
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Takafumi Hirata,
Hokkaido University, Japan

REVIEWED BY

Milad Janalipour,
Ministry of Science, Research, and
Technology, Iran
Shawn R. Campagna,
The University of Tennessee, Knoxville,
United States

*CORRESPONDENCE

Huizeng Liu
huizeng.liu@szu.edu.cn

SPECIALTY SECTION

This article was submitted to
Ocean Observation,
a section of the journal
Frontiers in Marine Science

RECEIVED 14 May 2022

ACCEPTED 25 July 2022
PUBLISHED 30 August 2022

CITATION

Wang Y, Liu H and Wu G (2022)
Satellite retrieval of oceanic
particulate organic
nitrogen concentration.
Front. Mar. Sci. 9:943867.
doi: 10.3389/fmars.2022.943867

COPYRIGHT

© 2022 Wang, Liu and Wu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 30 August 2022

DOI 10.3389/fmars.2022.943867
Satellite retrieval of oceanic
particulate organic nitrogen
concentration

Yongquan Wang1,3, Huizeng Liu1,2* and Guofeng Wu1,3

1Ministry of Natural Resources Key Laboratory for Geo-Environmental Monitoring of Great Bay Area
and Guangdong Key Laboratory of Urban Informatics and Shenzhen Key Laboratory of Spatial
Smart Sensing and Services, Shenzhen University, Shenzhen, China, 2Institute for Advanced Study,
Shenzhen University, Shenzhen, China, 3School of Architecture and Urban Planning, Shenzhen
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Over the past several decades, satellite ocean color remote sensing has greatly

improved our understanding of the biogeochemical properties of the global

ocean. Particulate organic nitrogen (PON) refers to the nitrogen contained in

biological or other debris particles, and it plays important roles in the

ecosystem functions and biogeochemical processes of the marine biology.

However, few studies have focused on the satellite retrieval of oceanic PON

concentrations. With an attempt to fill the gap, this study aimed to explore the

feasibility of retrieving oceanic PON concentrations from remote sensing data,

determine the bio-optical proxies for satellite PON retrievals, and develop

satellite oceanic PON retrieval models for the global ocean. In situ PON data

collected over the global ocean and Moderate-resolution Imaging

Spectroradiometer (MODIS) Level-3 products were used. Three different

types of models were tested: (1) apparent optical property (AOP)-based

models, 2) inherent optical property (IOP)-based models, and 3) biological

property-based models. Results showed that ocean color remote sensing

could be used for oceanic PON concentration retrieval in the global ocean,

and AOP-based models calibrated produced better fitting performance than

the other two types; models based on blue-to-green band ratio (BG) and

normalized difference nitrogen index (NDNI) produced comparable and better

fitting and validation performance; and IOP-based and biological property-

based models produced lower but also acceptable performance. With the PON

models developed, the monthly variations of PON concentrations in the global

ocean were also explored. In further studies, PON models will be used to

explore oceanic PON spatiotemporal variations and the underlying

driving forces.

KEYWORDS

ocean color remote sensing, particle organic nitrogen, optical proxies, global ocean,
nitrogen cycle
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Introduction

Nitrogen, as one of the main nutrients in the ocean, is an

essential element for the growth of phytoplankton and plays an

important role in the biological productivity, ecosystem

functions, and biogeochemical processes of the marine

environment (Tyrrell, 1999; Moore et al., 2013). Marine

nitrogen can regulate the intensity of the biological pump and

thus indirectly influence the global carbon cycle and climate

(Falkowski, 1997; Gruber and Galloway, 2008; Zehr and Kudela,

2011; Voss et al., 2013). In the marine nitrogen cycle, there are

transitions between dissolved and particulate as well as between

inorganic and organic through the biological and chemical

processes (Loh and Bauer, 2000; Yu et al., 2012; Lipizer et al.,

2012). Studies suggest that the ocean is the largest nitrogen

reservoir on the Earth, containing about five times more

nitrogen than the terrestrial biosphere (Capone et al., 2008). In

addition, the transformation of PON and dissolved nitrogen

accounts for a large proportion of marine acidification,

eutrophication, and sediment denitrification (Fennel et al.,

2006; Seitzinger et al., 2006; Enriquez et al., 2010). Therefore,

understanding the spatiotemporal variations of oceanic nitrogen

is of great significance for understanding the marine nitrogen

cycle and marine ecosystems.

