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Yong Xu1 and Ertao Gao1

1College of Geomatics and Geoinformation, Guilin University of Technology, Guilin, China,
2Department of Geomatics Engineering, University of Calgary, Calgary, AB, Canada
Developing a unified chlorophyll-a (Chla) inversion algorithm for cross-water

types is a significant challenge owing to the insufficiency of input features and

training samples. Although machine learning algorithms can build a consistent

model for different trophic waters, the accuracy of the inversion is dependent

on the quality of the extended features. Here, we designed a novel hybrid

framework called CHLNET, which combines a one-dimensional convolutional

neural network (1D CNN) and support vector regression (SVR). The 1D CNN is

used to extract features from the original band features, and the SVR is used to

perform a fit of Chla. CHLNET is trained and tested using match-up pairs of

SeaWiFS remote sensing reflectance [Rrs(l)] in situ with Chla ranging from

0.009 mg/m³ to 138.046 mg/m³, which covers mostly ocean water types.

Performance metrics in the log space of CHLNET were better than those of the

state-of-the-art algorithms on the testing dataset, and CHLNET had the best

overall performance with the largest cover area in the star plot. The frequency

distribution of predicted Chla by CHLNET was more consistent with that of in

situ Chla. While the spatial pattern was not smooth in low Chla concentration

waters, CHLNET demonstrated excellent mapping ability at the global and local

scales in high Chla concentration waters. Through the band-shift method,

which transfers the Rrs(l) of MERIS andMODIS-Aqua to the Rrs(l) of SeaWiFS in

the visible spectral range, CHLNET obtained better accuracy than the blended

algorithm of OCx and CI on MERIS and MODIS-Aqua matchups, which

validates the generalization of CHLNET on cross-sensor types. The results

indicate that CHLNET avoids the drawbacks of manually constructing extended

features and the need for merging water type-appropriate algorithms for Chla

retrieval, as well as provides a new idea for unified Chla concentration inversion

across water types. Thus, CHLNET may serve as an alternative approach for

Chla inversion.

KEYWORDS

chlorophyll-a inversion, hybrid algorithm, one-dimensional convolution neural
network, feature extraction, ocean color, cross-water types
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Introduction

Chlorophyll-a (Chla) is the predominant pigment in

phytoplankton. It is crucial in determining phytoplankton

biomass, which is used to estimate the trophic state of waters.

Chla concentration in the water column affects the absorption

and reflection of the spectrum. Based on this characteristic, Chla

concentration can be empirically estimated from remote sensing

spectral reflectance signals by relating the remote-sensing

reflectance (Rrs(l), sr-1) to the concentration of Chla (Bailey

and Werdell, 2006). Rrs(l) at the wavelengths measured by

sensors varies according to Chla concentration, suspended

particulate matter (SPM), and color dissolved organic

materials (CDOM) in the different trophic waters (Pekel et al.,

2016). In open ocean, the optical properties are determined

primarily by phytoplankton. Chla concentrations can be

estimated using band ratios or band subtractions (Hu et al.,

2020). In coastal and inland waters where the optical properties

do not covary with phytoplankton, the Chla inversion

algorithms may lead to large uncertainties (Dierssen, 2010;

Szeto et al., 2011).

Chla inversion algorithms based on the blue-green band

ratio (O'Reilly et al., 1998) or the near-infrared region band ratio

(Gitelson, 1992), have high inversion accuracy where water

constituents tend to covary with phytoplankton, and have

become the main operational algorithms (O’Reilly et al., 2000;

Hu, 2009; Hu et al., 2012; O'Reilly and Werdell, 2019). When

these algorithms are applied to complex optical waters, such as

coastal or inland waters, performance significantly degrades.

Other models have been developed to estimate Chla in complex

optical waters. For example, three-band models (Hu et al., 2005;

Gitelson et al., 2007; Song et al., 2013; Shah et al., 2019), four-

band models (Lee et al., 2009), and the chlorophyll fluorescence

peak (Hu et al., 2005; Gower, 2016; Zeng et al., 2017) were used

to inverse the Chla concentration in coastal or turbid waters.

