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Consistency between the
ichthyotoxicity and allelopathy
among strains and ribotypes of
Margalefidinium polykrikoides
suggests that its toxins are
allelochemicals
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and Ying Zhong Tang1,2,3*

1Chinese Academy of Sciences (CAS) Key Laboratory of Marine Ecology and Environmental
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Technology, Qingdao, China, 3Centre for Ocean Mega-Science, Chinese Academy of Sciences,
Qingdao, China, 4School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook,
NY, United States
Harmful algal blooms (HABs) of the ichthytoxic dinoflagellate Margalefidinium

polykrikoides have caused mass mortality of marine life around the world.

While its toxic effects can impact fish, bivalves, coral, zooplankton, and even

other phytoplankton, the toxin(s) and allelochemical(s) eliciting these impacts

have yet to be definitely identified, leaving open the question as to whether its

toxicity and allelopathic effects are caused by the same chemical agents. In this

study, we investigated the ability of 10 strains of M. polykrikoides with different

geographic origins and ribotypes to cause mortality in two strains of the

dinoflagellate, Akashiwo sanguinea (allelopathy), and the sheepshead

minnow, Cyprinodon variegatus (toxicity). Results showed that the potency

of allelopathy against both strains of A. sanguinea and toxicity to the fish were

significantly correlated across strains of M. polykrikoides (p < 0.001 for all).

These results strongly support the notion that the major allelochemicals and

toxins of M. polykrikoides are identical chemicals, an ecological strategy that

may be more energetically efficient than the separate synthesis of toxins and

allelochemicals as has been reported in other HABs. Our results also highlight

the vital significance of the definitive identification of allelochemicals and toxins

of M. polykrikoides and of the quantitative characterization of these

compounds in the field where HABs of M. polykrikoides occur during blooms.
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Introduction

Margalefidinium (= Cochlodinium) polykrikoides is a

harmful algal bloom (HAB) species that has been responsible

for mass mortalities of aquatic organisms worldwide (Dorantes-

Aranda et al., 2009b; Jiang et al., 2009; Jose Dorantes-Aranda

et al., 2010; Kudela and Gobler, 2012; Cui et al., 2020; Basti et al.,

2021). As an ichthyotoxic and HAB-causing species, M.

polykrikoides not only has caused fish kills across North

America and Asia, but also has been known to cause rapid

mortality in bivalves, zooplankton, and corals (Kim et al., 1999;

Dorantes-Aranda et al., 2009b; Jiang et al., 2009; Tang and

Gobler, 2009b; Tang and Gobler, 2009a; Bauman et al., 2010;

Tang and Gobler, 2010; Griffith et al., 2019). Beyond being toxic

to marine animals, M. polykrikoides is also strongly allelopathic

to other phytoplankton (Kim et al., 1999; Dorantes-Aranda et al.,

2009b; Tang and Gobler, 2009b; Tang and Gobler, 2009a; Tang

and Gobler, 2010). Still, the traits and interactions of toxicity and

allelopathy and how they may facilitate M. polykrikoides blooms

remain unclear.

Allelochemicals are chemical agents secreted by

photosynthetic organisms that affect (mainly negatively) the

growth, health, behavior, or population biology of organisms,

mainly plants (Whittaker and Feeny, 1971). Smayda (1997)

hypothesized that harmful algae form blooms by four major

pathways, with two of them pertinent to allelochemically

enhanced interspecific competition. Oppositely, the target

species of toxicity are animals (Rice, 1979; Smayda, 1997;

Legrand et al., 2003; Granéli and Hansen, 2006).
Many harmful algae can be both allelopathic to other algae

and toxic to marine animals. In several cases, allelochemicals and

toxins seem to be different compounds as have been

demonstrated for the karlotoxin-producer Karlodinium

veneficum (Yang et al., 2019), the paralytic shellfish toxin-

producer Alexandrium spp. (Tillmann and John, 2002;

