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Anthropogenic nutrient input to coastal waters is one of the most common disturbances
within inshore marine benthic communities. Organic enrichment in sediments leads to the
reduction or disappearance of sensitive organisms, and influences the quality and quantity
of primary producers which serve as food sources for the benthic fauna. Such changes, in
turn, affect the energy flow and food-web interactions in benthic communities. To examine
how organic enrichment may alter marine benthic trophic relationship, a stable isotope
(d13C and d15N) analysis of the potential food sources and a range of meiofauna and
polychaetes from an organically polluted and a relatively unpolluted site was compared in
subtropical waters of Hong Kong. Results indicated that some omnivorous infauna shifted
from a mainly carnivorous diet at the unpolluted site to a largely herbivorous diet at the
organically polluted site. This dietary shift is likely to be related to the oxygen stress, prey
limitation and increased abundance and nutritional quality of primary producers in the
eutrophic area, resulting in an increase in utilization of plant materials as the major food
source. The present findings suggest that such changes in trophic position induced by
organic enrichment can provide further insights into the structure and function of coastal
benthic communities under pollution stress.
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INTRODUCTION

Anthropogenic nutrient inputs to the coastal ecosystems particularly from discharges of untreated
domestic sewage have led to widespread organic enrichment in inshore marine environments
(Souza et al., 2013; Altieri and Diaz, 2019; Brauko et al., 2020). Such nutrient enrichment has
impacted many biological communities, ranging from depletion of native populations, extinction of
sensitive species to disappearance of diverse community structure (Nordström and Bonsdorff, 2017;
Caswell et al., 2018; Culhane et al., 2019; Drylie et al., 2020). This becomes increasing important to
understand how the species, community and ecosystem levels respond to such human-induced
changes and whether ecosystem functions and services can be maintained (Riedel et al., 2014;
Johansen et al., 2018; Guan et al., 2020).
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The increase in nutrients can have both positive and negative
effects on marine pelagic and benthic communities. Higher
nutrient input can stimulate primary production in the water
column, resulting in further deposition of organic matter onto
the sediment that benefits both benthic grazers and detritus
feeders (Aberson et al., 2016). However, increased sedimentation
of organic matter can also lead to reduction or disappearance of
some sensitive organisms through siltation, habitat modification
and depletion of oxygen due to enhanced metabolic activities of
microorganisms (Grall and Chauvaud, 2002; Dorgham, 2014;
Hale et al., 2016). Changes in species composition and
abundance associated with hypoxia caused by organic
enrichment may in turn result in limitation of prey availability
and alter consumers’ feeding habits (Fox et al., 2009; Zheng et al.,
2020). Under low oxygen supply, there is also a change in
predator-prey dynamics, in which the foraging ability of
predators is reduced due to slower mobility (Riedel et al., 2014;
Briggs et al., 2017). These changes in composition and feeding
behaviour of consumers may alter trophic relationships in
coastal areas subject to eutrophication.

Stable isotope analyses of carbon and nitrogen are commonly
used to reveal trophic interactions of natural populations of
consumers in the field (Lepoint et al., 2004; Braeckman et al.,
2015; Du et al., 2020). d13C is absorbed in the animal tissues with
little or no change as compared to their food sources, so it can be
used to determine the food sources; whereas d15N is absorbed in
the animals with constant trophic shift, so it can be used to
determine the trophic level (Fry, 2006). Using stable isotope
analysis, the diets of benthic consumers have been shown to
follow the changes in primary producers under nutrient
enrichment, resulting in different benthic pathways that may
explain modifications in community diversity and food web
structure (Armitage and Fourqurean, 2009; Mitwally and
Fleeger, 2015).

Victoria Harbour in subtropical Hong Kong (Figure 1) is one
of the busiest and heavily populated ports in the world.
Historically, the harbour has received substantial loadings of
pollutants from sewage discharge, leading to severe pollution
especially within the harbour centre where water movement is
restricted by embayments and vessel anchorage shelters
(Nicholson et al., 2011). At present most sewage is treated and
discharged via a submarine outfall west of the harbour and the
general water quality in the harbour has been improved (Xu
et al., 2011). However, the sediments there still contain high
levels of organic matter in the central harbour area resulting in
lower diversity and different benthic community structure
compared with that outside the harbour (Liu et al., 2011; Xu
et al., 2014).

