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The high-precision estimation of mangrove leaf area index (LAI) using a deep learning 
regression algorithm (DLR) always requires a large amount of training sample data. 
However, it is difficult for LAI field measurements to collect a sufficient amount of 
sample data in mangrove wetlands. To tackle this challenge, this paper proposed an 
approach for expanding training samples and quantitatively evaluated the performance 
of estimating LAI for mangrove communities using Deep Neural Networks (DNN) and 
Transformer algorithms. This study also explored the effects of unmanned aerial vehicle 
(UAV) and Sentinel-2A multispectral, orbital hyper spectral (OHS), and GF-3 SAR images 
on LAI estimation of different mangrove communities. Finally, this paper evaluated the 
LAI estimation ability of mangrove communities using ensemble learning regression 
(ELR) and DLR algorithms. The results showed that: (1) the UAV images achieved the 
better LAI estimation of different mangrove communities (R2 = 0.5974–0.6186), and GF-3 
SAR images were better for LAI estimation of Avicennia marina with high coverage (R2 = 
0.567). The optimal spectral range for estimating LAI for mangroves in the optical images 
was between 650–680 nm. (2) The ELR model outperformed single base model, and 
produced the high-accuracy LAI estimation (R2 = 0.5266–0.713) for different mangrove 
communities. (3) The average accuracy (R2) of the ELR model was higher by 0.0019–0.149 
than the DLR models, which demonstrated that the ELR model had a better capability  
(R2 = 0.5865–0.6416) in LAI estimation. The Transformer-based LAI estimation of A. 
marina (R2 = 0.6355) was better than the DNN model, while the DNN model produced 
higher accuracy for Kandelia candel (KC) (R2 = 0.5577). (4) With the increase in the 
expansion ratio of the training sample (10–50%), the LAI estimation accuracy (R2) of DNN 
and Transformer models for different mangrove communities increased by 0.1166–0.2037 
and 0.1037–0.1644, respectively. Under the same estimation accuracy, the sample 
enhancement method in this paper could reduce the number of filed measurements by 
20–40%.

Keywords: mangrove communities, LAI estimation, ensemble learning regression and deep learning regression 
algorithms, sample enhancement, optical and SAR images

doi: 10.3389/fmars.2022.944454

ORIGINAL RESEARCH
published: 22 July 2022

http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.831262&domain=pdf&date_stamp=2022-07-22
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.944454&domain=pdf&date_stamp=2022-07-22
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#articles
mailto:fubolin@glut.edu.cn
https://doi.org/10.3389/fmars.2022.944454
https://www.frontiersin.org/articles/10.3389/fmars.2022.944454/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.944454/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.944454/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.944454/full
https://doi.org/10.3389/fmars.2022.944454
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
http://creativecommons.org/licenses/by/4.0/


Fu et al. LAI Estimation of Mangrove Communities

2Frontiers in Marine Science | www.frontiersin.org July 2022 | Volume 9 | Article 944454

1 INTRODUCTION

Mangroves are one of the most prolific and productive ecosystems 
on earth (Borges, 2003; Behrouz-Rad, 2014). It not only nurtures 
abundant aquatic life, but also plays an irreplaceable role in 
sequestering and storing carbon and maintaining sustainable 
development (Wang et al., 2003). The Leaf Area Index (LAI) can 
reflect the leaf sparsity and canopy structure characteristics and 
is a key indicator for monitoring the health of vegetation (Giri 
et al., 2007; Heumann, 2011; Tian et al., 2017). Due to high plant 
density, intertwined roots and branches, and tidal fluctuations, 
traditional in situ observations are difficult to accomplish in large-
scale LAI measurements. Recently, remote sensing technology 
has been an effective way to estimate the LAI of mangroves (Guo 
et al., 2021).

The vegetation index has been used to estimate LAI (Green 
et al., 1997). Studies have employed the original spectral bands (e.g., 
Blue, NIR) and vegetation index (e.g., EVI, NDVI) to construct 
the LAI estimation model (Kamal et al., 2016; Wang et al., 2019). 
For example, Kamal et al. (2021) used WorldView-2 imagery and 
NDVI to achieve a high-precision (R2 = 0.98) estimation of LAI 
for mangroves. However, the influence of different spectral band 
combinations on the LAI estimation of mangrove communities 
had rarely been considered, so the spectral information was not 
fully utilized. Therefore, this paper calculated combined features 
with vegetation indices and original spectral bands to construct 
a high-dimensional mangrove LAI dataset. However, different 
band combinations caused information redundancy, which 
affected the computational efficiency and accuracy of the model. 
Data dimensionality reduction can eliminate data redundancy 
and improve model estimation accuracy (Liang et  al., 2020; 
Lou et al., 2020). Active and passive remote sensing images in 
different spatial resolutions have also been used to estimate 
different vegetation biophysical parameters (Jia et al., 2019; Zhu 
et  al., 2020). UAVs can provide a wide range of cost-effective 
image data based on their flexible imaging cycles (Hardin and 
Jensen, 2011; Knoth et  al., 2013; Bhardwaj et  al., 2016). Tian 
et  al. (2021) achieved high precision estimation accuracy of 
above-ground biomass of mangroves (R2 = 0.8319, RMSE = 
22.7638 Mg/ha) using UAV imagery. Hyperspectral images may 
provide rich spectral information. Studies have demonstrated 
the potential of hyperspectral imagery in estimating the LAI of 
mangroves (Neukermans et  al., 2008; Liang et  al., 2015; Yang 
et al., 2022). Chen et al. (2020) achieved a high accuracy (R2 = 
0.834, RMSE = 0.824) estimation of the LAI of mangroves using 
GF-5 hyperspectral imagery and a machine learning regression 
model. However, the sensitivity of certain spectral bands to LAI 
is influenced by the canopy structure. (Zhu et  al., 2017). The 
reflectance of bare soil under optical imaging and the spectral 
saturation effect under high cover can also reduce the accuracy 
of LAI estimation in mangrove communities (Dong et al., 2019). 
Meanwhile, optical sensors mainly obtain information on the top 
of the vegetation canopy, and it is difficult to obtain information 
on the vertical structure of the vegetation (Lu, 2006; Chang and 
Shoshany, 2016). Synthetic Aperture Radar (SAR) images have 
canopy penetration capability and can better obtain vertical 
structure information (Lucas et al., 2004; Omar et al., 2017; Ke 

Huang et al., 2022). There is a lack of research to compare and 
evaluate the differences in the accuracy of LAI estimation of 
mangrove communities from multispectral, hyperspectral, and 
SAR images.