Particulate organic nitrogen (PON) refers to the nitrogen

contained in biological or other debris particles (Smith et al.,

1986). In addition, the PON concentration has distinct

spatiotemporal variations over the global ocean because of

biological production, PON transformations, physical mixing,

and horizontal transport by ocean currents (Wada and Hattori,

1990; Wang et al., 2008; Pajares and Ramos, 2019). Traditionally,

oceanic PON concentrations were obtained through in situ

sampling and laboratory determination (Holm-Hansen, 1968),

and the spatiotemporal PON variations in the large area were

simulated with physico-biogeochemical models (Deutsch et al.,

2007; WangW. L. et al., 2019). However, the model performance

depends on its consistence with the real world, which might be

undermined because of lacking enough input in situ PON data.

Ocean color remote sensing relies on the water-leaving

radiance/reflectance derived from remote sensing data to

retrieval aquatic properties (Mcclain, 2009; Liu et al., 2021a;

Liu et al., 2022a). Over the past several decades, ocean color

remote sensing has been widely used for retrieving water

constituents (Hu et al., 2018), such as particulate organic

carbon (POC) and chlorophyll (CHL) over the global ocean

(blondeau-Patissier et al., 2014; O'reilly and Werdell, 2019; Liu

et al., 2021b; Tehrani et al., 2021). Hitherto, there are limited

studies in literature focused on satellite retrievals of oceanic

nitrogen, including the total nitrogen (Mathew et al., 2017),

dissolved organic nitrogen (Zhang et al., 2020), dissolved
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inorganic nitrogen (Xu et al., 2010), and nitrogen-fixing

organisms (Mckinna, 2015). Recently, Fumenia et al. (2020),

based on Biogeochemical-Argo observations, found a significant

correlation between the backscattering coefficient at 700 nm and

PON, indicating the feasibi l i ty of estimating PON

concentrations from optical properties.

However, few studies could be found on the satellite retrieval

of oceanic PON concentrations. With an attempt to fill the gap,

this study aims to explore the feasibility of retrieving oceanic

PON concentrations from remote sensing data, determine the

bio-optical proxy for satellite PON retrieval, and construct

satellite oceanic PON retrieval models for the global ocean. To

achieve those goals, a large diverse matchup dataset of global in

situ PON measurements and satellite ocean color products were

used, and three types of satellite retrieval models were tested,

including inherent optical property (IOP)-based, apparent

optical property (AOP)-based, and biological property-based

models. The results from this study could contribute to better

monitoring the spatiotemporal of PON concentrations and

understanding the nitrogen cycle in the global ocean.
Materials and methods

In situ PON data

In this study, in situ PON data were obtained from two

databases: oceanic PON data retrieved from SeaBASS (https://

seabass.gsfc.nasa.gov/, downloaded on 21 July 2021) and the

dataset collected by Martiny et al. (2014) shared on the Dryad

Digital Repository (https://datadryad.org/). The dataset of

Martiny et al. (2014) contains 46,633 PON measurements

from 70 cruises or time-series stations over the global ocean,

while the SeaBASS dataset includes 4,038 PON measurements

shared by researchers worldwide. The PON measurements

include both water samples collected from open ocean and

coastal productive waters spanning a long period from 1972 to

2019. PON is defined as the organic nitrogen retained on pre-

combusted Whatman GF/F filters with a pore size of 0.7 mm, and

its concentration is generally quantified following the chemical

oxidation technique (Pujopay and Raimbault, 1994) or the

carbon hydrogen nitrogen method (Sharp, 1974). Since this

study only focused on estimating PON concentrations in the

surface ocean, PON measurements were averaged over the top

10 m to provide the “surface” value. PONmeasurements with no

valid sampling date or geographic location were first eliminated,

and those with a PON concentration lower than 1 mg/m3 were

further removed from further analyses, because they may possess

substantial bias due to adsorption of dissolved nitrogen onto the

filters (Cetinic et al., 2012).
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Satellite and in situ matchup data

As for the ocean color remote sensing data, MODIS data

from both Aqua and Terra satellites were used to obtain as many

matchups for PON modeling. The MODIS Daily Level-3 SMI

products with a spatial resolution of 4 km were obtained from

NASA’s Ocean Biology Processing Group (http://oceancolor.

gsfc.nasa.gov/) in September 2021. The MODIS Level-3 data are

generated by merging high-quality Level-2 data sensed within 1

day through a predefined spatial grid. The products mainly

include Rrs at five bands (443, 469, 488, 547, and 678 nm),

inherent optical properties (IOPs), POC, and CHL. The MODIS

data were searched to retrieve satellite products collocated with

in situ data collected on the same day. The Aqua/MODIS

products were first matched to the in situ samples, and

samples included in matchups were eliminated; the

Terra/MODIS data were then matched to the remaining

samples. The final matchup datasets were obtained by merging

matchups of the two satellites. Figure 1 shows the true color

composites of MODIS images from Terra and Aqua satellites

and their corresponding Daily Level-3 products, and the

matchups of in situ PON and MODIS data obtains on those 2

days were also illustrated.

