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fishery are limited to an
improved quality of
Neoplatycephalus conatus

Matt K. Broadhurst1,2*, Ian A. Knuckey3 and Russell B. Millar4

1New South Wales Department of Primary Industries, Fisheries Conservation Technology Unit,
National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, Australia, 2Marine
and Estuarine Ecology Unit, School of Biological Sciences, University of Queensland, Brisbane,
QLD, Australia, 3Department of Statistics, Fishwell Consulting, Queenscliff, VIC, Australia,
4Department of Statistics, University of Auckland, Auckland, New Zealand
Turning conventional diamond-shaped meshes 90° (‘T90’) in trawl extensions

or codends is a simple modification for consistently increasing lateral openings

and has improved size selection in several European fisheries. Here we

investigate the effects of an industry-instigated cylinder of T90 meshes in the

anterior codend of a trawl fished in the Great Australian Bight. Compared to the

traditional codend (~5.4 m long) comprising a 93.5-mm stretched mesh

opening (SMO) and double 4.1-mm-diameter twine throughout, the new

T90 configuration comprising ~3 m of the same mesh turned 90° in the

anterior section did not significantly affect catches of any discarded or

retained species, or sizes of the primary target, deepwater flathead,

Neoplatycephalus conatus. The only significant impact of T90 was a slightly

improved quality of deepwater flathead (determined by the ‘quality index

method’), attributed to some release of abrasive debris from the codend. The

absence of any effects of the T90 mesh on selection might reflect the small

mesh size relative to most key species and the thick twine which probably

negated some of the anticipated increases in lateral mesh openings. The results

reiterate the need to match the mesh perimeter to the sizes of the key target

prior to efforts at maximising lateral openings (via various established technical

options), but nevertheless imply the benefits of T90 mesh may extend

beyond selection.
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Introduction

Demersal fish trawling is among the world’s most common

fishing methods, responsible for ~25% of the total ocean harvest

(~98m t; Pauly et al., 2020), but owing to poor selectivity, also ~30%

of global discards (Pérez Roda et al., 2019). Concerns over the

cascading effects of discard mortalities have evoked numerous

efforts at improving fish-trawl selectivity, usually by modifying

codends because this is where most selection occurs (Kennelly

and Broadhurst, 2021).

Ideally, codend mesh openings should match the size/shape

of the smallest targeted species. However, conventional diamond

meshes (‘T0’) have inconsistent openings, which reach a

maximum of ~35% of the stretched mesh opening (SMO)

immediately in front of the catch, but then taper forward to

15%–25% of SMO (Robertson, 1986; Robertson and Stewart,

1988). Such variability often produces less-than-ideal

size selection.

There are simple options for improving lateral mesh

openings in codends. One method is to attach so-called

‘lastridge’ ropes along the codend/extension, usually at ~70%–

95% of the total stretched length, forcing meshes to remain open

(Robertson and Stewart, 1988; Ingólfsson and Bronkholf, 2020).

Other methods are to turn some, or all, meshes in the codend to

either 45° (‘T45’) or 90° (‘T90’) which forces wider and

consistent lateral openings (Robertson and Stewart, 1988;

Moderhak, 1997).

While effective, there are operational issues with

alternative mesh orientations. Specifically, compared to T0

meshes, T45 meshes can distort and are weaker, while T90

meshes can eventually assume a diamond shape (although

strength remains) (Madsen, 2007). Installing lastridge ropes

along codends/extensions comprising either T45 (Broadhurst

et al., 1999b) or T90 meshes (Einarsson et al., 2021) has

minimised the above operational issues in crustacean trawls,

implying utility among fish trawls, although there have been

few studies (Kennelly and Broadhurst, 2021).

Anecdotal industry reports from an Australian fish-trawl

fishery in the Great Australian Bight (10 fishing licences)

suggest that compared to traditional codends comprising

~94-mm T0 mesh throughout (~55 meshes long × 100

meshes in circumference), substituting the anterior ~56% of

the codend with four panels of the same 94-mm mesh turned

90° and with shortened lastridge ropes (by 17%) improves

se l ec t ion for the key ta rge t , deepwater fla thead ,

Neoplatycephalus conatus (typically >35 cm TL). Further, by

allowing sand and small abrasive debris to escape the codend,

the T90 mesh reportedly reduces dermal damage to fish and

improves their quality and price. However, no formal trials

have been done to test either of the above assertions. The aims

here are to address the deficit and test a four-panel, T90
Frontiers in Marine Science 02
anterior codend section with lastridge ropes against the