Tillmann et al., 2007; Tillmann et al., 2008), and the

brevetoxin producer Karenia brevis (Kubanek et al., 2005). For

some algae, however, their toxicity to animals and allelopathic

effects on phytoplankton appear to be caused by common

mechanisms, for instance, for Prymnesium parvum (Singh

et al., 2001; Granéli and Hansen, 2006).
The identity and mechanism of toxins and allelochemicals of

M. polykrikoides have been the subject of debate. The toxins of

M. polykrikoides cause damage to different cell types, including

hemolysis in fish erythrocytes (Kim et al., 1999; Dorantes-

Aranda et al., 2009a; Kim and Oda, 2010). The conceivable

ichthyotoxic substances produced byM. polykrikoides have been

hypothesized to include reactive oxygen species (ROS) (Tang

and Gobler, 2009a), sterols, fatty acids (Giner et al., 2016), and

mucopolysaccharides (Kim et al., 2002; Kim and Oda, 2010).

The short-term nature of M. polykrikoides toxicity (minutes in

the absence of live cells) and the ability of anti-oxidation

compounds to mitigate its toxicity have suggested that ROS
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are a likely source of this HABs toxicity (Tang and Gobler,

2009b; Jiang et al., 2009). Further studies have also suggested

that the existence of a synergistic action of ROS and

polyunsaturated fat ty ac ids , docosahexaenoic and

eicosapentanoic, that are produced by M. polykrikoides may

contribute to lipid peroxidation (Dorantes-Aranda et al., 2009a;

Dorantes-Aranda et al., 2009b), which is associated with an

increase in the solute permeability in the membrane cells,

causing swelling and lysis of the vacuoles of the membrane

liposomes (Girotti, 1990) and severe damage in fish gill

liposomes (Kim et al., 1999). In addition, polysaccharides can

exert a damaging effect on branchial cells (Dorantes-Aranda

et al., 2009a; Dorantes-Aranda et al., 2009b; Kim and Oda,

2010), which may also contribute to the ichthyotoxic effects of

M. polykrikoides. As for the allelochemicals of M. polykrikoides,

they have been reported to affect the growth and survival of

many planktonic species (Gobler et al., 2008; Mulholland et al.,

2009; Tang and Gobler, 2009b; Tang and Gobler, 2009a; Richlen

et al., 2010; Koch et al., 2014; Pérez-Morales et al., 2017;

Hattenrath-Lehmann et al., 2019). However, the exact

allelopathic mechanisms remain controversial and largely

unknown. Prior investigations of M. polykrikoides (Kim et al.,

1999; Tang and Gobler, 2010) and other allelopathy-causing

species (Oda et al., 1992; Marshall et al., 2005; van Rijssel et al.,

2008) have suggested that various compounds including ROS,

PUFA (polyunsaturated fatty acid), and unidentified toxic

metabolites may act as allelochemicals.

The goal of this study was to compare the toxic effects of M.

polykrikoides on fish to its allelopathic effects on other

phytoplankton in terms of characterizing the chemical nature

of the toxin(s) and allelochemical(s) produced by the species.

Given that prior research has established significant variation in

the strength of allelopathy and toxicity among clonal isolates of

M. polykrikoides (Tang and Gobler, 2010; Wang et al., 2020), we

compared the ability of 10 clones isolated from the Atlantic and

Pacific Oceans and representing two major ribotypes. Results

demonstrated a high degree of similarity between allelochemical

potency and ichthyotoxicity across the clones studied.
Materials and methods

Cultures and culturing conditions

Ten strains of M. polykrikoides were isolated from coastal

areas of the United States, Mexico, and Japan (Table 1). The

identity of all strains was confirmed with large subunit (LSU)

rDNA sequencing. Two strains of Akashiwo sanguinea (ASNP6

and AS2) isolated from the Northport Bay, New York, USA in 19

August 2011 (Tang and Gobler, 2015) were used as the target

species of allelopathic tests. All cultures were maintained in

exponential phase growth in sterile GSe medium with a salinity

of 31−32 made with an autoclave and 0.2 µm filtered seawater,
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and maintained at 21°C in an incubator with a 12-h light:12-h

dark cycle providing ~100 mmol quanta m– 2 s– 1. Cultures were

grown with a mixture of penicillin and streptomycin (2% v/v

dilution of stock with 200 U·ml−1 penicillin and 0.2 mg·ml−1

streptomycin) to discourage the growth of bacteria.
Testing the allelopathy of
M. polykrikoides