There are two main types of remote sensing estimates of 
LAI: physical models based on radiative transfer theory and 
biophysical processes; and empirical models based on the 
relationship between measured data and image spectral bands 
(Kovacs et  al., 2005; Bocca and Rodrigues, 2016; Tian et  al., 
2017). Although the physical models enable us to accurately 
reflect the physiological process of vegetation growth, such 
methods require a large number of biophysical parameters (Zhu 
et al., 2017), and the model adjustment and calibration require 
complex processes, making it difficult to apply to the estimation 
of vegetation physical parameters in a large range (Sun et  al., 
2019). Empirical models have been successfully used to estimate 
various vegetation biophysical parameters (Kovacs et  al., 2005; 
Tian et al., 2017). Shallow machine learning regression models 
explain the relationship between biophysical parameters 
and model parameters (Zhu et  al., 2017). For example, Liang 
et  al. (2020) obtained good estimation accuracy (R2 = 0.939, 
NRMSE   = 6.474%) for crop LAI using a shallow machine 
learning regression model. But the shallow machine learning 
regression algorithm is prone to overfitting (Chlingaryan et al., 
2018), and the single regression model has poor stability and low 
prediction accuracy, which requires frequent trade-offs between 
the balance and accuracy of the model (Christensen, 2003). The 
ensemble learning algorithm integrates the advantages of each 
algorithm, makes up for the shortcomings of a single algorithm, 
and improves the model stability and prediction accuracy. For 
example, Yan et al. (2021) proposed and used EIM for estimating 
water, carbon, and ecological footprints. Compared to traditional 
methods, EIM achieves similar predictive performance but 
with 80% less data than a single machine learning regression 
algorithm that improves estimation accuracy by more than 
20%. Stacking models integrate the advantages of multiple base 
regression models to generate stable estimation results and 
provide better generalization ability for regression predictions 
(Dietterich, 2000; Ghosh et  al., 2021). However, the ability of 
the ensemble learning algorithm to estimate the LAI of different 
mangrove communities remains to be verified. Deep learning 
(DL) algorithms are regarded as a breakthrough technology in 
machine learning and remote sensing data mining (Zhu et  al., 
2017). DL algorithms have been used for vegetation parameter 
and crop yield estimation (Sun et  al., 2019; Khaki and Wang, 
2019). Tamiminia et  al. (2021) achieved high estimation 
accuracy (RMSE = 2.69 Mg/ha and R2 = 0.89) for shrub willow 
biomass using a DL (Convolutional Neural Networks, CNN) 
model. The traditional DL algorithm requires a large amount of 
computation and complex model training, while the Tansformer 
algorithm proposed by the Google AI team (Vaswani et  al., 
2017) realizes the “self-attention” mechanism, which reduces 
the complexity of the architecture and enables the achievement 
of very fast computation, and reduced training time. At 
present, the applicability of the Tansformer algorithm for LAI 
estimation of different mangrove communities has not been 
verified. Few studies have evaluated the ability of ELR and DLR 
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models (Tansformer and DNN) to estimate the LAI of different  
mangrove communities.

Quantitative remote sensing research has high requirements 
for measured data and requires a large amount of measured 
data for model training and verification (Kamal et  al., 2016). 
The number of training samples was also critical for the high-
accuracy estimation of the DLR model (LeCun et  al., 2015). 
For example, Kamal et al. (2016) validated the accuracy of LAI 
estimation for mangroves in different regions using 63 and 37 
independent samples, respectively, and obtained better results  
(R2 = 0.83 and R2 = 0.82). Huang et  al. (2020) found that 
insufficient training data can lead to severe overfitting problems in 
the DLR model and reduce model accuracy. However, for most of 
the natural vegetation with a more complex growth environment, 
such as mangroves growing mainly in the coastal intertidal zone, 
it is difficult to obtain sufficient actual measurement data. To 
solve this problem, a training sample expansion method based 
on UAV multispectral images and the ELR model was proposed 
in this paper. At the same time, this paper quantitatively analyzes 
the effects of different training sample expansion ratios on the 
accuracy of mangrove LAI estimation by Tansformer and DNN 
models, and argumentative sample expansion addresses the 
problem of insufficient training samples for Tansformer and 
DNN models.

To fill the research gaps, this paper takes the mangrove nature 
reserve in Beibu Gulf, China as the study area, and estimates the 
LAI of different mangrove communities using the ELR and DLR 
algorithms with multispectral, hyperspectral, and SAR images. 
The main objectives of this study include: (1) exploring the 
differences in LAI estimation of different mangrove communities 
between optical and SAR images; (2) comparative analysis of the 
stability and accuracy of LAI estimation between ELR and a single 
base model; (3) quantitatively evaluating the ability of ELR and 
DLR models to estimate LAI of mangroves and determining the 
optimal LAI estimation model for each mangrove community; (4) 
examining the effectiveness of the sample enhancement method 
proposed in this study for LAI estimation; and quantifying the 
effect of different expansion ratios of the training sample on the 
accuracy of LAI estimation using Transformer and DNN models.

2 STUDY AREA AND DATA SOURCE

2.1 Study Area
The total area of mangroves in Guangxi Province reaches 9,330.34 
hectares, accounting for 32.7% of the country, ranking second 
in the country, with the largest area of Avicennia marin natural 
growing place. The experimental research area is located in the 
coastal mangrove nature reserve in Qinzhou City, Beibu Gulf, 
China. The geographical location is 108°48′50″E-108°52′17″E, 
21°37′02″N-21°38′21″N (Figure 1). The region is mainly in 
subtropical to tropical transitional marine monsoon climate. The 
annual average sunshine is 1,782.9 hours, and the precipitation 
is 2,104.2 mm. However, because of the influence of natural and 
human factors, mangroves have been degraded on a large scale. 
The large-scale, high-precision estimation of LAI for mangroves 

can effectively monitor the growth of mangroves and provide 
data support for the protection and restoration of mangroves.

2.2 Data Sources

2.2.1 UAV Images Acquisition and Processing
This study uses a DJI Matrice 210 (DJI M210) UAV equipped 
with a Micasense Red Edge-MX sensor from 10:30 to 15:30 
(UTC+08:00) every day from 4 to 25 April 2021, and the 
resolution of the research area was obtained as a 0.07  m 
multispectral image. The flight altitude was 100  m. Both the 
side-to-side overlap rate and the heading overlap rate were set to 
80%. Timed shots were taken for 3 s and 45 sorties were flown. 
Before each flight, radiometric calibration was performed using 
a calibration plate provided by Micasense. The sensors and 
calibration parameters are shown in Table 1. Before each sortie, 
six ground control points were laid out for UAV image processing 
by using Hi-Target V90 RTK ( ± 0.25 cm).

Multispectral data processing: In this paper, Pix4D mapper 4.7 
software was used to process the acquired UAV images, including 
image quality check, image matching, aerial triangulation 
solution, dense point cloud generation, 3D modeling, and 
finally, multispectral images with a spatial resolution of 0.07 m 
were generated for the study area, and the projection coordinate 
system was set to WGS 1984 UTM Zone 49N.

The Sentinel-2A multispectral image (S2), Zhuhai No. 1 Orbita 
Hyper Spectral (OHS) hyperspectral image, and C-band VV/VH 
polarized Gaofen-3 (GF-3) SAR image were selected. The specific 
information and imaging times are shown in Supplementary 
Table 1.

OHS is China’s commercial satellite with hyperspectral data 
acquisition capability. Equipped with a CMOSMSS sensor, the 
image has a spatial resolution of 10 m and a spectral resolution of 
2.5 nm in 32 bands. Launched on 10 August 2016, the GF-3 SAR 
image has 12 imaging modes with a 1 m spatial resolution. In this 
paper, the SAR images are processed by dual polarization in fine 
strip map 1 (FSI) mode. The specific imaging parameters of the 
four images are shown in Supplementary Table 1.