traditional T0 codend.
Materials and methods

The experiment was done in the Great Australian Bight,

Australia (33.12°S; 128.06°E to 33.27°S; 129.40°E), during 6

consecutive days and nights from 1 December 2021 using a

trawler (35 m and 500 Kw) rigged with a conventional, single

two-seam trawl (41-m headline, with nominal 152- and 120-mm

SMO in the wings and body) attached to 20- and 200-m bridles

and sweeps and spread by steel V-otter boards. The posterior

body (100 meshes in the transverse direction–T) was configured

to enable different extensions (larger-mesh section connecting

the codend to the body) and codend sections (i.e., smaller-

meshed bag where the catch accumulates) to be attached

(below). The vessel had a Scanmar trawl monitoring system to

measure otter-board spread, a Lowrance global positioning

system (GPS) to record distance and speed over the ground

(SOG), and a Furuno echo sounder for fishing depth.
Codends tested

Two identical extension sections, a T0 codend and a partial T90

codend, were each constructed from the same panels of braided

knotted netting (green polyethylene; PE), which were measured for

15 replicate samples of SMO and twine diameter (Ø) to the nearest

0.1 mm using a purpose-built gauge and Vernier callipers,

respectively (Figure 1). Both extensions and codends were the

same total lengths and comprised four panels (with four lastridge

ropes). The extensions had mean mesh sizes (± SE) of 105.5 ±

0.4 mm SMO (3.9 ± 0.0 mmØ twine) andmeasured 24.5 meshes in

the normal direction (N) and 100 T creating T0 meshes (Figure 1).

Each extension had lastridge ropes (for strength) made from

24-mm Ø twisted polypropylene (PP) and the same lengths as

the stretched meshes (Figure 1). A 3.4-m length of rope (4.0-mm Ø

PP) was secured at one end of the last row of meshes in each

extension to secure these to the posterior trawl body.

The two extensions were attached to either a traditional ‘T0’ or

new ‘T90’ codend, both made from 93.5 ± 0.3 mm SMO with

double 4.1 ± 0.0 mm Ø twine (Figure 1). The T0 codend measured

54.5 N × 100 T and had four lastridge ropes the same as those for

the extensions (at the panel junctions) (Figure 1A). The T90 codend

had a posterior section (24.5 N × 100 T) identical to the T0 codend

but a different anterior section: comprising T90 (50 T × 66 N). Four

lastridge ropes (16-mm Ø Dyneema™) extended throughout the

codend and were 83% of the stretched T90 length (or ~60% of the

traditional T0 SMO) in that section, and the same length as the T0

codend in the posterior section (Figure 1B).
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Sampling protocol and data collected

The two codend/extensions were alternately attached to the

trawl and fished in pairings across similar depths and locations,

providing four deployments (~3.5–5.0 h) every 24 h, during 6

days (i.e., 24 replicates). Technical data included swell height

(m), fished location, distance (km) and duration (h; winch

brakes on and off), otter-board spread (m); SOG (ms–1), and

depth (m) of the trawl. The latter three variables were logged

every ~15 min to provide an average deployment–1.

After retrieval, the codend was emptied into an area with a

measured volume, and the total catch weight was estimated.

Retained catches were separated and boxed before weighing and

counting. The total weight of discarded catch (bycatch) was

estimated by subtracting the retained component from the total

catch. A subsample of discards was then assessed. All discards

were then individually counted and weighed in the subsample

and extrapolated to the total. Randomly selected subsamples of

deepwater flathead (up to 115 deployment–1 or ~one-third of

catches) were measured to the nearest 0.5-cm TL.

For most deployments, an additional 15 deepwater flathead

were randomly selected (~45 to 55 cm TL) after being placed in

boxes (deceased and prior to freezing) and assessed for physical

damage using a version of the ‘quality index method’ (QIM)

(Nielsen, 2005). For each sample, 11 qualitative measures
Frontiers in Marine Science 03
(describing skin, scales, gills, fins, eyes, and wounds) were

recorded and scored between 0 and 3, according to worsening

severity (STable 1). The sums of the 11 scores for each fish were

then used to provide a datum describing individual physical

condition/quality.
Data analyses

Data for otter-board spreads and standardized (ha–1 trawled

and log-transformed to act multiplicatively) catches (numbers

and weights) were analysed using linear mixed models (LMMs).