Cultures of CPSB-1B, CPSB-1G, CP1, CPNB-3, CPNB-6,

CPSB-2A, CPGSB-1, and ASNP-6 were maintained in

exponential growth phase in 500-ml conical flasks in GSe

medium with 2% antibiotics mixture. For experiments, 10 ml

ofM. polykrikoides and 1 ml of ASNP-6 (both at ~103 cells ml−1)

were added to one well of a six-well culture plate. One milliliter

of ASNP-6 was added into 10 ml of GSe medium as control.

Each treatment and control were established in triplicate. After

48 h, all samples (11 ml) were preserved with 2% Lugol’s

solution (final) and quantified under a light microscope.

Cultures of CPSB-2A, CP1, CPSB-1B, and CPSB-1G were also

co-cultured with A. sanguinea (ASNP-6) for 72 h to test the

allelopathic effects using the same methods described above for

the 48-h assay, the only difference being that six replicates were

set in each group of the latter experiment (n = 6).

Other strains of M. polykrikoides, CPINS129, CPCB10,

CPPV1, and CP1, were tested with A. sanguinea strain AS2 as

target species. All strains of M. polykrikoides were diluted to

different cell densities (650−4,000 cells ml−1 for CP1, 2,300

−4,300 cells ml−1 for CPINS129, 500−1,700 cells ml−1 for

CPCB10, and 5,300−9,900 cells ml−1 for CPPV1) and then co-

cultured with AS2 in a six-well culture plate with 9 ml of M.

polykrikoides and 1 ml of A. sanguinea culture in one well,

respectively. One milliliter of AS2 with the same cell density as

treatments was added to 9 ml of GSe medium as control. All the

treatments and controls were in triplicate. Samples were
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preserved after 24 h with Lugol’s solution (2% final) for

subsequent cell density quantification.

To quantify and compare the allelopathic effects of M.

polykrikoides among strains with different cell densities, a

parameter, “Relative Mortality compared with control of A.