For Sentinel-2A image processing, we used the Sen2cor 2.5.5 
model written in Python code to process L1C-level image data 
into L2A-level products. We also used SNAP software to resample 
the L2A-level data to 10 m resolution by nearest neighbor to be 
consistent with the field measurement sample (10 × 10 m).

For GF-3 (SAR) image processing, the backscattering 
coefficient image (sigma0) with a projected coordinate system was 
generated by VV/VH dual-polarization processing, radiometric 
correction, multi-view processing, filtering processing (Lee), and 
geocoding in GF-3 SAR image data.

For OHS image processing, we used the ENVI 5.4 software 
for radiometric calibration, atmospheric correction, and 
orthorectification. We generated the reflectance image data with 
accurate geometric positioning.

In this study, the six ground control points collected by GNSS 
RTK were used to georeference and subset the UAV and satellite 
images in the ENVI 5.6 software. The georeferenced errors were 
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less than one pixel. The final projection coordinate system for 
UAV and satellite images of the study area was unified as the 
WGS-84 data and the Universal Transverse Mercator (UTM) 
Zone 49 North coordinate system.

2.2.2 Multiscale LAI Field Measurements
We used the hand-held LAI-2200C leaf area index meter to measure 
the leaf area index of different communities of mangroves in the 
study area. The in-situ measurements were conducted from 4 to 25 
April 2021. To ensure data accuracy, the measurements were taken 
between 6:30–9:00 and 16:30–19:00 Beijing time every day when the 
sky was cloud free and there was no direct sunlight. We measured 
single plants at 5 m × 5 m and 10 m × 10 m (Figure 2) to obtain 
the  LAI data.

The specific protocol of measurements includes: (1) for a single 
plant LAI: independent and representative plants were selected, and 
a leaf area index meter was used to measure once above four times 
the height of the leaf above the canopy in each direction of the plant 
to record the A value. The bottom of the crown was measured from 
the root and stem of the plant to the outside in turn, and the average 
of four times was recorded as the B value. Each plant was measured 
in four directions. (2) For 10 m × 10 m (OHS and S2) plots LAI: On 
each 10 m × 10 m plot, 10–15 plants were evenly measured with LAI-
2200 leaf area index meter. The position of the center point of the plot 
was recorded with Hi-Target V90RTK ( ± 0.25 cm + 1 ppm). The LAI 
value of the plants was averaged as the LAI value of the center point 
of the plot. (3) For 5 m × 5 m (GF-3 SAR) plot LAI: a 5 m  × 5 m plot 
was set up in the center of each 10 m × 10 m plot, and 6–8 plants were 

FIGURE 1 |   Location of study area.

TABLE 1 |  Red Edge-MX multispectral sensor and calibration parameter settings.

Multispectral bands Blue Green Red Red Edge NIR

Center wavelength 475 nm ± 20 nm 560 nm ± 20 nm 668 nm ± 10 nm 717 nm ± 10 nm 840 nm ± 40 nm
Scaling parameters 0.537 0.538 0.537 0.533 0.536
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evenly measured using LAI-2200 leaf area indexer. The position of 
the center point of the plot was recorded with Hi-Target V90RTK ( ± 
0.25 cm + 1 ppm). The LAI value of the plants measured in the plot 
was averaged as the LAI value of the center point of the plot. The field 
measurement methods of mangrove LAI are shown in Table 2.

3 METHODS

The technical route includes four parts, as illustrated in Figure 3. 
(1) The vegetation index and combined features were calculated 
using active and passive remote sensing images to create a high-
dimensional data set, and data dimensionality reduction was 
used for feature optimization. (2) ensemble BPNN, Elastic Net, 
Gradient Boosting and Random Forest algorithms to build an 
ensemble learning model, Comparing the estimation accuracy 
of ELR and DLR models (DNN and Transformer) for the LAI 
of different communities; (3) The effects of optical and SAR 
images on the LAI estimation accuracy of different mangrove 
communities were analyzed; (4) The method of extending the 
training samples of DLR algorithm based on UAV images and 

ELR model is proposed to solve the problem of insufficient 
training samples of DLR model.

3.1 High Dimensional Datasets and 
Dimensionality Reduction

3.1.1 High Dimensional Dataset Generation
This study integrates the original band, vegetation index, 
combined features, or polarized backscatter coefficient combined 
features. A high-dimensional dataset of LAI estimation for 
different mangrove communities was constructed, as shown in 
Table  3. Seventeen vegetation indices (see Appendix Table A1 
for details) and 168 to 2,169 combined features were calculated 
under optical remote sensing images (UAV, S2, and OHS). 
For GF-3 SAR images, 43 combined polarized backscatter 
coefficient features were calculated. The specific calculations of 
the combined features and polarized backscattering coefficient 
combination features are shown in formulas (1)–(4).

 
DCI  ( , )b b b bi j i j

= ±ρ ρ
 

(1)

 RCI b b
b

b
i j

i

j

( , ) =
ρ

ρ
 (2)

 
CVI b b

b

b b
i j

i

i j

( , ) =
±

ρ

ρ ρ

 
(3)

FIGURE 2 | Measurement method of multi-scale plots

TABLE 2 | Ground LAI measured data based on different image resolutions.

Sensors AM KC AC total

UAV (single plant) 300 70 90 460
S2 (10 m × 10 m) 300 70 90 460
OHS(10 m × 10 m) 300 70 90 460
GF-3(5 m × 5 m) 300 70 90 460
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 NDCI b b
b b

b b
i j

i j

i j

( , ) =
±ρ ρ

ρ ρ
 (4)

Where bi and bj are any two bands or different polarizations 
of the UAV, S2, OHS images, and GF-3 SAR data, respectively, 
ρbi, ρbj are the mangrove canopy reflectance values or 
the backscattering coefficients (sigma0) of VV and VH 
polarization for the two bands corresponding to bi, bj, 
respectively.

3.1.2 Data Dimensionality Reduction
High Correlation filter and Backward Feature Elimination 
were used to reduce dimensionality and eliminate redundant 
data on the mangrove LAI high-dimensional dataset of UAV, 
S2, OHS, and GF-3 SAR observations.
 (1) The vegetation index calculation and band combination 
were performed to construct the LAI high-dimensional 
dataset for optical and SAR images. The normal distribution 
test was used to generate the normal distribution trend and 
kernel density maps of each spectral band and combined 
feature (Figures  4A, B), and the combined features without 
conforming to a normal distribution were normalized and 
log-transformed (Figures 4C–E).

FIGURE 3 | Experimental flow chart.

TABLE 3 | High-dimensional dataset generation based on optical and GF-3 SAR 
images.