In the present study, we took advantages of coastal areas with
different levels of pollution to examine whether increased organic
enrichment can alter the benthic trophic relationship. To
determine food web linkages, we measured stable isotopes
(d13C and d15N) of the particulate organic matter (POM),
sediment organic matter (SOM) and primary and secondary
consumers at an organically enriched site within the harbour
area and a relative unpolluted site outside the harbour.
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Identifying and understanding the shifts in food source
availability and the feeding modes of the animals in inshore
areas can help to assess how coastal ecosystems respond under a
long history of organic enrichment, sedimentation and other
anthropogenic disturbances.
MATERIALS AND METHODS

Study Sites
The investigation and collection of samples for benthic infaunal
community and stable isotope analysis were conducted in
August 2010 at two sites around Victoria Harbour at a depth
of 15-20 m (Figure 1). Tung Lung Chau (TLC) is located on the
east outside the harbour, where anthropogenic activities are
minimal and can be regarded as a relatively unpolluted site
with low sediment nutrient levels. Sai Wan Ho (SWH) is located
inside the harbour, where the sediment is organically enriched. A
preliminary study on the taxonomic composition of macrofauna
and nematode communities in relation to a number of sediment
parameters were conducted at the same locations as in the
present study (Xu et al., 2014). Data from the preliminary
study showed that the sediment at TLC contained relative low
nutrient levels (total organic carbon content: 0.37%, total
FIGURE 1 | Map showing the relatively unpolluted site TLC and organically
enriched site SWH in subtropical Hong Kong, the red dotted lines indicate the
boundary of Victoria Harbour.
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phosphorus: 374.68 mg/kg, total Kjeldahl nitrogen: 632.97 mg/
kg) and higher benthic faunal diversity (Shannon index H' = 2.74
for polychaetes and 3.61 for nematodes) as compared to that at
SWH, with higher nutrient levels (total organic carbon content:
1.71%, total phosphorus: 807.07 mg/kg, total Kjeldahl nitrogen:
1926.72 mg/kg) and lower benthic faunal diversity (Shannon
index H' = 2.35 for polychaetes and 2.59 for nematodes). The
results also showed that the low diversity and different benthic
community structure in the inner-harbour area were highly
correlated with increased sediment nutrient levels.
Sampling
Triplicate water samples (~10 L per replicate) for particulate
organic matter (POM) were collected at about 1 m above the sea
bottom at each site using a water sampler. Sediment samples
were collected with a 0.1 m2 van Veen grab. A total of twelve grab
sediment samples were retrieved at each site. For the first three
grab samples, the upper 8 cm of sediment was scraped and stored
in plastic bags for subsequent collection of copepod and free-
living nematode specimens. For the next three grab samples,
sediment was sieved through a 0.5 mm screen and the residues
retained were transferred into plastic bags for collection of
polychaete specimens. For the following three grab samples,
about 400 g surface sediment was scooped by a spatula for
later sediment organic matter (SOM) analysis. Benthic
microalgae (BMA) were sampled from the sediment in the last
three grab samples using the method modified from Wainright
et al. (2000) and Doi et al. (2005). In brief, surface sediment was
scraped to a depth of 1 cm, and spread into a 1 cm thin layer on a
0.1 m2 plastic flat plate on board. For each plate sample, sediment
was covered with a thin layer of silica sand (pre-combusted at
500°C for 2 h), a piece of 63 mm nylon screen, and another thin
layer of silica sand. The plates were placed under sunlight for 2 h
with continuous moisture from filtered seawater to allow vertical
phototactic migration of microalgae onto the nylon screen. Then
the screen was peeled off and stored in an ice box.