sanguinea”, was defined as: Relative Mortality (AS) = [(Mean

cell density of mono-cultured A. sanguinea − mean cell density

of A. sanguinea co-cultured with M. polykrikoides)/mean cell

density of mono-cultured A. sanguinea] × 100%, but is called

“Mortality (AS)” below for simplicity.
Testing the toxicity of M. polykrikoides

We used 14-day-old (0.4–0.5 cm in length) Cyprinodon

variegatus (sheepshead minnows) for toxicity experiments. All

10 strains of M. polykrikoides (CP1, CPINS129, CPCB10,

CPPV1, CPSB-1B, CPSB-1G, CPSB-2A, CPNB-3, CPNB-6,

and CPGSB-1) were maintained in exponential growth phase

and diluted to several cell densities (350−4,700 cells ml−1 for

CP1, 1,200−4,800 cells ml−1 for CPINS129, 300−700 cells ml−1

for CPCB10, 1,500−3,000 cells ml−1 for CPPV1, 1,200−4,000

cells ml−1 for CPSB-1B, 1,800 cells ml−1 for CPSB-1G, 2,700

−5,500 cells ml−1 for CPSB-2A, 450−1,700 cells ml−1 for CPNB-

3, 1,400 cells ml−1 for CPNB-6, and 1,400 cells ml−1 for CPGSB-

1) before the experiment. Fish bioassays were performed in six-

well plates with 10 ml of culture and one fish in each well, and

one fish was added to 10 ml of GSe medium as control. All the

treatments and controls were in replicates of six (n = 6) and were

maintained at room temperature without aeration. The survival

of fishes was recorded at 24 h. Some treatments (CP1, CPSB-1B,

CPSB-1G, CPSB-2A, CPNB-3, CPNB-6, and CPGSB-1) lasted

for 6 days to compare the mean death time of fishes in different

cultures. A probit regression analysis of cell densities of CP1,

CPINS129, and CPSB-2A, and mortality of sheepshead

minnows was used to determine the median lethal dose (LD50)
TABLE 1 Strains of Margalefidinium polykrikoides used in this study.

Strain name Isolated area Ribotype Isolated time

CP1 Flanders Bay, NY American/Malaysian 31 August 2006

CPCB10 Cotuit Bay, MA, USA, MA American/Malaysian September 2001

CPPV1 Bahıá de La Paz, Mexico American/Malaysian Unknown

CPSB-1B Shinnecock Bay, NY American/Malaysian 5 August 2010

CPSB-1G Shinnecock Bay, NY American/Malaysian 5 August 2010

CPSB-2A Shinnecock Bay, NY American/Malaysian 5 August 2010

CPINS129 Japan East Asian Unknown

CPNB-3 Noyak Bay, NY American/Malaysian 16 August 2011

CPNB-6 Noyak Bay, NY American/Malaysian 16 August 2011

CPGSB-1 Great South Bay, NY American/Malaysian 17 August 2011
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and compare the toxicity of different strains of M. polykrikoides

when the cell densities were unequal across experiments.
Statistics

One-way ANOVAs and multiple comparison tests were used

to compare the cell densities of M. polykrikoides, mortalities of

A. sanguinea compared with control, and death time of

sheepshead minnows among treatments using SPSS. For the

toxicity experiments, G-tests were performed to assess the

significance of toxic effects (Woolf, 1957). Spearman

correlation coefficients were calculated to examine the

correlation between the rank of allelopathy and toxicity of

different M. polykrikoides. In all cases, the significance level

was set at p < 0.05.
Results

Comparing allelopathic intensity of
different strains of M. polykrikoides

During 48-h experiments withA. sanguinea strain ASNP-6, cell

densities of seven strains of M. polykrikoides were similar with the

exception of CPSB-1B (H), which was higher than CPSB-1G (H)

(Figure 1, Table S1-2, p = 0.001), but this made no difference in

Mortality (AS) (Table S1-1, p = 0.55), indicating that CPSB-1G was

allelopathically stronger than CPSB-1B. CPSB-1B was more

allelopathic than CPNB-6 given that CPSB-1B (L) had higher

Mortality (AS) (Figure 1, Table S1-1, p = 0.001) but had equal

cell density (Table S1-2, p = 0.08). CPNB-6 had a lower cell density

than CP1 (Figure 1, Table S1-2, p = 0.01) but induced equal
Frontiers in Marine Science 04
Mortality (AS) as CP1 (Figure 1, Table S1-1, p = 0.68), indicating

that CPNB-6 was more allelopathic than CP1. As for CPNB-6 and

CPGSB-1, the two strains exhibited no difference in cell density

(Table S1-2, p = 0.69) but the former strain was more allelopathic

(Figure 1, Table S1-1, p = 0.01). Similarly, CP1 and CPSB-2A

exhibited no difference in cell density (Figure 1, Table S1-2, p =

0.66), but the former strain induced higherMortality (AS) (Figure 1,

Table S1-1, p = 0.01). Moreover, CPNB-3 (H), CPSB-2A, and

CPGSB-1 led to roughly equal inhibition to ASNP-6 (Table S1, p >

0.05 for each pairwise comparison of the three strains) but

decreased in order in cell density (Figure 1, Table S1, p < 0.05 in

each pair of the three strains), indicating that the allelopathic

strength was CPGSB-1 > CPSB-2A > CPNB-3. Although we

cannot discern the difference in allelopathic strength of CP1 and

CPGSB-1, the two strains were weaker than CPNB-6 but stronger

than CPSB-2A, meaning the overall rank order of strength was

CPSB-1G > CPSB-1B > CPNB-6 > CP1 ≈ CPGSB-1 > CPSB-2A >

CPNB-3.

