 and TY1909.

Wind source CFS ERA5

Wave effect Typhoon Difference (km2) Increasing rate Difference (km2) Increasing rate

wave-induced
surface stress

TY9216 199.6633 18.50% 113.3122 11.42%

TY1909 154.2713 11.73% 129.1366 11.42%

wave-induced
radiation stress

TY9216 51.5532 5.01% 42.2030 4.44%

TY1909 81.4224 6.60% 41.4206 3.80%
f

TABLE 5 The average inundation depth (unit: cm) along the LZB during TY9216 and TY1909.

Average depth (cm) TY9216 TY1909

Exp1 215.7625 245.4475

Exp2 234.6368 259.7421

Exp3 177.6324 209.5954

Exp4 190.6881 227.2172

Exp5 171.2279 202.1102

Exp6 207.0090 234.7116
ron
TABLE 6 The difference in the average inundation depth along the LZB during TY9216 and TY1909.

Wind source CFS ERA5

Wave effect Typhoon Difference (cm) Increasing rate Difference (cm) Increasing rate

wave-induced
surface stress

TY9216 18.8743 8.75% 13.0557 7.35%

TY1909 14.2946 5.82% 17.6218 8.41%

wave-induced
radiation stress

TY9216 8.7535 4.23% 6.4045 3.74%

TY1909 10.7359 4.57% 7.4852 3.70%
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cannot be available during the storm events. Meanwhile, this

study ignores the wave-induced bottom stress effect, and the

interaction effects of these three wave stresses and coastal levee

on inundation should be fully considered in the future.
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