Following the matchup procedure of Liu et al. (2021b), a 3 ×

3 window surrounding the in situ sampling location was used to

extract satellite data, and matchups with less than 50% valid

pixels were eliminated. A total of 2,148 satellite and in situ

matchups were obtained. Four-fifths of matchups were

randomly selected as the training dataset, and the remaining

were used as the validation dataset. The geographical

distribution of valid satellite data matchups and the histogram

of in situ PON values are shown in Figures 2A, D). The main
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matchups were in the Atlantic Ocean and a considerable number

of matchups in some coastal regions (such as the east and west

American coastal oceans). Statistical descriptions of in situ PON

of all matchups as well as the training and validation datasets are

given in Table 1, showing large variations with a minimum of

1.21 mg/m3 and a maximum of 254.00 mg/m3. The in situ

measurements varied with depth, and a total of 745 field

sampling points had more than two measurements at different

depths (0–10 m), which were used to analyze the variance of

PON in the top 10 m. The standard deviation value showed a

lognormal distribution (Figure 3) with a mean value of 3.89

mg/m3.
Algorithm development and application

Three types of PON retrieval models were considered in this

study, and they were based on three different types of ocean

color remote sensing data, respectively: (i) IOPs, including a and

bbp_s, (ii) AOPs, i.e., Rrs band index, and (iii) biological

properties, i.e., CHL and POC concentrations. The first type is

IOP-based models, which relates PON concentration to oceanic

IOPs. Satellite retrieval of the oceanic PON concentration

using IOP-based models actually involves two steps: i) deriving

IOPs from Rrs and ii) retrieving PON from IOPs. In this study,

the total absorption coefficient (a) and the backscattering

spectral parameter (bbp_s), were considered for the IOP-based

models. a and bbp_s were derived from Rrs with the Generalized

Inherent Optical Property (GIOP) model (Werdell et al., 2013).

Different from the IOP-based models, the second type is to

directly retrieve PON from AOPs. As for the AOP-based models,

four commonly used band indexes were considered, including
FIGURE 1

The Aqua/MODIS true color composites (A) and Chlorophyll-a product (C) on 10 October 2005. The Terra/MODIS true color reflectance (B)
and Rrs at the 488-nm product (D) on 13 September 2004. The satellite and in situ matchups are represented by red and white crosses.
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the blue -to-green band ratio (BG) (Morel and Prieur 1977),

color index (CI) (Hu et al., 2012), maximum band ratio (MBR)

(O'reilly et al., 1998), and normalized difference nitrogen index

(NDNI) (Serrano et al., 2002). The last type is based on

biological properties to retrieve PON. The CHL concentration

was derived with the ocean color index (OCI) algorithm, a

combination of CI and OCx band ratio algorithm (Hu et al.,

2012). As for the POC-based PON retrieval model, the pairs of

surface POC and PON concentrations were extracted from the

in situ dataset (Martiny et al., 2014), and the model was

calibrated with the data pairs. The ocean color parameters and

band index involved in PON modeling are given in Table 2.

Actually, there are also numerous other IOPs and band indexes

initially considered for PON modeling (Martiny et al., 2014).

The nine indices (Table 2) were selected as candidate proxies for

PON modeling with preliminary screening, since they produced

acceptable performance.

The widely used linear, polynomial, exponential, and power

methods were used to calibrate PON models against the selected

ocean color parameters using the least square technique,
Frontiers in Marine Science 04
respectively. The model with the best-fitting accuracy for the

training dataset was selected for each index, and the model

performance was further evaluated with the validation dataset.

The root mean square deviation (RMSD), mean absolute percent

difference (MAPD), and coefficient of determination (R2) were

used to evaluate the model fitting and validation performance.