In the experiment of ASNP-6 co-cultured with CPSB-2A,

CP1, CPSB-1G, and CPSB-1B for 72 h, CPSB-2A had the highest

cell density and the lowest Mortality (AS) (Figure 2, p < 0.05,

one-way ANOVA) and thus was the least allelopathic strain.

CP1 had a higher cell density than CPSB-1G (Figure 2, p =

0.001) but showed no difference in inducing Mortality (AS)

(Figure 2, p = 0.13). Additionally, CP1 showed no difference in

cell density with CPSB-1B (Figure 2, p = 0.09) but induced lower

Mortality (AS) (Figure 2, p = 0.001). Thus, CP1 ranked after

CPSB-1B and CPSB-1G in allelopathic intensity. Concluding

from the above results, the allelopathic intensity in decreasing

order was CPSB-1G > CPSB-1B > CPNB-6 > CP1 ≈ CPGSB-1 >

CPSB-2A > CPNB-3.

In the allelopathic experiment using AS2 as the target

species, four M. polykrikoides clones, namely, CP1, CPINS129,
FIGURE 1

Allelopathic effects of M. polykrikoides on ASNP-6 in 48 h expressed as Mortality compared with control of A. sanguinea [Mortality (AS)]. The
dots represent the cell density of different strains of M. polykrikoides. Each data point is the mean of triplicates (n = 3). Error bars indicate ±1 SD
of n = 3.
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CPCB10, and CPPV1, were tested (Figure 3). As shown in

Mortality (AS), CPCB10 at 500 cells ml−1 was more potent

than CP1 at 650 cells ml−1 (Figure 3, Table S2-1, p = 0.001)

despite similar cell densities (Table S2-2, p = 0.05). Compared

with CPINS129 at a cell density of 2,300 cells ml−1, CP1 of 1,900

cells ml−1 had a lower cell density (Figure 3, Table S2-2, p =

0.001) but had a higher Mortality (AS) (Figure 3, Table S2-1, p =

0.00). In addition, CCPV1 of 8,300 cells ml−1 and CPINS129 of

4,300 cells ml−1 led to similar Mortality (AS) (Figure 3, Table S2-

1, p = 0.09); however, the former had a higher cell density

(Figure 3, Table S2-2, p = 0.00). As a result, the allelopathic

intensity in decreasing order of the four strains was CPCB10 >

CP1 > CPINS129 > CPPV1.
Frontiers in Marine Science 05
Comparing ichthyotoxicity among M.
polykrikoides strains

Ten strains of M. polykrikoides at different cell densities were

co-cultured with 14-day-old sheepshead minnows to test their

toxicity (Figure 4). Four groups of M. polykrikoides (CPCB10 in

700 cells ml−1, CPSB-1B in 1,200 cells ml−1, CPNB-6 in 1,400 cells

ml−1, and CPSB-1G in 1,800 cells ml−1) all caused 100% mortality

of sheepshead minnows within 24 h (Figure 4, Table S3, p < 0.05

for pairwise comparisons), and the mean death time of

sheepshead minnows was 1.9 h, 4.5 h, 5.4 h, and 13.1 h,

respectively, suggesting that their toxic intensity decreased in

the order CPCB10 > CPSB-1B > CPNB-6 > CPSB-1G.
FIGURE 2

Allelopathic effects of M. polykrikoides on ASNP-6 in 72 h expressed as Mortality compared with control of A. sanguinea [Mortality (AS)]. The dots
represent the cell density of different strains of M. polykrikoides. Each data point is the mean of sextuplicate (n = 6). Error bars indicate ±1 SD of
n = 6. Different letters in uppercase indicate significant differences (p < 0.05) among mortalities, and different letters in lowercase indicate
significant differences (p < 0.05) among cell densities.
FIGURE 3