The QIM scores were approximately Gaussian and also analysed

with LMMs. In all models, ‘codend’ was considered fixed while

‘pairs’ were random. Additional covariates of ‘SOG’ and fishing

‘depth’ were also assessed in the LMM assessing variability

among otter-board spread, while ‘total catch weight’, depth,

and ‘tow duration’ were used in the LMM assessing QIM data.

The significance of terms was determined using likelihood ratio

tests (Millar, 2011).

Relative size frequencies of deepwater flathead were explored

for statistically significant differences between the codends by

using the ‘SELECT’ (Share Each LEngths Catch Total; Millar,

1992) model to fit a cubic regression spline to the proportions at

length of all retained fish that were retained in the trawl with the
A B

FIGURE 1

Schematic diagram of the (A) traditional T0 and (B) new T90 codends. Ø, diameter; N, normal direction; T, transverse direction; SMO, stretched
mesh opening; PE, polyethylene; PP, polypropylene.
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T90 codend. This catch-comparison analysis was implemented

using the SELECT R package which includes bootstrap

functionality to allow for between-haul variability (Millar

et al., 2004; Millar, 2021). A permutation test was also used

(10,000 resamples) to assess for any statistical significance of

codend configuration (Broadhurst and Millar, 2022). All

analyses were done in R (R Core Team, 2021).
Results

The 24 replicate tows (3.4–5.0 h; mean ± SE of 4.8 ± 1.1 h)

were at consistent SOG (3.0–3.4; 3.1 ± 0.0 ms–1) and depths

(112–148; 125.5 ± 3.0 m) and across comparable weather

(mostly swell <0.6 m). Otter-board spread was not

significantly affected by the codends tested (LMM, p > 0.05)

but was significantly and positively influenced by fishing depth

(LMM, p < 0.05).
Frontiers in Marine Science 04
In total, 58.5 t (>63 species) was caught, of which 19.1 and

39.4 t were retained and discarded, respectively; however, 74% of

the latter was wide stingaree, Urolophus expansus (STable 2).

Nine retained and three discarded species (92% of total catches)

were caught in sufficient quantities to test for effects on their

catches due to codends, but there were no significant differences

among any of their weights or numbers (LMM, p >

0.05; Table 1).

Similarly, the permutation test established that the

proportion of the total catch (combined over the T0 and T90

codends) of deepwater flathead (32.5–80.0 cm TL, but mostly

40.0–50.0 cm TL) caught in the T90 codend did not depend on

TL. That is, there was no significant difference in the size

selection of deepwater flathead due to codend (p = 0.7; Figure 2).

The only significant effect of codend was restricted to log-

transformed QIM scores for deepwater flathead (p < 0.05). The

parsimonious model eliminated effects of total catch or SOG and

revealed a significantly lower score among those fish caught in
TABLE 1 Summary of catches (and their totals) tested in mixed-effect models assessing the importance of codend configuration and the means ±
SE ha–1 trawled separated for the T0 and T90 codends.

Variable Mean (± SE) ha–1 trawled

Retained catches Total amount T0 codend T90 codend

Wt of total 19,123.8 1.85 (0.15) 1.87 (0.18)

Wt of deepwater flathead, Neoplatycephalus conatus 6,910.0 0.74 (0.03) 0.59 (0.06)

No. of deepwater flathead 9,006 0.97 (0.07) 0.78 (0.09)

Wt of latchet, Pterygotrigla polyommata 3,213.9 0.27 (0.10) 0.33 (0.13)

No. of latchet 12,342 1.05 (0.45) 1.24 (0.56)

Wt of gummy shark, Mustelus antarcticus 1,995.8 0.23 (0.10) 0.20 (0.07)

No. of gummy shark 691 0.09 (0.05) 0.06 (0.02)

Wt of ocean jacket, Nelusetta ayraudi 1,624.5 0.17 (0.06) 0.15 (0.08)

No of ocean jacket 2,904 0.27 (0.10) 0.31 (0.18)

Wt of bight redfish, Centroberyx gerrardi 954.6 0.09 (0.04) 0.10 (0.05)

No. of bight redfish 681 0.06 (0.02) 0.08 (0.04)

Wt of ornate angelshark, Squatina tergocellata 951 0.08 (0.01) 0.10 (0.03)

No. of ornate angelshark 114 0.01 (0.00) 0.01 (0.00)

Wt of yellowspotted boarfish, Paristiopterus gallipavo 946.5 0.09 (0.03) 0.09 (0.02)

No. of yellowspotted boarfish 594 0.06 (0.02) 0.06 (0.02)