In the laboratory, meiofaunal nematodes and harpacticoid
copepods were extracted from the sediment samples using the
centrifugation technique with colloidal Ludox solution (Heip
et al., 1985). Moens et al. (2002) showed that the isotopic values
of meiofauna obtained under such handling procedures were not
affected as compared with similar analysis of live specimens.
Sorting of nematodes was restricted to species which were easily
recognizable under a stereomicroscope and available in sufficient
biomass. In order to obtain enough biomass, for the large
nematodes Halichoanolaimus and Sphaerolaimus spp., at least
50 individuals were pooled. For the average-sized nematode
Daptonema, Dorylaimopsis, Paradontophora and Terschellingia
spp., at least 500 individuals were pooled. Harpacticoid copepods
were pooled with at least 500 individuals, without identification
to genus or species level. For macrofauna, only polychaetes were
sorted and identified to species as far as practicable. The whole
body of polychaetes was used for subsequent stable isotope
analysis. At least five individuals per species were pooled to
obtain enough biomass. All sorted faunal samples were then oven
dried at 60°C and 1 mg of the homogenized samples was placed
Frontiers in Marine Science | www.frontiersin.org 3
in pre-combusted aluminium cups and stored in screw-cap glass
tubes for subsequent stable isotope analysis. Gut contents of all
collected meio- and macrofaunal specimens were not separated
from the tissue. Hence, the reported stable isotope ratios of these
animals referred to the signatures of both assimilated and
ingested matter.

In order to obtain enough BMA, the benthic microalgae and
silica sand from the three screen replicates were rinsed by
distilled water into one beaker, then swirled, and the
suspended (non-sand) materials were filtered onto a pre-
combusted Whatman GF/F glass fiber filter paper (0.7 mm
porosity). For collection of POM, water samples obtained from
each site were rinsed through a 63 mm screen to remove larger
zooplankton before filtration on pre-combusted Whatman GF/F
glass fiber filters (0.7 mm porosity). Sediment samples for SOM
analysis were processed following the method of Riera et al.
(1996). Each sediment sample was homogenized, freeze-dried
and ground using a mortar and pestle. BMA, POM and SOM
samples were acidified with 1.2 N HCl to remove inorganic
carbon. To prevent any loss of dissolved organics, samples were
not rinsed, but were dried overnight at 60°C under a fume
extractor to evaporate the acid.
Stable Isotope Analysis
13C and 15N isotopic ratios of food source and consumer samples
were determined using a PDZ Europa ANCA-GSL elemental
analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass
spectrometer (Sercon Ltd., Cheshire, UK) in the Stable Isotope
Facility, University of California, Davies, USA. Results of isotopic
ratios were expressed in standard d-unit notation, which is
defined as follows:

dX  ¼   Rsample=Rreference

� �
 – 1

� �� 1000‰

where X is 13C or 15N, and R is either the 13C:12C ratio for carbon
or the 15N:14N ratio for nitrogen. These values were reported
relative to the Vienna-PeeDee Belemnite (V-PDB) standard for
C and to air N2 for N.
Data Analysis
The use of different food sources by the meio- and macrofauna at
each of the two sites was investigated by measurements of the
isotopic niche widths. A small sample-size corrected standard
ellipse area (SEAc) was calculated by the values of d13C versus
d15N of all taxa at the two sites (Jackson et al., 2011; Jackson et al.,
2012). This metric represents a measure of the total amount of
niche occupied in the isotopic space and can be used to
investigate the distinct food sources and their utilization
(Layman et al., 2007; Layman et al., 2012). It also allows
calculating the overlapping area of the standard ellipses
between the two study sites, which can be used as a measure of
diet similarity between the consumers. In addition, the Laymen’s
metrics (Layman et al., 2007) can be estimated to describe these
ellipses, as follows: (1) mean distance to centroid (CD), giving
additional information about the isotopic niche amplitude and
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spacing between taxa; and (2) standard deviation of nearest
neighbour distance (SDNND), a measure of the evenness of
taxa displaying in a bi-plot space. All the metrics proposed by
Layman et al. (2007), SEAc and overlapping of standard ellipses
were calculated using the SIAR package (Jackson et al., 2011;
Jackson et al., 2012) in R 3.10 software (R Development Core
Team, 2014).
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RESULTS

Stable Isotope of Food Sources and
Benthic Fauna
From the stable isotope food web bi-plot (Figure 2A), the d13C
and d15N values of primary producers at the two sites were close
to each other. At the relatively unpolluted TLC, the stable isotope
A