Allelopathic effects of M. polykrikoides on AS2 in 24 h expressed as Mortality compared with control of A. sanguinea [Mortality (AS)]. The dots represent
the cell density of different strains of M. polykrikoides. Each data point is the mean of triplicates (n = 3). Error bars indicate ±1 SD of n = 3.
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According to the results of regression analysis, CP1 caused 80%

mortality of sheepshead minnows at a cell density of 1,874 cells

ml−1 (Figure S1), which was lower than 100% mortality of

sheepshead minnows co-cultured with 1,800 cells ml−1 of CPSB-

1G (Figure 4). CP1 caused 60% mortality of sheepshead minnows

at a cell density of 1,400 cells ml−1 (Figure S1), which was higher

than the mortality of sheepshead minnows caused by CPGSB-1

(50%) at the same cell density (Figure 4). The LD50 dose of

CPINS129 and CPSB-2A was 6,611 cells ml−1 and 5,170 cells ml−1,

respectively (Figure S1), indicating that CPSB-2A was more

ichthyotoxic than CPINS129. Moreover, CPPV1 and CPNB-3

caused the lowest mortality of sheepshead minnows among the 10

strains (Figure 4). Conclusively, the decreasing order of toxic

intensity of the 10 strains was CPCB10 > CPSB-1B > CPNB-6 >

CPSB-1G > CP1> CPGSB-1 > CPSB-2A> CPINS129 > CPPV1 ≈

CPNB-3.

The death time of sheepshead minnows was also recorded in

some groups (Figure 5). In groups of CPSB-2A (5,500 cells ml−1),
Frontiers in Marine Science 06
CP1 (3,100 cells ml−1), CPSB-1G (1,800 cells ml−1), CPNB-6 (1,400

cells ml−1), and CPSB-1B (1,200 cells ml−1), the death time of

sheepshead minnows was less than 20 h and did not differ among

the strains (Figure 5, Table S4-2, p > 0.05 for pairwise comparisons),

and cell densities of these groups decreased in order [Figure 5, Table

S4-1, p < 0.05 for pairwise comparisons excluding groups CPNB-6

in 1,400 cells ml−1 vs. CPSB-1B in 1,200 cells ml−1 (p = 0.13)],

indicating that the order of ichthyotoxicity of the five strains was

CPSB-1B, CPNB-6 > CPSB-1G > CP1 > CPSB-2A. The death time

of sheepshead minnows in groups of CPSB-2A and CPGSB-1

showed no significant difference (Figure 5, Table S4-2, p = 0.23),

but CPGSB-1 had a lower cell density (Figure 5, Table S4-1, p =

0.001), indicating that the toxicity of CPGSB-1 was greater than

CPSB-2A. The death time of sheepshead minnows in groups of

CPNB-3 was significantly longer than in other groups as most fishes

survived the duration of the experiment (Table S4-2, p = 0.001),

indicating that the toxicity of CPNB-3 was the weakest among the

seven strains.
FIGURE 5

Toxic effects of M. polykrikoides on sheepshead minnows Cyprinodon variegatus expressed as death time. The dots represent the cell density of
different strains of M. polykrikoides. Error bars indicate ±1 SD of n = 6.
FIGURE 4

Toxic effects of M. polykrikoides on sheepshead minnows Cyprinodon variegatus in 24 h expressed as mortality (%) of sheepshead minnows (bars). The
corresponding cell density of different strains of M. polykrikoides was also shown as dots for comparison. Error bars indicate ±1 SD of n = 6.
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Correlation of allelopathy and toxicity of
M. polykrikoides

The allelopathic and toxic strengths of each strain were ranked

according to the orders of allelopathy, which were CPSB-1G >

CPSB-1B > CPNB-6 > CP1 ≈CPGSB-1 > CPSB-2A > CPNB-3, and

CPCB10 > CP1 > CPINS129 > CPPV1, and the order of toxicity,

which was CPCB10 > CPSB-1B > CPNB-6 > CPSB-1G > CP1>

CPGSB-1 > CPSB-2A > CPINS129 > CPPV1 ≈CPNB-3 (Table S5),

upon which the allelopathy and ichthyotoxicity of the strains were

compared and found to be linearly correlated (Figure 6).