To test model applicability, the developed PON retrieval models

were further applied in two ways. The first approach was to

apply PON models in two regions with different variations of

PON concentrations. The west coast of the United States and the

Canary Basin were selected (shown in Figures 2B, C), and in situ

PON data collected in 2005 and 2014 were used to assess PON

retrieval performance. The second way was to compare PON

retrieval results in the global ocean using the monthly mean

MODIS level-3 data in June 2021. To compare PON retrieval

results, taking the best model as the baseline, the absolute and

unbiased relative differences of PON concentrations derived

from the other two models were calculated, and the unbiased

relative difference in percentage was computed as (y-x)/

(y+x)×200%. Moreover, three PON models with better
TABLE 1 Statistical descriptions of PON concentrations for all matchups (whole), model training (four-fifth of matchups), and validation (one-fifth
of matchups) datasets, respectively.

Dataset N Mean Median Min Max Std.

Whole 2,148 33.09 26.56 1.21 254.00 29.54

Training 1,718 32.94 26.72 1.21 254.00 29.63

Validation 430 33.67 25.83 1.44 200.72 29.18
frontiersi
Min, Max and Std. are the minimum, maximum and standard deviation, respectively.
FIGURE 2

Geographical locations of matchups of in situ and satellite data (A), and the histogram of PON concentrations of all matchups (D). Modeling
data and validation data are represented by black circles and red circles, respectively. Subplots (B, C) show matchups in these two regions used
for further model evaluations. The background map in (A) shows the monthly climatology PON products generated from data from March 2009
to May 2016 by the NDNI model.
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statistical performance applied Aqua/MODIS monthly products

to analyze the PON temporal variations over the past 20 years,

and relationships between PON and POC as well as CHL

variations were also explored. POC and chlorophyll data were

from Level-3 Aqua/MODIS monthly mean products. The global

mean value (X̂ )or each month was calculated from a monthly

map with the following equation:

X̂ = 10l og10 Xð Þ :
Results

Model calibration

The PON retrieval models based on the nine selected proxies

calibrated with the training dataset are shown in Figure 4 and

summarized in Table 3. The linear POC-based model calibrated

with in situ POC–PON pairs had far better-fitting performance

than others with an R2 of 0.93 and an RMSD of 0.11, while R2
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and RMSD of models calibrated with in situ PON and satellite-

derived ocean color parameters were within the range 0.60–0.65

and 0.24–0.25, respectively. Out of models based on ocean color

parameters, PON retrieval models based on the three Rrs band

indices, i.e., BG and NDNI, respectively, produced comparable

and relatively better performance than others with R2 = 0.65 and

RMSD = 0.24, followed by models based on MBR (R2 = 0.63 and

RMSD = 0.25) and a(488) (R2 = 0.62 and RMSD = 0.25). Models

based on a(469), CI, and CHL had an R2 of 0.61 and an RMSD of

0.25. bbp_s was the worst proxy for PON retrieval with an R2 of

0.60 and an RMSD of 0.26.
Model validation

The validation results for the nine PON retrieval models are

shown by the scatterplots of estimated vs. measured PON

concentrations in Figure 5 and summarized in Table 4. All of

the nine models tended to underestimate high PON values with

the slope for the regression lower than 0.70, which could also be
TABLE 2 The definitions of indices used for PON retrieval models.

Index Definition

a(469) Total absorption at 469 nm, GIOP model

a(488) Total absorption at 488 nm, GIOP model

bbp_s Backscattering spectral parameter for GIOP model

BG log10(Rrs(488)/Rrs(547))

CI Rrs(547)-(Rrs(488)+(547-488)/(678-488)×(Rrs(678)-Rrs(488)))

MBR max(Rrs(443), Rrs(488), Rrs(469))/Rrs(547)

NDNI (Rrs(547)-Rrs(488))/(Rrs(547)+Rrs(488))

CHL Chlorophyll concentration, OCI algorithm

POC Particulate organic carbon concentration, in situ measurements
FIGURE 3

The histogram of standard deviation of in situ PON concentrations within the top 10 meters, and the scale of x-axis is in log10 transformation.
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observed from the data points below the 1:1 line with PON >60

mg/m3. Similar to the model-fitting results, the NDNI base

produced the best validation performance with the highest R2

(0.67) and slope for the regression line (0.69), and the lowest
Frontiers in Marine Science 06
RMSD (0.23), MAPD (15.26), and the intercept for the

regression line (0.41), followed by the BG-based model (R2 =

0.66, RMSD = 0.24, MAPD = 15.31% and slope = 0.69 and

intercept = 0.42). MBR- and a(488)-based models also produced
TABLE 3 The best-fit regression models for the nine PON retrieval models and their statistical performance.