Wt of red gurnard, Chelidonichthys kumu 506.5 0.04 (0.01) 0.06 (0.02)

No. red gurnard 688 0.06 (0.02) 0.08 (0.03)

Wt of knifejaw, Oplegnathus woodwardi 253.4 0.02 (0.01) 0.03 (0.01)

No of knifejaw 289 0.03 (0.01) 0.03 (0.01)

Discarded catches

Wt of total 39,439.8 3.25 (0.83) 4.72 (1.68)

Wt of wide stingaree, Urolophus expansus 29,118.0 2.12 (0.72) 3.84 (1.67)

No. of wide stingaree 47,484 3.43 (1.16) 6.22 (2.68)

Wt of jackass morwong, Nemadactylus macropterus 287.7 0.02 (0.01) 0.03 (0.01)

No. of jackass morwong 637 0.06 (0.02) 0.06 (0.02)

Wt of latchet, Pterygotrigla polyommata 5,960.7 0.64 (0.29) 0.53 (0.12)

No. of latchet 23,874 2.37 (0.97) 2.29 (0.52)
Random blocking effects for all models included ‘pairs of deployments’. Weights (Wt) in kg. All variables were Ns at p > 0.05.
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the T90 codend (predicted mean ± SE of 0.3 ± 0.01) than

conspecifics in the T0 (0.2 ± 0.01). This result was due to

slightly fewer cuts and a more natural belly colour (STable 1).
Discussion

The data here contribute toward ~20 primary literature

studies since 1997 assessing T90 codends or part thereof

(Kennelly and Broadhurst, 2021) and represent one of the few

efforts outside European trawl fisheries (but see Lomelli et al.,

2017; Cheng et al., 2020). However, contrary to general

consensus, turning conventional meshes 90° in the anterior

section (55%) of the codend here did not improve any species

selection or size selection for deepwater flathead. Rather,

significant effects were limited to a marginal improvement in

fish quality. These outcomes can be discussed by considering the

sizes of the abundant species and likely low selectivity of existing

mesh—either as T0 or T90—but potentially improved

movement of water through the latter meshes. Assuming
Frontiers in Marine Science 05
validity of these suppositions, the data can then be used to

suggest future modifications.

Previous studies assessing T90 throughout codends or only

in anterior sections have shown increased sizes at 50% retention

for various species (especially round fish including cod, Gadus

morhua, haddock, Melanogrammus aeglefinus, and red mullet,

Mullus barbatus barbatus), and often with maintained (e.g.,

Moderhak, 1997) or even reduced selection ranges (e.g.,

Wienbeck et al., 2011; Lomeli et al., 2017). Despite their name,

like all platycephalids, deepwater flathead is not a ‘flatfish’, with

congenerics having a maximum height-to-width ratio of ~0.5,

which corresponds to the T90 shape (Broadhurst et al., 2006).

Consequently, body shape is unlikely to have prevented small

deepwater flathead from escaping. Instead, the relatively small

mesh perimeter of ~187 mm clearly precluded egress of most

sizes encountered, regardless of mesh orientation.

No published data are available on the morphometrics of

deepwater flathead, but Broadhurst et al. (2006) showed that

at maximum girths of 187 mm (mesh perimeter here), two

platycephalids—the eastern blue spotted flathead, P.
A

B

FIGURE 2

(A) Relative size-frequency plots for deepwater flathead, Neoplatycephalus conatus, retained in the traditional T0 and new T90 codends, and
(B) plot of catch proportions with 95% confidence intervals designated by the shaded area and the horizontal dashed line marking 50% retention.
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caeruleopunctatus, and spikey flathead, Ratabulus diversidens

—had TLs of 42.6 and 40.5 cm, respectively. These sizes are at

the lower range of the deepwater flathead observed here.

Potentially, if encountered, smaller deepwater flathead

would escape through the T90 mesh.

Nevertheless, although not measured, several other

species (especial ly discarded latchet , Pterygortrigla

polymnata) were caught at sufficiently small sizes to pass

through the mesh. These individuals should have had

opportunity to escape, assuming the catch built up

sufficiently, increasing the displacement of water forward

and assisting some individuals to maintain position at the

T90 cylinder (Broadhurst et al., 1999a). However, the double

4.1-mm Ø twine (thickness ~9% of the SMO) probably

confounded selection (regardless of mesh orientation),

considering the known negative implications of increasing

twine diameter (e.g., Herrmann et al., 2013).