Spearman’s rank correlation analysis showed that the allelopathic

effects and ichthyotoxicity were significantly positively correlated

(Spearman’s correlation coefficient = 0.88, p = 0.01, n = 7 for toxicity

to sheepshead minnows and allelopathy to ASNP-6; Spearman’s

correlation coefficient = 1.0, p < 0.0001, n = 4 for toxicity to

sheepshead minnows and allelopathy to AS2; Figure 6), illustrating
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consistency between the allelopathy and ichthyotoxicity of the M.

polykrikoides strains.

Discussion

The consistency between allelopathy and
toxicity among strains of M. polykrikoides

Margalefidinium polykrikoides strains exhibit variations in both

toxicity and allelopathy (Tang and Gobler, 2010; Wang et al., 2020).

By phylogenetic analysis of LSU rDNA of M. polykrikoides strains,

at least four ribotypes have been identified globally (Iwataki et al.,

2008; Reñé et al., 2013). Prior research has shown that different

ribotypes of M. polykrikoides differ in toxicity (Wang et al., 2020),

making this trait useful for providing perspective to investigate the

relationships and chemical nature of allelopathy and toxicity of

M. polykrikoides.
A

B

FIGURE 6

Correlation analysis of allelopathic intensity and toxic intensity of different strains of M. polykrikoides. (A) Order of allelopathic effects of M.
polykrikoides on ASNP-6 and toxic effects of M. polykrikoides on sheepshead minnows. (B) Order of allelopathic effects of M. polykrikoides on
AS2 and toxic effects of M. polykrikoides on sheepshead minnows.
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Here, 10 strains were studied that varied in different

geographic origins, ribotypes, and isolation seasons (Table 1)

but were cultured under uniform conditions and maintained in

exponential growth. While differences in growth rates and

maximum cell concentrations sometimes caused differences in

experimental cell densities used, a gradient in cell densities was

typically made for comparable treatment densities across strains.

Fortunately, we obtained enough data to compare the

allelopathy and toxicity between two strains, which yielded

similar results and a similar order of strain potency.

Even though the intensity of allelopathy and toxicity of M.

polykrikoides varied in different strains, especially strains of different

ribotypes (Wang et al., 2020), the potencies in toxicity and

allelopathy for the different strains of M. polykrikoides were

consistent, as strains displaying potent toxicity also exhibited

strong allelopathy. This consistency provides potent evidence for

the hypothesis that chemical agents that are responsible for

inhibitory and lethal effects on phytoplankton and marine

animals, i.e., allelochemicals and toxins, were the same compounds.

Possible ecological implications of
the consistency between allelopathy
and toxicity

Plant secondary metabolism is a term for pathways and small-

molecule products of metabolism (i.e., secondarymetabolites) that

are non-essential for the survival of the organism (Kossel, 1891).

However, a wide variety and high diversity of secondary

metabolites produced by plants are an important part of plant

defense system against pathogenic attacks and environmental

stresses, including toxins and allelochemicals (Yang et al., 2018).

Producing secondary metabolites is thought to have a minor

energetic cost (Waterman, 1992). Many harmful algae (e.g.,

Alexandrium spp., K. brevis, and K. veneficum) produce toxins

and allelochemicals that are different compounds (Tillmann and

John, 2002; Kubanek et al., 2005; Tillmann et al., 2007; Tillmann

et al., 2008; Yang et al., 2019). In contrast, the findings of this

study suggest that M. polykrikoides produces a singular class of

compounds that inhibit competitors and potential predators (e.g.,

zooplankton and planktivorous fish), representing a potential

energetic cost-saving for this HAB-causing species.