B

FIGURE 2 | Stable isotope food web bi-plot for (A) all consumers and potential food sources at TLC (open symbols) and SWH (solid symbols). Each symbol
represents the d13C and d15N values for nematodes (circles), copepods (squares), polychaetes (diamonds) and primary producers (triangles). Cop, Copepods; Dap,
Daptonema sp.; Dor, Dorylaimopsis sp.; Gly, Glycera sp.; Hal, Halichoanolaimus sp.; Lum, Lumbrineris sp.; Mar, Marphysa stragulum; Med, Mediomastus sp.; Par,
Paradontophora sp.; Pri, Prionospio sp.; Sig, Sigambra hanaokai; Sph, Sphaerolaimus sp.; Ter, Terschellingia sp.; (B) convex hull areas (thin dotted lines) and
corrected standard ellipses areas (SEAc: bold lines) in the isotopic space for benthic communities sampled at the relatively unpolluted site TLC (circle) and organically
enriched site SWH (triangle).
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ratios of the food sources ranged from -23.4‰ (POM) to -21.3‰
(SOM) and from 2.9‰ (POM) to 4.8‰ (SOM) for d13C and
d15N, respectively. At the organically enriched SWH, the stable
isotope ratios of the food sources ranged from -23.4‰ (POM) to
-22.1‰ (BMA) and from 2.7‰ (POM) to 4.3‰ (SOM) for d13C
and d15N, respectively. The stable isotope values of SOM at SWH
were lighter than that at TLC (Table 1).

Table 1 also shows the d13C and d15N values of the consumers
inhabiting in the sediments at TLC and SWH, together with their
feeding types according to literature information. The number of
species found at TLC was higher than that of species occurring at
SWH. For nematodes, there were 6 abundant species (2
carnivores and 4 herbivores) included in the present analysis,
with all the 6 species found at TLC and 4 at SWH (4 herbivores).
For polychaetes, there were also 6 abundant species (1 carnivore,
3 omnivores and 2 herbivores) at the study sites, with all the 6
species found at TLC and 4 at SWH (2 omnivores and 2
herbivores). At TLC, d13C ranged from -24.4‰ (nematode
Terschellingia sp.) to -16.6‰ (polychaete Sigambra hanaokai)
and d15N ranged from 1.5‰ (nematode Terschellingia sp.) to
12.1‰ (nematode Sphaerolaimus sp.). At SWH, d13C ranged
from -24.9‰ (nematode Terschellingia sp.) to -19.1‰
(polychaete Lumbrineris sp.) and d15N ranged from 1.7‰
(nematode Terschellingia sp.) to 6.8‰ (polychaete Sigambra
hanaokai). The d15N values of the consumers spanned 10.6‰
at TLC, while 5.1‰ at SWH. Most consumers in a given trophic
level at the two sites had similar d15N values. However, the d15N
values of omnivorous polychaetes Lumbrineris sp. and Sigambra
hanaokai were about 5-7‰ lower at SWH compared to that at
TLC. These two omnivorous polychaete species tended to
become solely herbivorous at the organically enriched SWH,
Frontiers in Marine Science | www.frontiersin.org 5
while they remained omnivorous with more prey in their diet
and less primary producers at the relatively unpolluted TLC.

Community-Wide Dynamics of
Benthic Communities
Layman’s metrics for benthic fauna sampled at TLC showed larger
values than that at SWH (Table 2). The CD value at TLC (3.8‰)
was more than two times larger than that at SWH (1.5‰). In
contrast, SEAc measure was more than three times larger at TLC
than that at SWH (SEAc = 11.0‰ and 3.1‰, respectively; Table 2).
However, the ellipses overlapping area was lower (15.0%) for
benthic fauna present at TLC as compared to that at SWH
(53.2%) (Table 2). Comparing the relatively unpolluted TLC to
the organically enriched SWH sites, there was a shift of the ellipse
towards food sources with lower d13C values and a shift towards low
trophic levels at SWH (Figure 2B).
DISCUSSION

Food Sources for Benthic Consumers
Previous studies of benthic communities in subtidal sediment
have emphasized the importance of the phytoplankton pathway
as an energy source for the benthic food web (Thimdee et al.,
2004; Jeffreys et al., 2013; Careddu et al., 2015). In the present
study, POM was collected as an indication of phytoplankton
content and detritus material. The composition of SOM is
usually highly heterogeneous, which includes both in situ
primary producers, i.e., microphytobenthos, microorganisms,
sedimentation of phytoplankton, nutrients from human
TABLE 1 | Stable isotope composition of food sources and consumers in subtidal sediments at the relatively unpolluted site TLC and organically enriched site SWH in
subtropical Hong Kong.