Proxy Regression equation R2 RMSD

a(469) y = – 0.07697x– 0.7143 + 1.985 0.61 0.25

a(488) y = – 0.02805x– 0.9731 + 1.904 0.62 0.25

bbp_s y = – 0.02016x5.553 + 1.603 0.60 0.26

BG y = – 0.0741x3 – 0.7567x2 – 1.131x + 1.638 0.65 0.24

CI y = 248.8x + 1.457 0.61 0.25

MBR y = – 0.001313x3 + 0.04446x2 – 0.4479x + 2.036 0.63 0.25

NDNI y = 1.629x3 – 0.1475x2 + 0.9443x + 1.629 0.65 0.24

CHL y = – 0.125x2 + 0.4999x + 1.515 0.61 0.25

POC y = 1.004x – 0.7757 0.93 0.11
frontier
Out of the nine models, the best metrics are marked in bold.
A B

D E F

G IH

C

FIGURE 4

Oceanic PON concentrations retrieval models based on a(469) (A), a(488) (B), bbp_s (C), BG (D), CI (E), MBR (F), NDNI (G), CHL (H), and POC (I),
respectively. PON, CHL and POC are in log10 transformation. The numbers along the ramp indicate the pixel density after log10 transformation.
sin.org
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acceptable and comparable validation performance with an R2 of

0.64 and an RMSD of 0.24, while a(469)-, CI-, CHL- and bbp_s-

based models produced lower performance with R2 varying

between 0.60 and 0.63, and RMSD between 0.25 and 0.26. The

POC-based PON retrieval model had the worst performance

with a R2 of 0.58 and a RMSD of 0.27.
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Model applications

The model application results for the two selected regions,

i.e., the west coast of the United States and the Canary Basin, are

illustrated in Figure 6 and summarized in Table 5, and the eight

in situ sampling locations used for performance evaluation are
TABLE 4 Statistical descriptions of model validation performance calculated in log10 transformation.

Model a(469) a(488) bbp_s BG CI MBR NDNI CHL POC

R2 0.63 0.64 0.60 0.66 0.61 0.64 0.67 0.62 0.58

RMSD a 0.25 0.24 0.26 0.24 0.25 0.24 0.23 0.25 0.27

MAPD 15.94% 15.71% 16.55% 15.31% 16.47% 15.63% 15.26% 16.46% 16.23%

Slope 0.64 0.65 0.62 0.69 0.63 0.66 0.69 0.63 0.64

Intercept 0.46 0.47 0.51 0.42 0.51 0.46 0.41 0.51 0.45
frontier
Out of the nine models, the best metrics are marked in bold.
a Unit: log10(mg/m3).
A B

D E F

G IH

C

FIGURE 5

Scatterplots of estimated vs. measured PON concentrations for models based on a(469) (A), a(488) (B), bbp_s (C), BG (D), CI (E), MBR (F), NDNI
(G), CHL (H), and POC (I). Both axes are in log10 transformation.
sin.org
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shown in Figures 2B, C, respectively. Overall, the nine models

produced consistent patterns of the PON gradient from coastal

to open ocean waters. In the west coast of the United States, the

nine models exhibit similar performance for eight field sampling

locations, with the NDNI-based model performing the best

(RMSD = 6.00 mg/m3 and MAPD = 27.22%). The Canary

Basin located in the middle of the Atlantic Ocean had lower

PON concentrations than the west coast of the United States.

Comparatively, all of the nine PON retrieval models had better

performance for the Canary Basin than that for the west coast of

the United States with lower RMSD and MAPD values.

Specifically, models based on POC, BG, bbp_s, and MBR

overestimated PON concentrations, while models based on

CHL, a(469), and a(488) slightly underestimated PON

concentrations for most stations. The NDNI-based model also

worked better for the Canary Basin with RMSD = 0.39 mg/m3

and MAPD = 9.19%.

The global oceanic PON maps retrieved by the nine models

from the monthly mean MODIS Level-3 data in June 2021 are

shown in Figure 7. The spatial variation patterns of PON

concentrations of the nine oceanic PON maps were generally

consistent. The open oceans have lower PON concentrations

and higher values in turbid continental shelves and coastal

regions. However, there are also some obvious differences

between them. Models based on a(469) and a(488) perform

similarly (Figures 7A, B). Models based on bbp_s (Figure 7C)
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and MBR (Figure 7F) produced generally lower than other

models, and the maximum of derived PON concentrations is

less than 80 mg/m3. Comparatively, BG- and NDNI-based

models (Figures 7D, G) produced higher PON concentrations

than other models. Particularly, the CI-based model (Figure 7E)

produced relatively higher estimations in productive offshore

areas than other models, such as in Gulf of Mexico and

Guiana Basin.