Sensors High dimensional dataset Total

UAV 5 optical spectral bands 
17 NDVI, RVI, ARVI, TSAVI, SAVI, MCARI, TSAVI, MSAVI, 
Green, RS, OSAVI, RDVI, TVI, DVI, TVI2, NLI, EVI 
168 combined features

190

S2 12 optical spectral bands 
17 NDVI, RVI, ARVI, TSAVI, SAVI, MCARI, TSAVI, MSAVI, 
Green, RS, OSAVI, RDVI, TVI, DVI, TVI2, NLI, EVI 
289 combined features

318

OHS 32 optical spectral bands 
17 NDVI, MCARI, OSAVI, MTVI, NDGI, MNLI, NDVI705, 
mSR705, SIPI, ARI1, ARI2, PSRI, CRI1, CRI2, VOG1, VOG2, 
SAVI1 
2169 combined features

2218

GF-3 2 VV, VH (sigma0) 
43 VV/VH VH/VV…

45
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 (2) Correlation analysis was performed on the transformed high-
dimensional dataset and the field-based measurement LAI values 
using the mcorr package in Python, and removed the combined 
features with low correlation (R<0.5) in the high-dimensional 
dataset (Figure 4F).
 (3) Model iterative training was performed until achieving high 
prediction accuracy (R2 >0.85) and no performance improvement 
was achieved using the remaining combined features. In the iterative 
training procedure, redundant features with a high correlation were 
further removed according to the model training accuracy.
 (4) According to the difference in LAI values between remote 
sensing estimation and field-based measurement, the abnormal 
field-measured sample points are automatically removed to improve 
the estimation accuracy of the model (Figure  4G). The final 
measured sample points were selected and used to estimate the LAI 
of mangrove communities (Table  4). The calculation formula is 
shown in Supplementary Table 2.

3.2 Ensemble Learning Regression  
(ELR) Model
Stacking is a technique that integrates multiple compatible 
learning algorithms or models to perform a single task and 
obtains better estimation results by integrating the advantages 
of multiple base models. This paper stacked four base models 

(BPNN, Elastic Net, Gradient Boosting, and Random Forest 
algorithms) for an ELR model to estimate LAI with feature 
variables. The specific process is as follows:
(1) The datasets combining feature variables with the LAI of 
different mangrove communities were randomly divided into 70% 
for training and 30% for testing, and the training sets were equally 
divided into train1, train2, train3, train4, and train5.
(2) One dataset from train1 to train5 was selected as the validation 
set for different base models in turn, and the remaining 4 datasets 
are the training set. Each training model was performed with 5-fold 
cross-validation, and achieved five copies of prediction data, which 
were stacked and divided into training (A1–A4) and prediction 
(B1–B4) data.
(3) An ELR model was built and trained using the A1–A4 dataset, 
and the final prediction results were obtained using the B1–B4 
dataset. The ELR model structure is shown in Supplementary 
Figure 1.

3.3 Deep Learning Regression  
(DLR) Models

3.3.1 DNN Algorithm
The DNN (Hinton and Salakhutdinov, 2006) network consists of 
several inputs and outputs with multiple implicit layers (Hidden 

TABLE 4 | Preferred feature variables for mangrove LAI estimation from UAV, S2, OHS, and GF-3 SAR images.

Sensors Communities combined features Vegetation index Feature bands Descriptions

UAV AM 12 3 15 U7, U8, U9, U10, U11, U12, U13, U16, U18, U19, U20, U21, NDVI, ARVI, RVI
KC 19 2 21 U2, U3, U4, U5, U6, U8, U9, U10, U11, U12, U13, U16, U19, U21, U22, U23, U24, 

U25, U26, NDVI, RDVI
AC 9 3 12 U5, U8, U9, U10, U12, U13, U16, U19, U21 

ARVI, RVI, TSAVI
S2 AM 7 – 7 S1, S2, S36, S37, S40, S41, S43

KC 11 1 12 S18, S19, S22, S24, S25, S36, S37, S38, S39, S40, S41, RVI
AC 11 3 14 S1, S2, S3, S5, S6, S9, S17, S27, S30, S33, S34, EVI, RDVI, OSAVI

OHS AM 7 1 8 H4, H6, H8, H11, H26, H29, H30, NDVI
KC 9 2 11 H1, H3, H4, H8, H9, H13, H19, H25, H26, NDV, MCARI
AC 11 3 14 H2, H13, H14, H16, H17, H19, H20, H24, H25, H26, H28, NDVI, EVI, OSAVI

GF-3 AM 7 – 7 F1, F5, F16, F22, F24, F26, F28

KC 10 – 10 F1, F3, F5, F12, F13, F16, F22, F24, F26, F28

AC 8 – 8 F1, F2, F3, F5, F16, F17, F23, F29

FIGURE 4 | Processing process of four kinds of high-dimensional image datasets. (A, B) Normal distribution map and kernel density map representing unprocessed 
feature bands. (C) Indicates standardization and logarithmic transformation of feature bands that do not conform to the normal distribution. (D, E) Indicates the 
normal distribution map and kernel density map of the processed feature bands. (F) Represents a graph of correlation coefficients between bands and between 
bands and target values (LAI). (G) represents the removal of outliers.
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Layer) of perceptrons (as shown in Supplementary Figure  2), 
and the multilayer perceptron solves the defects of the previous 
inability to simulate or logic and enhances the model expression 
capability.

 3.3.2 Transformer Algorithm
A Transformer (Vaswani et al., 2017) network includes multiple 
identical encoders and decoders stacked together to form a 
stack encoder and decoder with the same number of units. 
The encoder has a layer of multi-head attention and a layer of 
a feedforward neural network. The decoder has an additional 
multi-head attention mask. The network structure is shown in 
Supplementary Figure 3.

3.4 Model Parameters Optimization
In order to achieve high accuracy estimation of LAI for different 
mangrove communities, this paper optimized the parameters 
for building mangrove LAI estimation models based on ELR 
and DLR algorithms (Transformer and DNN). The specific 
optimization parameters are shown in Supplementary Table 3.

The maximum number of iterations, the depth of the decision 
tree, the minimum number of samples required for segmentation, 
and the learning rate are set by n_estimators, max_depth, min_
samples_split, and learning_rate for optical and SAR image data 
respectively to prevent overfitting of the model and to tune the 
parameters to improve the estimation accuracy of the ELR model 
for different mangrove communities LAI under optical and SAR 
image data.

The model optimizer was set to Adam (Diederik and Jimmy, 
2015), and the input layer was set to X (X: number of mangrove 
communities variables under different images). DNN model: 
the initial learning rate was set to 0.0001, the iterative number 
(epochs) was set to 1,500; the loss function was set to mean_
squared_error. Transformer model: the encoder and decoder 
were set to 6 layers, and the initial learning rate was set to 0.0001. 
The iterative number was set to 8. The loss function was set to 
mean_squared_error.

3.5 Mangrove LAI Estimation Using 
Training Sample Enhancement
In this paper, we propose a training sample expansion method 
based on an ELR model and UAV multispectral images, 
which is then used in the DLR algorithm for high-accuracy 
estimation of LAI of mangrove communities. We tested 
five training sample expansion schemes with an expansion 
ratio of 10 to 50%. The ability of the Transformer and DNN 
models to improve the LAI estimation accuracy of mangrove 
communities under different expansion ratios was explored. 
To ensure the reliability of the experimental results, this paper 
only increased the number of training samples for the DLR 
model, and the verification samples of the LAI estimation 
model under each expansion scheme use the ground-
measured LAI data. The specific process is as follows:

① The expanded sample points of three mangrove communities 
were selected from the UAV images using the random sampling 

method. The type of mangrove community one by one was 
determined by field measurements and visual interpretation of 
UAV images (0.07  m). The spectral reflectance of each sample 
point was extracted and input into the ELR model trained with 
high precision to estimate its corresponding LAI value, as the 
real LAI value of the extended training sample in the DLR model 
under 4 kinds of images (UAV, S2, OHS, and GF-3). The specific 
calculation formula is as in formula (5). The proportion of the 
extended training sample data of various mangrove communities 
in the measured data ranges from 0 to 50%.