TLC SWH Feeding type

d13C (‰) d15N (‰) d13C (‰) d15N (‰)

Food Sources
BMA -21.9 3.1 -22.1 2.8 NA
POM -23.4 ± 0.1(3) 2.9 ± 0.2(3) -23.4 ± 0.3(3) 2.7 ± 0.2(3) NA
SOM -21.3 ± 0.1(3) 4.8 ± 0.3(3) -23.1 ± 0.2(3) 4.3 ± 0.2(3) NA
Consumers
(1) Nematodes
Paradontophora sp. -20.2 6.1 -21.2 5.5 Herbivore/Epigrowth feeder (grazer)1

Halichoanolaimus sp. -18.9 11.5 – – Carnivore1

Dorylaimopsis sp. -19.8 6.2 -20.7 5.4 Herbivore/Epigrowth feeder (grazer)1

Daptonema sp. -20.8 4.8 -21.8 4.3 Herbivore/Non-selective deposit feeder1

Terschellingia sp. -24.4 1.5 -24.9 1.7 Herbivore/Non-selective deposit feeder1

Sphaerolaimus sp. -18.3 12.1 – – Carnivore1

(2) Copepods -20.2 5.6 -22.3 4.7 Herbivore/omnivore2

(3) Polychaetes
Lumbrineris sp. -17.1 12.0 -19.1 5.7 Omnivore3

Marphysa stragulum -17.6 11.9 – – Omnivore3

Glycera sp. -17.1 11.7 – – Carnivore3

Sigambra hanaokai -16.6 11.7 -19.2 6.8 Omnivore3

Mediomastus sp. -19.5 5.3 -20.7 4.9 Subsurface deposit feeder3

Prionospio sp. -20.6 5.0 -21.1 4.6 Surface deposit feeder3
1Wieser (1953); 2De Troch (2006b); 3Fauchald and Jumars (1979), Jumars et al. (2015).
The number of replicates is shown in brackets only for samples contained more than 1 replicate (NA = not applicable; - = not collected).
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activities, and detritus from other origins. Increases in nutrient
loading in coastal waters from anthropogenic activities can
influence the quality and quantity of the primary producers
(e.g. phytoplankton), and together with less prey availability due
to hypoxic condition resulting from organic enrichment can
further affect consumer population structure and diets (Tewfik
et al., 2005; Fox et al., 2009; van der Lee et al., 2021).

Taking an average trophic level increase in d15N of about 3‰
(Post, 2002), the within-site range of d15N of consumers (7.3‰ at
TLC and 2.5‰ at SWH, excluding the nematode Terschellingia
sp.) spanned two trophic steps at the relatively unpolluted site
TLC and one step at the organically enriched site SWH.
Although feeding behaviour of species from the same trophic
level may be different, most consumers in a given trophic level at
these two sites had similar d15N values.

In the present study, organisms that are regarded as
herbivores from literature had relatively lower d15N values
than that of omnivores and carnivores. The nematode
Daptonema sp. is a non-selective deposit feeder (Wieser, 1953),
ingesting suitably-sized food particulates like microalgae (Moens
et al., 2014; Xu et al., 2018). The stable isotope values of
Daptonema sp. obtained from the present study also reflected
BMA as its main diet. The nematode Dorylaimopsis and
Paradontophora spp. are considered as epigrowth feeders or
grazers based on their buccal morphology (Wieser, 1953). This
was also confirmed from the isotopic values of these nematodes
in this study, with BMA and other detritus in sediment as their
major diet. In a microcosm experiment, Moens et al. (2014)
found that epigrowth feeders can either ingest whole diatoms or
use their teeth to puncture and suck out the cell contents. With
similar isotope values, the harpacticoid copepods collected in the
present study also mainly feed on BMA. Our results thus
coincided with data from other studies that BMA was an
important food source to many harpacticoid copepods (De
Troch et al., 2006a; Cnudde et al., 2015) and epigrowth feeding
nematodes (Moens and Vincx, 1997). The polychaete Prionospio
sp. is considered a typical surface deposit feeder based on the
study of its biology (Jumars et al., 2015), and its feeding mode
was confirmed from the stable isotope values in the present
study. The polychaete Mediomastus sp. is a small to medium-
sized worm living in permanent sandy tubes in fine sand and
mud, where it exploits subsurface diatoms and detritus as food
sources (Hansen, 1993). Its stable isotope values obtained in the
Frontiers in Marine Science | www.frontiersin.org 6
present study also revealed that BMA and other detritus in
sediments are the major food sources.