The absolute and relative differences of the a(488)- and

CHL-based models against the NDNI-based model are shown in

Figure 8, in which absolute differences were calculated in

untransformed scale and the relative differences were

calculated in log10 transformation. Large relative differences

were mainly observed in oligotrophic open oceans and turbid

coastal seas. For examples, large positive relative differences were

clearly observed in the central Indian Ocean and Coral Sea, while

some negative differences were also observed, such as in the

Arctic Ocean and Canary Sea (Figure 8). A transect through the

Atlantic Ocean at 30°W shows the regional differences in nine

model estimates for PON (Figure 9). The relative differences in

oligotrophic open oceans were generally small, while larger

differences of nine models in the North Atlantic Ocean can be

clearly found at about between 40°N and 50°N.

A 20-year trend analysis for the 2002–2022 global ocean

monthly mean PON estimations obtained from a(488)-, CHL-,

and NDNI-based models are presented in Figures 10A, B shows
TABLE 5 Statistics of model performance for the west coast of the United States and the Canary Basin.

Region Parameter a(469) a(488) bbp_s BG CI MBR NDNI CHL POC

The west coast of the USA RMSD 6.49 6.88 8.19 6.39 7.54 7.58 6.00 7.02 7.81

MAPD 30.72% 28.81% 28.17% 30.38% 28.17% 26.85% 27.22% 37.71% 35.04%

The Canary Basin RMSD 1.28 0.61 0.72 0.88 0.58 0.58 0.39 0.57 0.61

MAPD 8.13% 13.04% 17.33% 21.89% 11.70% 13.16% 9.19% 12.22% 13.93%
frontier
Out of the nine models, the best metric is in bold.
A B

FIGURE 6

The estimated PON concentrations for matchups associated with the in situ data for the west coast of the United States (A) and the Canary
Basin (B), respectively.
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the variations of POC and CHL concentrations. The global

monthly mean PON concentrations derived from the three

models varied from about 10 to 14 mg/m3, and most

periodical peaks and val ley were observed in the
Frontiers in Marine Science 09
summer (June, July, and August) and winter (December,

January, and February) seasons, respectively. The PON

concentrations retrieved from a(488)- and CHL-based

models tended to produce higher PON concentrations than

the NDNI-based model, because the NDNI-based model

worked better in some stations with low PON concentrations

(Figures 5G, 6B) and oligotrophic areas with low PON

concentrations make up a large proportion of the global

ocean (Figure 7). The seasonal variations of PON

concentrations showed similar patterns with those of POC and

CHL (Figure 10).

The relationships between the global monthly mean values of

PON derived from the three models, POC and CHL were further

explored and are illustrated with the scatterplots in Figure 11. All of

the nine data pairs had strong correlations with r ≥0.81. The r

between PON concentrations derived from a(488)- and CHL-based

models was stronger with r = 0.96 than the other two PON data

pairs with r = 0.86 and 0.82, respectively, for that of a(488)-based vs.

NDNI-based models and CHL-based vs. NDNI-based models

(Figures 11A–C). As for the relationships between POC and

PON as well as CHL and PON concentrations, satellite-derived

POC and CHL concentrations had the highest correlations with

PON derived with the a(488)-based model with an r of 0.95 and

0.97, respectively, which is followed by the CHL-based model with

r = 0.93 between POC and PON and r = 0.94 between CHL and

PON. Both POC and CHL concentrations were derived with blue-

to-green band ratio algorithms, and the variations of the blue-to-

green band ratio are mainly driven by the total absorption

coefficient, especially for chlorophyll-a absorption (Lee et al.,

2002). Therefore, satellite-derived POC and CHL concentrations

had higher correlations with PON concentrations derived with a

(488)- and CHL-based models than the NDNI-based model with
FIGURE 8

Absolute and relative PON concentration differences between models based on a(488) and the NDNI (A, B), as well as that based on CHL and
NDNI (C, D). The left and right columns were for absolute and relative differences, respectively.
FIGURE 7

PON concentrations (mg/m3) retrieved with models based on a
(469) (A), a(488) (B), bbp_s (C), BG (D), CI (E), MBR (F), NDNI (G),
CHL (H), and POC (I), respectively.
frontiersin.org

https://doi.org/10.3389/fmars.2022.943867
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2022.943867
r = 0.81 between POC and PON and r = 0.87 between CHL

and PON.