While there were no effects of T90 on relative size or

species selection, the QIM data support the fishers’ assertion

of an improved physical quality of deepwater flathead (and

better price). Other studies assessing similar codend changes

(e.g., alternate materials or designs) to improve catch quality

have shown comparable marginal (Brinkhof et al., 2021) or

non-significant impacts (Tveit et al., 2019; Jensen et al., 2022).

Much of the improved quality of deepwater flathead was

attributed to fewer cuts/abrasions and possibly because the

T90 cylinder allowed small debris to pass out of the codend,

which would have been facilitated by the water displaced

forward (Broadhurst et al., 1999a). Nevertheless, any

explanation remains speculative and additional data are

required to better quantify improvements in the landed-

catch quality and temporal preservation implications due to

the T90.
Conclusions

Unlike previous published studies assessing similar sizes

or smaller T90 (to conventional T0) mesh in codends, we

failed to show any selectivity improvements (Kennelly and

Broadhurst, 2021). This anomaly might reflect research bias,

where only positive effects are published, but it is also likely

other gear parameters, including the small mesh size and

double twine used, would have limited selection. Future

research might benefit from assessing T90 in a slightly

larger mesh size and/or a single twine in either the anterior

section, or throughout the codend.

Beyond reducing unwanted catches of some small deepwater

flathead when present, and other species, greater lateral mesh

openings might further improve catch quality. However, because

volume negatively affects catches through increased interactions,

reducing unwanted catches of wide stingaree (~50% of the total
Frontiers in Marine Science 06
catch) would be warranted. The small average weight (~0.6 kg) and

sizes of the wide stingarees might preclude mechanical-separating

grids. Anterior-trawl modifications, including changes to ground

gears and/or dropout panels, might have greater utility, but will

require consideration given that wide stingarees and deepwater

flathead maintain similar positions on the substrate.
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Ingólfsson, Ó.A., and Brinkholf, J. (2020). Relative size selectivity of a four-
panel codend with short lastridge ropes compared to a flexigrid with a regular
codend in the barents Sea. Fish. Res. 232, 105724, 1–5. doi: 10.1016/
j.fishres.2020.105724

Jensen, T. K., Brinkhof, J., Lindberg, S–K., Tobiassen, T., Heia, K., Olsen, S. H.,
et al. (2022). Effect of the T90-codend on the catch quality of cod (Gadus morhua)
compared to the conventional codend configuration in the Barents Sea bottom
trawl fishery. Fish. Res. 250, 106277. doi: 10.1016/l.fishres.2022.106277

Kennelly, S. J., and Broadhurst, M. K. (2021). A review of bycatch reduction in
demersal fish trawls. Rev. Fish Biol. Fish. 31, 289–318. doi: 10.1007/s11160-021-09644-0
Lomeli, M. J. M., Hamel, O. S., Wakefield, W. W., and Erickson, D. L. (2017).
Improving catch utilization in the U.S. West coast groundfish bottom trawl fishery:
An evaluation of T90-mesh and diamond-mesh cod ends. Mar. Coast. Fish.: Dyn.
Manage. Eco. Sci. 9, 149–160. doi: 10.1080/19425120.2016.1274697

Madsen, N. (2007). Selectivity of fishing gears used in the Baltic Sea cod fishery.
Rev. Fish Biol. Fish. 17, 517–544. doi: 10.1007/s11160-007-9053-y

Millar, R. B. (1992). Estimating the size-selectivity of fishing gear by
conditioning on the total catch. J. Am. Stat. Assoc. 87, 962–968.

Millar, R. B. (2011). Maximum likelihood estimation and inference: With
examples in r, SAS and ADMB (London: Wiley), 357 p.

Millar, R. B. (2021) R package SELECT for estimation of the size selectivity of
fishing gears. Available at: https://github.com/rbmillar/SELECT.

Millar, R. B., Broadhurst, M. K., and MacBeth, W. G. (2004). Modelling
between-haul variability in the size selectivity of trawls. Fish. Res. 67, 171–181.
doi: 10.1016/j.fishres.2003.09.040

Moderhak, W. (1997). Determination of selectivity of cod codends made of
netting turned through 90o. Bull. Sea Fish. Inst. 1, 3–14.

Nielsen, D. (2005). Quality index method provides objective seafood assessment.
Glob. Aqu. Adv. August 2006, 36–38.

Pauly, D., Zeller, D., and Palomares, M. L. D. (Eds.) (2020). Sea Around us
concepts, design and data (seaaroundus.org). Available at: https://www.
seaaroundus.org/citation-policy/.
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