The strongly depleted d13C value of the nematode
Terschellingia sp. suggested a different trophic pathway
involving utilization of a carbon source that might not be
included in the present study. Several chemoautotrophic
processes could yield depleted d13C values, such as sulphide-
oxidizing bacteria, with d13C values below -30‰ (Robinson and
Cavanaugh, 1995). Therefore, our data could imply that
Terschellingia sp. relies on such bacteria as a food source for its
diets, as reported from a mangrove ecosystem in India (Bouillon
et al., 2002), an estuarine intertidal flat in the Netherlands
(Moens et al., 2011), and an estuarine Zostera noltii seagrass
bed in Portugal (Vafeiadou et al., 2014).

Predators are usually more sensitive to stress due to increased
metabolic demand, longer lifespan and late maturity (Mor et al.,
2022). All the six carnivorous/omnivorous species (2 carnivorous
nematodes, 1 carnivorous polychaete and 3 omnivorous
polychaetes) involved in the present study were found at the
relatively unpolluted site TLC, while only two omnivorous
polychaetes were present at the organically enriched site SWH.
At TLC, the d15N values of omnivores overlapped with that of
carnivores, whereas at SWH, the d15N values of omnivores were
considerably similar to that of herbivores. The nematodes
Sphaerolaimus and Halichoanolaimus spp. were only found at
TLC. Their higher d15N values indicated a carnivorous role,
which is in agreement with the trophic guild classification based
on buccal morphology (Wieser, 1953; Moens and Vincx, 1997)
and field observations (Chitwood and Timm, 1954). The
nematode Sphaerolaimus sp. has also been reported having a
predacious feeding mode from a stable isotope study from the
Scheldt estuary, the Netherlands (Moens et al., 2005), a mudflat
in Marennes-Oléron Bay, French Atlantic coast (Rzeznik-
Orignac et al., 2008), and Zostera noltii seagrass beds and
adjacent bare sediments in Mira estuary, Portugal (Vafeiadou
et al., 2014). The polychaetes Marphysa stragulum, Sigambra
hanaokai and Lumbrineris sp. are considered to be omnivores,
whereas Glycera sp. is a carnivore (Fauchald and Jumars, 1979;
Jumars et al., 2015). At TLC, the d15N values of these omnivorous
polychaetes were similar to those of carnivorous polychaete and
nematodes, suggesting that they tend to rely on other animals as
their main food source. In contrast, the polychaetes Sigambra
hanaokai and Lumbrineris sp. at SWH had depleted d15N values
as compared to that collected at TLC, implying that they may
assume mainly a herbivore role. Fox et al. (2009) observed
organisms that have been reported to feed omnivorously
shifted their diets from mainly a carnivorous diet in an
oligotrophic estuary to mainly a herbivorous diet in an
eutrophic estuary, where prey were limited and macroalgae
were abundant. It thus suggested that under organically
enriched condition in which the availability of prey is limited,
some omnivores can alter their feeding mode to become
herbivores by taking advantage of the increase in primary
production so as to survive in such stressed environment
(Zheng et al., 2020). A similar case was also noted from the
present study.
TABLE 2 | Summary of niche community metrics of benthic communities
sampled at the relatively unpolluted site TLC and organically enriched site SWH in
subtidal sediments of subtropical Hong Kong.