Discussion

This study demonstrated the feasibility of retrieving oceanic

PON concentrations from ocean color remote sensing data. By

relating PON concentrations to ocean color parameters, this

study developed satellite retrieval models for oceanic PON

concentrations. Accurately retrieving PON concentrations

from ocean color remote sensing data relies on the

relationships between PON and oceanic inherent/apparent
Frontiers in Marine Science 10
optical properties. Although PON is not any of the three

optically active matters, i.e., CHL, non-agal particles (NAPs),

and colored dissolved organic matter (CDOM), it generally

comes from phytoplankton and NAPs. Thus, PON

concentrations could be indirectly related to ocean color

through phytoplankton and/or NAPs. Therefore, the key steps

for PON estimation from satellite data are to identify reasonable

proxies to PON and to develop PON retrieval models.

This study identified nine optical proxies for satellite

retrieval of oceanic PON concentrations. The total absorption

coefficient (a) and bbp_s were selected as optical proxies to PON

concentrations, which should be a result of the relationship
A

B

FIGURE 10

Plot (A) shows the variations of global monthly mean PON concentrations retrieved with the a(488)-, CHL-, and NDNI-based models. Plot (B)
shows global monthly mean POC and CHL concentrations.
FIGURE 9

PON associated with an extracted transect through the Atlantic Ocean at 30° W for each model.
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between PON and particulate matters (Stramski and Tegowski,

2001; Hunter et al., 2008). Studies based on BGC-Argo

measurements suggested that the particulate scattering or

backscattering coefficients are strongly correlated with PON

concentrations and could serve as a proxy for PON

concentrations, especially in the open ocean where organic

particles are a primary source of optical variability (Fumenia

et al., 2020). However, this study did not use them for PON

retrieval because of their low performance. This might be

explained by the following reasons: 1) the dataset used in this

study covered larger variations with PON ranging from 1.21 to

254.00 mg/m3 than that of Fumenia et al. (2020) with PON<14

mg/m3, and the relationship between bbp and PON might be

complicated for a large diverse dataset, 2) satellite-derived bbp
was less accurate than in situmeasured by the BGC-Argo, and 3)

the variability of the backscattering coefficient is driven by

several aspects of factors, such as the concentration of bulk

particulate matter, particulate size distribution, refractive index,

and particle morphology (Stramski et al., 2004).

This study found that AOP-based PON retrieval models

worked better than other two types of models, which might be
Frontiers in Marine Science 11
partially accounted by the uncertainties induced from satellite-

derived IOPs and biological properties. Rrs band indexes, i.e.,

BG, CI, NDNI, and MBR, were found to be sensitive to PON

concentrations. BG, CI, and MBR were initially proposed to

retrieve chlorophyll-a concentrations (O'reilly et al., 1998; Hu

et al., 2012; Wang and Son, 2016) and also used for POC

retrieval (Le et al., 2018). The variations BG and MBR are

mainly driven by the total absorption coefficient, especially for

chlorophyl l-a absorpt ion (Lee et a l . , 2002) , whi le

phytoplankton is the primary source of PON especially in the

open ocean. The CI-based model produced lower fitting and

validation performance. However, it produced reasonable

results for the Canary Basin, indicating its application

potential for productive coastal waters, because CI is

sensitive to both absorption and backscatter coefficients but

less sensitive to Rrs uncertainties. NDNI was also considered in

this study, because the NDNI with the wavelengths of nitrogen

absorption feature has a direct connection with the nitrogen

content and provided good estimating canopy nitrogen

concentrations in vegetation (Serrano et al., 2002; Wang and

Wei, 2016).
A B

D E F

G IH

C

FIGURE 11

Scatterplots of global monthly mean PON concentrations with the CHL- vs. a(488)-based models (A), a(488)- vs. NDNI-based models (B), and
CHL- vs. NDNI-based models (C), respectively. Plots (D-F) are the scatterplots of POC vs. PON concentrations derived with the a(488)-, NDNI-,
and CHL-based models, respectively, and plots (G-I) are the scatterplots of CHL vs. PON concentrations derived with the a(488)-, NDNI-, and
CHL-based models, respectively. The solid black line in each subplot is the linear regression line fitted with 238 data pairs of global monthly
mean results.
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As for the biological property-based models, CHL and POC