 LAI F ixUAV stack= ( )  (5)

Where LAIUAV represents the LAI values of mangroves at 
different extended sample points estimated based on the high-
precision training ELR model and UAV multispectral images, x is 
the number of mangrove communities LAI measured data points, 
i is the proportion of extended sample data to the measured data 
(0–50%).

② Extract the spectral reflectance or backscattering coefficient 
values of the expanded sample points from the optical (UAV, S2, 
and OHS) and GF-3 SAR images, respectively, and use the LAI 
value estimated by formula (5) as the true value of the LAI of the 
extended sample points in the four types of images to generate the 
extended training data of the DLR model under different images. 
We used extended training data and measured data to build high-
dimensional data sets and perform data dimensionality reduction 
and feature optimization. Finally, the optimal feature variables 
are input into the Transformer and DNN models, respectively, 
to estimate the LAI value of the mangrove communities. After 
training samples expand under different images, the calculation 
formula is as in formula (6).

 LAI F ix x j
j UAV D~

( ), , , ,� �= + =1 2 4  (6)

In the formula LAI
j UAV~

 represents the mangrove LAI value 
estimated by the DLR model under different expansion ratios 
in each image, D represents DNN and Transformer models, 
j represents UAV, S2, OHS, and GF-3 remote sensing images, 
x is the number of LAI measured data points of mangrove 
communities, and i Indicates the proportion of the extended 
sample data to the measured data (0–50%).

3.6 Accuracy Assessment
Accuracy validation is the process of evaluating the accuracy 
of model estimates using independent validation data. The 
uncertainty of field LAI measurements was caused by the spatial 
structure of the canopy, sampling methods, instrument errors, 
and measurement environment (Waske et al., 2009). In this paper, 
the coefficient of determination (R2) and root mean square error 
(RMSE) were used to verify the model prediction accuracy, and 
30% of the ground-measured LAI values (single plant and sample 
scale) were used as independent validation data to evaluate the 
model estimation accuracythe calculation formulas are as in 
formula(7)-(8).
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Where yi is the mangrove LAI value measured in the field, y̆i

is the estimated value of mangrove LAI, wi is the weight, wi >0 
usually set to 1, y represents the mean value of mangrove LAI, 
and m represents the number of mangrove samples.

4 RESULTS ANALYSIS

4.1 Assessing the Effect of Optical and  
SAR Images on LAI Estimation of 
Mangrove Communities
In order to explore the difference in the accuracy of LAI 
estimation of different mangrove communities under optical and 
SAR image data. In this paper, seven mangrove LAI estimation 
models were constructed using shallow machine learning, 
ELR, and DLR algorithms. The accuracy of LAI estimation for 
the three dominant communities in mangroves under different 
image data is shown in Figure 5.

Figure  5 shows that the spatial resolution, spectral 
reflectance, and radar backscatter coefficient have a certain 
effect on the estimation accuracy of mangrove LAI. The average 
LAI estimation accuracy of mangrove communities by different 
models under UAV multispectral images was the highest (R2 = 
0.597–0.619), which was 0.052–0.109 higher than that by OHS 
hyperspectral images, respectively. Compared with GF-3 SAR 
images, the mean LAI estimation accuracy (R2) of different 
mangrove communities was improved by 0.052–0.098 from UAV 
images, and the LAI estimation accuracy (R2) of Kandelia candel 
was the most affected. The average LAI estimation accuracy 
of different images for K. candel was UAV> GF-3> OHS. The 
reasons are as follows: (1) Compared with 5 × 5 m and 10 × 10 m 

sample plots, the ultra-high spatial resolution (0.07 m) of UAV 
images and individual tree measurement method of mangrove 
LAI reduced the influence of bare soil, thus improving the 
accuracy of LAI estimation by images; (2) There were inevitably 
other communities in 10 m × 10 m plots, leading to errors in the 
spectral reflectance extraction.

The UAV image produced the highest average LAI estimation 
accuracy (R2) of three mangrove communities using different 
models, followed by the S2 and OHS images. S2 and OHS images 
both obtained good accuracy for LAI estimation of different 
mangrove communities (R2 = 0.508–0.598). There are 26 feature 
variables extracted by dimensionality reduction in the S2 multi-
spectral image (Table  3 and Supplementary Table  2), among 
which 20 feature variables are calculated using the original bands 
B4 (Red) and B8 (NIR) of the image. The results showed that 
the Red Edge (650–680 nm) and NIR (785–900 nm) bands were 
sensitive to mangrove LAI. Additionally, 20 feature variables were 
extracted from OHS hyperspectral image data after dimensional-
reduction. The calculation of 19 feature variables included 
the original band B12 (637–642 nm) and B17 (713–718 nm). 
Meanwhile, 15 of the 21 feature bands selected from the UAV 
images are calculated by the B4 (Red Edge) and B5 (NIR) bands, 
indicating that the Red Edge (707–727 nm) and NIR (800–880 
nm) are more sensitive to mangrove LAI. The reflectance 
range of different spectral bands also has a certain influence 
on the LAI estimation of mangrove communities. The optimal 
spectral reflectance range of optical images for LAI estimation of 
mangroves was 650–900 nm.

In Figure  5, the average LAI estimation accuracy (R2) of 
A. marina under different images is in the following order:  
GF-3 >S2 >OHS. Comparing S2 multispectral and OHS 
hyperspectral images, the mean estimation accuracy (R2 = 
0.567) of GF-3 for LAI for A. marina was improved by 0.015 
and 0.018, respectively. The reasons for this are as follows: 
1) optical images cannot penetrate the vegetation canopy, 
making it difficult to obtain vegetation structure information; 
and 2) the problem of spectral saturation of surface 
reflectance and vegetation index under high coverage, while 
SAR images can penetrate the canopy to obtain vegetation 
structure  information.

FIGURE 5 | Statistical analysis of optical and SAR images for LAI estimation.
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4.2 Evaluating LAI Estimation Accuracy 
Between ELR and Single Base Models
To make LAI estimates more comparable, this study selected 
four machine learning algorithms (BPNN, Elastic Net, Gradient 
Boosting, and Random Forest) with different regression criteria 
to construct an ELR model and explored the differences in the 
accuracy and stability of LAI estimates for mangrove communities 
between ELR and single-base models. This paper estimated the 
LAI of three mangrove communities using ELR and single base 
models, respectively. The specific estimation accuracy is shown 
in Supplementary Table 4.