Metrics TLC SWH

CD (‰) 3.8 1.5
SDNND (‰) 1.2 1.1
SEAc (‰) 11.0 3.1
Overlapping SEAc (‰) 1.7
Total overlappinga (%) 15.0 53.2
aTotal overlapping (%) = [overlapping SEAc (‰)/SEAc (‰)] ×100%.
CD, mean distance to centroid; SDNND, standard deviation of nearest neighbour
distance; SEAc, standard ellipse area corrected.
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Community-Wide Dynamics of Benthic
Food Web
Larger CD and SDNND values were found in the benthic
community sampled at the relatively unpolluted site TLC than
those at the organically enriched site SWH, indicating a more
complex functional community at TLC than that at SWH. This
could be directly related to the presence of more trophic levels
from herbivores to carnivores at TLC, as reflected in their wider
isotopic niche. The largely narrower isotopic niche as revealed in
the benthic community at SWH could be related to the high
organic enrichment in the sediment, which is characterized by
the presence of smaller organisms, usually deposit feeders
(Mucha and Costa, 1999; Aberson et al., 2016). Larger SEAc
measure was also found in the benthic community at TLC,
further suggesting a more complex functional community
there. Furthermore, the overlapping area of the ellipses of
niche areas at TLC and SWH indicated the niches of benthic
communities at the two sites can be different, owing to the
different functional structures in their benthic community.

Apart from causing hypoxia with subsequent decrease in prey
availability (Riedel et al., 2014) and predator foraging activity
(Sagasti et al., 2001; Stover et al., 2013), nutrient enrichment can
also lead to changes in the abundance and nutritional quality of
primary producers, providing another explanation for the shifts
in trophic position of some benthic omnivores (van der Lee et al.,
2021). The evidence of a higher reliance on POM as the major
food source at SWH can be indicated from difference in the
position of the ellipse areas depicted from TLC and SWH
(Figure 2B). Such change in food source reliance may also be
reflected from the different d13C values of SOM from the two
sites, probably due to a higher contribution of phytoplankton-
derived detritus to the overall resource pool at the organically
enriched SWH. These dietary differences may be linked to the
increase in phytoplankton production which is frequently
occurred in eutrophic coastal waters, especially in harbour
centre where water movement is restricted by embayments and
breakwaters (Nixon and Buckley, 2002). It is noted that there has
been an increase in algal biomass within Victoria Harbour in
recent years, likely owing to the nutrients brought by the nearby
Pearl River estuary from west of the harbour (Figure 1) and
increased water transparency as a result of improvement in water
quality (Xu et al., 2010). In contrast, chlorophyll a biomass is low
in relatively open eastern waters at TLC which are dominated by
nutrient-poor oceanic seawater off the coast (Ho et al., 2008).
The bulk of the increased primary production may not be
directly utilized as living phytoplankton, but may enter the
benthic food web as an allochthonous subsidy of POM falling
from the water column, and finally settle on the sediment and
support the benthic community there (Bouillon et al., 2002;
Tewfik et al., 2005). Moreover, the tidal-induced vertical mixing
can breakdown the stratification in the water column and
transport phytoplankton below the photic zone, as indicated by
the fairly high chlorophyll a concentration at the bottom water of
Victoria Harbour in summer (Yin and Harrison, 2007; Xu et al.,
Frontiers in Marine Science | www.frontiersin.org 7
2010). Such process could increase the sinking rate of microalgae
from the water column to the sediment. In addition, the dietary
shift of benthic omnivores is likely to be related to the increased
nutritional quality of primary producers in more eutrophic
waters caused by urban expansion, which allows for an
enhanced consumption of plant material (van der Lee et al.,
2021). With the shift of the feeding preference of omnivores in
organically enriched sediment, the energy flow through the
trophic web thus changed by transferring energy from primary
production directly to omnivores instead of the functional and
trophic roles of herbivores under unpolluted conditions (Fox
et al., 2009). Our present findings revealed that the ability of
some benthic invertebrate omnivores to change their trophic
position in response to organic enrichment, which results in the
limited availability of prey and variation in the abundance and
nutritional quality of primary producers, may have important
implications for our understanding of changes to the structure
and function of benthic communities under such pollution
stress. Additionally, the traditional feeding type classification
based on buccal morphology should be combined with empirical
information such as stable isotope signatures in order to decipher
the food web structure in areas suffering from prolonged
organic enrichment.
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