were identified as proxies. Inliterature, POC and PON were

found to covary with each other (Raimbault et al., 2008; Moutin

et al., 2018), and the Redfieldration of 106 carbon:16 nitrogen:1

phosphorus in marine phytoplankton was well accepted

(Sanudo-Wilhelmy et al., 2004). This study also confirmed the

highly correlated relationship between PON and POC

(Figure 4I). However, retrieving PON concentrations from

satellite-derived POC concentrations might be problematic,

considering its relatively lower validation performance than

other models. The lower performance of biological property-

based models might be due to (1) the varying relationship

between CHL and nitrogen influenced by multiple factors

(Daughtry et al., 2000) and (2) uncertainties in the derivation

of POC from satellite images (Cetinic et al., 2012; Evers-King

et al., 2017; Roy et al., 2017), which undermines the application

potentials of the POC-based model.

With the models developed in this study and the readily

available ocean color products, PON variations in the surface

ocean could be better explored. In literature, the assimilation of

biogeochemical and ecological models with in situ data was used

to explore spatiotemporal variations of PON (Guo et al., 2003;

Wang et al., 2008; Wang Y. C. et al., 2019), and its performance

depends on the consistence of the model with the real scenario as

well as the input of ground truth, which might be undermined

due to lacking enough in situ data. With the models developed in

this study, ocean color remote sensing would be an alternative

technique for exploring the oceanic PON variations in the global

ocean. In addition, the assimilation of satellite-derived oceanic

PON products with biogeochemical models might be promising

for better understanding the oceanic nitrogen cycle and the

underlying driving forces.
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However, there are still works to be done in further research.

First, more high-quality field samples covering the diverse depth

and oceanic biogeochemical variations could further improve

the model robustness. The standard deviation of every field

sampling point with more than one measurement and the

difference between NDNI-based model and in situ

measurements are shown in Figure 12. It suggests that PON

exhibits a certain variability with depth. Optical proxy could be

better identified, and models could be better calibrated with a

large diverse synchronous in situ dataset of PON concentrations

and oceanic biogeochemical properties. Secondly, the potential

internal methodological inconsistencies within the data sets used

in the algorithm development may also introduce uncertainties.

The formulation of algorithms in this study was based on

matchup data of satellite-derived products and in situ PON

shared by many different groups of researchers. Therefore, any

potential inconsistencies in dataset may affect the established

algorithm relationships.

Moreover, the accuracy of satellite-derived proxy could

directly affect the final PON retrieval performance, which

could be clearly supported by the distinct performance of the

POC-based model for the training and validation datasets

(Figures 4I and 5I). On one aspect, uncertainties in Rrs due to

imperfect atmospheric correction performance (Liu et al., 2019b;

Liu et al., 2022b), especially over productive turbid waters (Liu

et al., 2019a), directly affected the performance of the AOP-

based model and could also indirectly undermine the

performance IOP- and biological property-based models by

affecting the retrieval accuracy of these proxies. One the other

aspect, the uncertainties in satellite-derived IOPs and biological

properties due to the imperfect of their retrieval algorithms

should also be an importance factor for satellite retrieval of PON
FIGURE 12

Relationships between standard deviation and difference.
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concentrations. These two aspects might be partially accounted

for the underestimation of the high PON concentrations.
Conclusion

This study explored the feasibility of estimating oceanic PON

concentrations from satellite ocean color remote sensing. Based

on a large diverse synchronous MODIS and in situ PON data,

nine ocean color parameters were identified as optical proxies for

satellite retrieval of oceanic PON concentrations. This study found

that PON concentrations can be effectively estimated from ocean

color products. With these nine selected proxies, three types of

empirical model based on AOPs, IOPs, and biological properties

were developed. Results showed that AOP-based models generally

worked better than other two types of models. Especially, BG,

MBR, and NDNI obtained comparable and better fitting and

validation performance than other proxies, and they should be

suitable for satellite retrieval of oceanic PON concentrations.

Although POC and PON covaried with each other, however,

retrieving PON concentrations from satellite-derived POC

produced the lowest performance. Overall, this study

demonstrated that ocean color remote sensing is a promising

technique for oceanic PON retrieval in the global ocean. More in-

depth work to examine and evaluate these proxies on other

satellites for PON estimation and its potential implementation

in the processing of ocean color measurements are needed. In

addition, it would be improved to use deep learning method with

large amounts of quality ocean color products and co-located in-

situ data sets of POC concentration in various oceanic

environments. Further studies will be focused on exploring the

spatiotemporal variations of PON concentrations in the global

ocean and analyzing the underlying driving forces.
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