In Figure 6, the ELR model has higher accuracy in estimating 
LAI for different mangrove communities under optical and SAR 
image data, and the R2 was mainly concentrated between 0.5266 
and 0.713. The estimation accuracy (R2) of the ELR model for 
the LAI of A. marina was improved by 0.0197–0.1497 compared 
to the single base model; the best estimation accuracy of LAI 
for K. candel (R2 = 0.713) was improved by 0.0126–0.0887 over 
the single base model; the estimation accuracy (R2) of LAI for 
Aegiceras corniculatum (AC) was improved by 0.0117–0.0785, 
and the RMSE was reduced by 0.0253–0.0262. The estimates of 
LAI of different mangrove communities from the ELR model 
were mainly concentrated within one standard deviation of the 
measured values than the single-base model, indicating that 
the ELR model has better generalizability and stability for LAI 
estimation of different mangrove communities under optical and 
SAR images.

The estimation of LAI for mangrove communities also differed 
between different base models under optical and SAR image data. 
The accuracy of the BP model for LAI estimation of A. marina 
(R2 = 0.5276 to 0.6123) improved by 0.0256 to 0.0656 and RMSE 
decreased by 0.0074 to 0.0381 compared with the other three 
algorithms. The accuracy of the GB model for LAI estimation of 
K. candel (R2 = 0.5175–0.63) improved by 0.0039–0.0182 in R2 and 
was reduced by 0.0049–0.0234 in RMSE compared to the other 
three algorithms; the LAI estimation accuracy of the RF model 
for A. corniculatum (R2 = 0.6206, RMSE = 0.3042) improved by 
0.0348–0.0543 and RMSE decreased by 0.0227–0.0873 compared 
with the other three algorithms. The EN model showed better 
accuracy in LAI estimation of A. corniculatum under OHS and 
GF-3 image data (R2 = 0.5108, 0.5031).

4.3 Comparative Analysis of LAI 
Estimation Ability of ELR and  
DLR Algorithms
This study explores the ability of ELR and DLR models to estimate 
the LAI of mangrove communities. This study quantitatively 
analyzes the estimation accuracy of the ELR and DLR models 
for the LAI of different communities. It can be seen from Table 5 
that the average estimation accuracy (R2) of the ELR model for 
the LAI of different mangrove communities under optical and 
SAR images was improved by 0.001–0.149 compared with the 
DLR model (Transformer and DNN).

From Table  5, it can be seen that the average estimation 
accuracy (R2) of the ELR model for the LAI of mangrove 
communities under different images improved by 0.0019–0.149 

compared with the Transformer and DNN models, and the 
estimation accuracy of the ELR model for the LAI of different 
mangrove communities was relatively stable. DLR algorithms, 
especially the Transformer model, in optical and SAR images 
gradually decreases with the average estimation accuracy of 
the estimation models for the LAI from A. marina to K. candel. 
The average estimation accuracy of the LAI for A. marina  
(R2 = 0.6355) was only 0.006 lower than the ELR model  
(R2 = 0.6416), and the average estimation accuracy (R2) of the 
Transformer model for the LAI of K. candel was 0.149 lower than 
that of the ELR model. The reason for the analysis may be that A. 
marina has 300 measured LAI data points and K. candel has only 
70, which reduces the training accuracy of the DLR model and 
leads to lower accuracy of LAI estimation.

Figure 7 showed that under UAV and S2 images, the accuracy 
of the ELR model for LAI estimation of A. marin (R2 = 0.6971, 
RMSE  = 0.1897, and P<0.005) increased by 0.0355–0.0445 
compared with the DNN and Transformer models; under 
OHS and GF-3 images, the accuracy of the LAI estimation 
of the Transformer model for A. marin (R2 = 0.6316, RMSE = 
0.2302, and P<0.005) increased by 0.0424 and 0.0366, and RMSE 
decreased by 0.1179 and 0.1017 compared with the ELR and 
DNN models.

At 95% confidence interval, the LAI estimation accuracy 
(R2) of the ELR model for K. candel was better than that of the 
Transformer model, which was 0.1886–0.2483 higher than that 
of the DNN and Transformer models, and RMSE decreased by 
0.085–0.1835. Under the GF-3 radar image, the LAI estimation 
accuracy of the DNN model for K. candel (R2 = 0.5599, RMSE = 
0.2031) was 0.014 and 0.107 higher than that of the ELR and 
Transformer models, and RMSE was reduced by 0.008 and 
0.1829, respectively.

The LAI estimation accuracy of the DNN model for A. 
corniculatum (R2 = 0.5961, RMSE = 0.3021) was 0.015–0.1141 
higher than that of the ELR and Transformer models using the 
S2, OHS, and GF-3 images, while the ELR model with the UAV 
image produced better accuracy for the LAI estimation of A. 
corniculatum (R2 = 0.6991, RMSE = 0.2789).

4.4 The Effect of Training Sample 
Enhancement on LAI Estimation Using 
DLR Models
In this study, a method of combining the ELR and DLR models 
of UAV images to train sample expansion was proposed. Five 
sample expansion schemes were carried out, with the proportion 
of extended training samples accounting for 10–50% of ground 
measured data, to verify the ability of the Transformer and DNN 
models to improve the accuracy of mangrove community LAI 
estimation under different schemes.

4.4.1 The Effect of Training Sample Expansion for 
Estimating the LAI of Mangrove Communities Using 
the DNN Model
In this paper, mangrove communities with the lowest LAI 
estimation accuracy were selected from under 4 images, and 
training sample expansion was carried out for the DNN model 
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FIGURE 6 | Statistical analysis of the LAI estimation accuracy of different mangrove communities using the ELR model. The shaded area represents the standard 
deviation (σ) between the estimated and measured LAI value of mangrove communities. (A–L) Respectively represent the LAI estimation accuracy (R2) of 'Avicennia 
marina', 'Kandelia candel' and 'Aegiceras corniculatum' using 5 algorithms under 4 image data.

TABLE 5 | The LAI estimation accuracy of mangrove communities using the ELR and DLR models.

Communities AM(300) KC(70) AC(90)

Sensors   ELR DNN Transformer ELR DNN Transformer ELR DNN Transformer

UAV R2 0.6971 0.6526 0.6616 0.6941 0.6208 0.5168 0.6991 0.5893 0.5469
RMSE 0.1897 0.2267 0.2015 0.1579 0.1868 0.2441 0.2789 0.321 0.4313

S2 R2 0.6885 0.6023 0.6191 0.713 0.5244 0.4647 0.5388 0.5777 0.5518
RMSE 0.1946 0.314 0.3127 0.1352 0.2202 0.3187 0.4313 0.3795 0.4114

OHS R2 0.5914 0.623 0.6298 0.5645 0.5098 0.4875 0.5816 0.5961 0.482
RMSE 0.3391 0.2698 0.267 0.1934 0.2572 0.3071 0.3221 0.3021 0.4814

GF-3 R2 0.5892 0.595 0.6316 0.5462 0.5599 0.453 0.5266 0.5751 0.4924
RMSE 0.3481 0.3319 0.2302 0.211 0.2031 0.386 0.4393 0.3802 0.4785

Mean R2 0.6416 0.6191 0.6355 0.6295 0.5537 0.4805 0.5865 0.5846 0.5183
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according to 5 sample expansion schemes. The improvement of 
the LAI estimation accuracy of different mangrove communities 
by training sample expansion is shown in Table 6.
Figure  8 shows the changes in LAI estimation accuracy of 
different mangrove communities by the DNN model under five 
expansion schemes. The improvement of the LAI estimation 
accuracy of A. corniculatum by training sample expansion is the 
largest, as shown in Figures 8A–F. Under GF-3 SAR images, as 
the number of A. corniculatum samples increased from 90 to 
135, the LAI estimation accuracy (R2) of the DNN model for 
A. corniculatum increased from 0.5751 to 0.7788, an increase 
of 0.2037. The RMSE decreased from 0.4814 to 0.2757. When 
the number of extended training samples accounted for 40% 
of the measured data, the LAI estimation accuracy (R2) of A. 

corniculatum by the DNN model improved the most (0.0674), 
with an improvement of 9.63%. However, when the number of 
training samples accounted for 30% of actual data, the DNN 
model had the greatest influence on the LAI estimation accuracy 
(R2) of A. corniculatum (10.3%).