Expectations in identifying toxins and
allelochemicals of M. polykrikoides

While prior studies have identified several kinds of compounds

that may be the toxins made by M. polykrikoides, more evidence is

needed to verify the actual toxicity of these substances. It has been

suggested that the toxins of M. polykrikoides may be ROS (Kim

et al., 1999; Tang and Gobler, 2009a). ROS-scavenging enzymes

(peroxidase and catalase) have been shown to mitigate the toxicity

and allelopathy of M. polykrikoides and multiple attributes of the

toxicity are consistent with ROS being the toxic principle. For
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example, the rapidly diminished toxicity (in minutes) observed in

M. polykrikoides cells that were freshly killed (Tang and Gobler,

2009a) was consistent with the short half-life of ROS compounds.

Furthermore,M. polykrikoides exhibited the highest toxicity during

the exponential growth phase of cultures, which aligns with reports

of ROS production by actively growing, rather than stationary

phase, cells of the species (Tang and Gobler, 2009a). While one

study found that the O2
- and H2O2 in a toxic strain of M.

polykrikoides were at trace levels (Kim and Oda, 2010), other

ROS compounds were not measured in that study.

Mucopolysaccharides produced by M. polykrikoides may be

attributed to the smothering of fishes (Kim and Oda, 2010), but

no study has affirmed this finding and there were no visual signs of

polysaccharides on fish during our study. Giner et al. (2016)

extracted lipids of M. polykrikoides cells and analyzed the

compositions of fatty acid and sterol in crude lipids, which

consisted of a high proportion of PUFAs (47% of total fatty

acids), dinosterol (40% of total sterols), and dihydrodinosterol

(32% of total sterols). The identified fatty acids and sterols may

contribute to long-term deleterious effects on invertebrates but were

unlikely to be effective substances responsible for the acute toxicity

to fish (Giner et al., 2016). In addition, according to the definition of

allelopathy, allelochemicals sensu stricto refer to the substances that

are excreted from the producing cells. Thus, the crude lipids

extracted with organic solvents from cells may include many

more substances than extracellular secretions. While some fatty

acids with hemolytic property have also been identified in M.

polykrikoides (Dorantes-Aranda et al., 2009a), bioassays of these

substances have not been implemented and thus their toxic effects

remain unknown. In addition, it has been proved that direct

physical contact between test animals and algal cells is not

necessary for M. polykrikoides to cause mortality, which means

the toxins of M. polykrikoides could be easily released to the

extracellular milieu (Tang and Gobler, 2009a).

Our finding strongly suggests that the allelochemicals and

toxins of M. polykrikoides are the same chemical agents, which

could be a cost-saving or energy-saving and thus ecologically

advantageous strategy, especially so if the toxin(s) and

allelochemical(s) are synthesized via a simple pathway. In this

regard, the multiple chemical agents proposed to be responsible

for the toxicity and allelopathy of the species as reviewed above (e.g.,

ROS, mucopolysaccharides, fatty acids, and sterols) are certainly not

to be all true. It is, therefore, important to fully identify the toxins

and allelochemicals of M. polykrikoides for the sake of both

understanding the bloom ecology and mitigating the harmful

effects of the species in the field.

Conclusion

We confirmed that the ichthyotoxicity and allelopathy ofM.

polykrikoides are strain specific and vary with different

geographic origins and ribotypes. We further found that the

order of ichthyotoxicity and allelopathy from strong to weak of
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the 10 strains of M. polykrikoides was positively correlated.

These results strongly suggest that major allelochemicals and

toxins of M. polykrikoides are identical chemicals, which could

be an energy-saving and thus ecologically advantageous strategy.
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