The expansion of training samples had relatively little influence 
on the accuracy of the LAI estimation of A. marina. Under GF-3 
images, as the number of samples of A. marina increased from 
300 to 450, the LAI estimation accuracy (R2) of A. marina by 
the DNN model increased from 0.595 to 0.7116, increasing by 
0.1166, and RMSE decreased from 0.3319 to 0.2801. When the 
number of extended training samples accounted for 20% of the 
measured data, the LAI estimation accuracy of A. marina was 
improved the most by the extension of training samples (4.63%). 

FIGURE 7 | Comparative analysis of estimation accuracy of the LAI for mangrove communities between the ELR and DLR models. The P-value represents the 
significant difference between the estimated and measured LAI values of mangrove communities. (A–L) Represent the LAI estimation accuracy (R2 and RMSE) of 
the optimal model for 'Avicennia marina', 'Kandelia candel' and 'Aegiceras corniculatum' under the 4 image data, respectively.
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The LAI estimation accuracy (R2) of A. marina was improved by 
0.0285, and RMSE decreased by 0.005.

Under OHS hyperspectral images, as the number of K. candel 
samples expanded from 70 to 105, the LAI estimation accuracy 
(R2) of the DNN model for K. candel increased from 0.5098 
to 0.6708, increasing by 0.161. When the number of extended 
training samples accounted for 30% of the measured data, 
the LAI estimation accuracy of K. candel of the DNN model 
improved the most (10.46%), the LAI estimation accuracy (R2) 
of K. candel of the DNN model increased by 0.0583, and RMSE 
decreased by 0.016.

4.4.2 The Effect of Training Sample Expansion for 
Estimating the LAI of Mangrove Communities Using 
the Transformer Model
Mangrove communities with the lowest LAI estimation 
accuracy were selected under different image data and the 
Transformer model was trained for sample expansion according 
to five sample expansion schemes. The improvement of the 
LAI estimation accuracy of different mangrove communities 
is shown in Table 6.
Figure 9 shows the changes in the LAI estimation accuracy of 
the Transformer model for different mangrove communities 
under different training sample expansion ratios (10–50%). 
The LAI estimation accuracy of A. corniculatum improved 

the most by training sample expansion, as shown in 
Figures 9A–F. With the increase in the number of extended 
training samples, the accuracy of the LAI estimation of 
different mangrove communities by the Transformer model 
increased by 0.1015–0.1644.

Compared with the DNN model, the influence of training 
sample expansion on the Transformer model was relatively 
small, but the LAI estimation accuracy (R2) of the Transformer 
model for different communities was also improved by 0.1015–
0.1644. The optimal training expansion ratio of the Transformer 
model for the LAI estimation of three mangrove communities 
was 40% (AM), 20% (KC), and 30% (AC). Under the optimal 
expansion ratio, the amplitude of the LAI estimation accuracy 
of different communities increased by 7.18–15.55%, and R2 
increased by 0.0419–0.076. The optimal expansion ratio of 
training samples for estimating the LAI of A. marina, K. candel, 
and A. corniculatum using the DNN model was 20, 30, and 
40%, respectively. The LAI estimation accuracy (R2) of three 
communities increased by 0.0285–0.0674. With the sample 
expansion ratio reaching 50% of three mangrove communities, 
the training time of the DNN model for the LAI of A. marina, K. 
candel, and A. corniculatum increased by 6.28, 2.059, and 2.112 
s, respectively. The training time of the Transformer model for 
A. marina, K. candel, and A. corniculatum increased by 17.361, 
3.945, and 5.431 s, respectively.

B C

D E F

A

B CA

FIGURE 8 | Estimating mangrove LAI based on the DNN model under different sample expansion ratios. (A–C) Represents the variation trend of the estimation 
accuracy of the DNN model for the LAI of 'Avicennia marina', 'Kandelia candel' and 'Aegiceras corniculatum' under OHS and GF-3 image data with the 
enhancement of training sample data. (A–F) Indicates the variation trend of the estimation accuracy of the DNN model for the LAI of 'Aegiceras corniculatum' under 
the GF-3 image data, with the increase of the training sample expansion ratio (0%-50%).
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As shown in Figures 8, 9, with the increase in the number of 
training samples of the DLR model, the LAI estimation accuracy 
(R2) of different mangrove communities by the DNN and 
Transformer models showed an upward trend, while RMSE 
gradually decreased. However, when the number of extended 
training samples reached 40% of the measured data, the 
improvement range of the LAI estimation accuracy of different 
mangrove communities began to slow down significantly 

(Table 6). By training sample expansion, the LAI estimation 
accuracy (R2) of A. corniculatum was improved by 0.2631 and 
0.1415 under GF-3 SAR and OHS images, respectively. Under 
GF-3 SAR and S2 images, the LAI estimation accuracy (R2) of 
A. marina increased by 0.1166 and 0.1015, respectively. The 
influence of training sample expansion on the LAI estimation 
accuracy (R2) of different communities was A. corniculatum > 
K. candel > A. marina.

TABLE 6 | The LAI estimation accuracy of mangrove communities for the DNN and Transformer models with training sample extension.

Models Sensors Communities EvaluationIndex   Expansion ratio and growth rate of estimation accuracy

0% 10% 20% 30% 40% 50%

DNN GF-3 AM R2 0.595 0.0195 3.27% 0.0285 4.63% 0.0275 4.28% 0.0283 4.22% 0.0128 1.83%
RMSE 0.3319 0.0023   0.0054   0.01   0.0225   0.0116  

OHS KC R2 0.5098 0.0157 3.08% 0.0319 6.07% 0.0583 10.46% 0.0373 6.06% 0.0178 2.73%
RMSE 0.2572 0.007   0.003   0.016   0.012   0.008  

GF-3 AC R2 0.5751 0.0175 3.04% 0.0422 7.12% 0.0654 10.3% 0.0674 9.63% 0.0112 1.46%
RMSE 0.4814 0.0222   0.034   0.0671   0.0701   0.0123  

Transformer S2 AM R2 0.6191 0.0072 1.16% 0.0083 1.33% 0.0194 3.06% 0.047 7.18% 0.0196 2.8%
RMSE 0.3127 0.003   0.009   0.009   0.0245   0.0077  

GF-3 KC R2 0.453 0.0334 7.37% 0.0419 8.61% 0.0157 2.97% 0.0348 6.4% 0.0155 2.68%
RMSE 0.386 0.0175   0.0281   0.0199   0.0123   0.0148  

OHS AC R2 0.482 0.0229 4.75% 0.0173 3.43% 0.076 14.55% 0.0362 6.055% 0.012 1.89%
RMSE 0.4814 0.009   0.0122   0.0457   0.0436   0.009  

B CA

B CA

D E F

FIGURE 9 | Estimating mangrove LAI using the Transformer model under different sample expansion ratios. (A–C) Represents the variation trend of the estimation 
accuracy of the Transformer model for the LAI of 'Avicennia marina', 'Kandelia candel' and 'Aegiceras corniculatum' under S2,GF-3 and OHS image data with the 
enhancement of training sample data. (A–F) Indicates the variation trend of the estimation accuracy of the Transformer model for the LAI of 'Aegiceras corniculatum' 
under the OHS image data, with the increase of the training sample expansion ratio (0%-50%).
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5 DISCUSSION
This study found that after data dimension reduction, the number 
of combined VEGETATION indices used for LAI estimation of 
different mangrove communities was more than that of vegetation 
indices (Table 3), and high estimation accuracy was obtained (R2 = 
0.6971~0.713, RMSE=0.1352~0.1897). This was because the spectral 
similarity of mangrove communities and the vegetation index only 
uses limited spectral bands, which cannot make full use of effective 
information of spectral bands. The combined features were used to 
arrange and combine all band information of multispectral image, 
which can estimate the characteristics of different communities more 
accurately. It was the same conclusion as that of Zhu et al. (2017); 
Feng et al. (2019) and Curran et al. (1992). In this study, under UAV 
images, the average LAI estimation accuracy of different communities  
(R2 = 0.5865~0.6416) was superior to other images; This indicated 
that UAV images had better applicability for LAI estimation of 
mangroves. but it was different from the conclusion of Guo et al. 
(2021). They found that the LAI model constructed by using the 
combined features under UAV images was not suitable for LAI 
estimation of mangrove communities. This may be because bare soil 
in 10m×10m plots under high-resolution UAV images has a more 
prominent impact on LAI estimation of different mangroves (Tian 
et al., 2017). However, in this study, single mangrove communities 
were measured one by one under UAV images, so that UAV images 
completely corresponded to each ground measured point, reducing 
the impact of bare soil on vegetation index. This study found that 
the reflectance range of different spectral bands also had certain 
influence on LAI estimation of mangrove communities, and the 
optimal spectral reflectance range for LAI estimation of mangroves 
by optical images was 650nm~900nm. This was consistent with the 
results of Zhen et al. (2021), who calculated the combinations of five 
types of vegetation indices in the spectral range of 400~1000 nm to 
estimate the mangrove SPAD and obtained good estimation results 
(R2 = 0.792, RMSE=3.578).

Compared with the single base model, the estimation 
accuracy (R2) of the ELR model for LAI of different mangrove 
communities was improved by 0.009~0.232 under optical and 
SAR images; This study found that ensemble learning algorithm 
can integrate the advantages of different algorithms, make up 
for the shortcomings of single algorithm, produce more robust 
estimation results, and can provide better generalization ability 
in regression prediction, This was consistent with the findings of 
(Dietterich, 2000). Ghosh et al. (2021) used multi-temporal image 
stack data set to estimate aboveground biomass of mangrove 
forests (RMSE 74.493t/ha), which was better than single data set 
(RMSE=151.149t/ha). The accuracy of AGB inversion using stack 
algorithm was further improved (RMSE was 72.864t/ha). After 
data dimension reduction, the LAI estimation accuracy (R2) 
of DNN and Transformer models for mangrove communities 
could reach up to 0.6619, and the LAI estimation accuracy of 
Avicennia marina could reach above 0.61. It was found in this 
study that data dimension reduction was suitable for mangrove 
LAI estimation of DLR model, and data dimension reduction 
can eliminate redundant data caused by spectral information 
combination and improve the calculation efficiency and accuracy 
of estimation model. This was the same as the findings of Pyo 

et  al. (2020). They combined convolutional autoencoders and 
CNN reflectance spectroscopy for data dimensionality reduction 
to estimate As, Cu, and Pb and obtained good estimation results 
(R2 = 0.86, 0.72 and 0.82).

This study found that insufficient training data would 
lead to overfitting of the model and reduced the accuracy of 
model estimation. The average LAI estimation accuracy of the 
Transformer model for Avicennia marina (R2 = 0.6355) was only 
0.006 lower than that of the ELR model (R2 = 0.6416). However, 
the mean LAI estimation accuracy (R2) of Transformer model 
for Kandelia candel was 0.149 lower than that of ELR model. It 
was also found that training sample expansion can reduce the 
measured data required for DLR model training and effectively 
improve the LAI estimation accuracy of the model. In this paper, 
the accuracy (R2) of LAI estimation of mangrove communities 
by DNN and Transformer models increased by 0.1166~0.2037 
and 0.1015~0.1644, respectively, after the extension of training 
samples. This obtained the same conclusion as Huang et al. (2020). 
At the same time, this study found that with the increase of the 
expansion proportion of training samples, the LAI estimation 
accuracy (R2) of different mangrove communities by DNN and 
Transformer models was rapidly improved, When the expansion 
data amount reached 40% of the measured data, the growth trend 
of estimation accuracy would slow down. Therefore, we set the 
maximum expansion ratio of training samples estimated by LAI 
of mangroves as 40%, which was the identical to the findings of 
Chen et al. (2017).

6 CONCLUSION

This study proposed a novel approach for estimating mangrove 
LAI by combining training sample expansion with the DLR 
algorithm to resolve the problem of insufficient field measurement 
and quantitatively evaluated the ability of the ELR and DLR 
algorithms to estimate the LAI of different mangrove communities 
using multispectral, hyperspectral, and SAR images. The UAV 
images produced the highest LAI estimation accuracy of different 
mangrove communities (R2 = 0.597–0.619). GF-3 SAR images have 
high estimation accuracy (R2 = 0.567) for the LAI of A. marina 
with high coverage. The ELR algorithm outperformed the DLR 
algorithm in mangrove LAI retrieval, which has better stability 
and higher estimation accuracy (R2 = 0.5266–0.713), and was the 
optimal model for mapping mangrove LAI. The Transformer model 
produced a better LAI estimation (R2 = 0.6355) for A. marina, 
which was 0.007–0.037 higher than the DNN model. The DNN 
model achieved a better LAI estimation for K. candel (R2 = 0.5577). 
Training sample expansion improved the performance of the DLR 
models for LAI retrieval. When the expansion ratio of training 
samples increased from 10 to 50%, the estimation accuracy (R2) of 
the DNN and Transformer models for mangrove LAI increased by 
0.1166–0.2037 and 0.1037–0.1644, respectively. The effect of training 
sample expansion on the LAI estimation of different communities 
was in the order of A. corniculatum > K. candel   >   A. marina. 
With the same LAI estimation accuracy, the sample enhancement 
method presented in this paper could reduce the number of field 
measurements by 20–40%.
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