Although these algorithms are mostly robust at their respective

optimal Chla ranges, where phytoplankton biomass coherently

varies with bio-optical properties, it is a non-trivial challenge to

build a unified algorithm across all water types. In order to

establish a cross-water-type Chla inversion algorithm, an idea to

merge different Chla algorithms according to the optical water

type (OWT) was proposed. In this method, the Chla

concentration is inversed based on water-type-appropriate

algorithms. As the most suitable algorithm is applied to each

OWT, the OWT-based method performs well (Moore et al.,

2014; Matsushita et al., 2015; Neil et al., 2019). Multiple ocean

color products are derived from this method. The NASA chlor_a

product combines the OCx (O’Reilly et al., 2000) and CI (Hu

et al., 2012) algorithms for Chla ≥ 0.2 mg/m³ and Chla ≤ 0.15

mg/m³, respectively. In between these values, the OCx and CI

algorithms are blended with weights. The ESA Climate Change

Initiative also applies this method to blend classic appropriate

algorithms to produce ocean color products (Jackson et al.,
Frontiers in Marine Science 02
2017). Similar methods have been employed to retrieve SPM

(Yu et al., 2019; Jiang et al., 2021). However, the OWT-based

model is limited by the optical water classification algorithm and

requires merging different algorithms.

Machine learning techniques for ocean water color inversion

have become increasingly popular owing to the continual

increase in in situ measurement data and synchronous satellite

data and the advancement of computer technology. In contrast

to the OWT-based inverse method, machine learning algorithms

eliminate the assumptions about the Chla absorption spectrum

in bio-optical models and learn the relationship between Chla

concentration and Rrs(l). Therefore, machine learning was also

used to build a unified Chla inversion algorithm across water

types. Among them, multilayer perceptron (MLP) (Vilas et al.,

2011; D'Alimonte et al., 2012; Awad, 2014), Gaussian process

regression (GPR) (Asim et al., 2021), support vector regression

(SVR) (Hafeez et al., 2019; He et al., 2020; Hu et al., 2020), and

random forest regression (RFR) (Cheng et al., 2021) have

demonstrated potential in retrieving Chla. Several approaches

that derived from neural network algorithms, including mixture

density network (MDN) (Pahlevan et al., 2020), OLCI Neural

Network Swarm(ONNS) (Hieronymi et al., 2017), and Case 2

Regional CoastColour (C2RCC) (Doerffer and Schiller, 2007),

were used to inverse Chla concentrations for Cases I and II

waters. These methods, however, require more extensive

samples and are highly impacted by input features, which are

usually spectral bands, band components, or both of them. The

quality of the input features describing Chla properties

determines the accuracy of machine learning algorithms (Kim

et al., 2014; Hafeez et al., 2019; Hu et al., 2020). When machine

learning algorithms are used to inverse Chla, it is frequently

challenging to manually extend input features to improve model

accuracy owing to the few input features or limited training

samples. The convolutional neural network (CNN) is an

extension of neural network architecture. It can extract high-

dimensional or complex features from raw band features as long

as the training dataset covers a wide enough range of data.

However, to the best of our knowledge, limited studies have been

conducted on 1D CNN approaches to unified Chla inversion.

To fill the gap in the lack of an algorithm based on 1D CNN

to inverse unified Chla across trophic levels, we designed a novel

model that is a hybrid of 1D CNN and a regression algorithm,

dubbed CHLNET, to build a relationship between Rrs(l) and
Chla. We aimed to explore a unified inversion algorithm based

on 1D CNN for estimating the Chla concentration for most

ocean waters using only original Rrs(l) as input features. We

demonstrated the performance of the CHLNET through a

comparison with a number of the state-of-the-art algorithms

previously published, and we verified the CHLNET model

accuracy at different trophic levels. An ocean surface Chla

concentration inversion was performed using CHLNET to

analyze its ability in spatial mapping. Then, cross-sensor

applications were performed to analyze the generalization
frontiersin.org
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capability of CHLNET. Finally, we discuss how CHLNET works,

the advantages of the 1D CNN structure compared to MLP, and

the limitations of CHLNET.
Data sources and
data preprocessing

Match-up pairs of satellite sensors and
field measurements

The match-up pairs used in the paper were derived from the

validation system of the SeaBASS website provided by the NASA

Ocean Biology Processing Group (OBPG). The match-up pairs

are widely available for algorithm performance assessments. The

field measurements represent the in situ chlorophyll data

derived from the NOMAD V2 dataset (Werdell and Bailey,

2005) . F luorescence and high-per formance l iquid

chromatography were used to measure the in situ chlorophyll

data. The chlorophyll measured by the two methods was found

to be in good agreement. Therefore, we concluded that there is

no difference between the two measurements of chlorophyll. In

situ measurements of chlorophyll data in NOMAD included

Chla and chlorophyll, and the errors associated with the

measurement instrument were neglected. The satellite sensor

measurements that represent Rrs(l) were acquired from three

sensors, Sea-viewing Wide Field-of view Sensor (SeaWiFS,

1997–2010), Moderate Resolution Spectroradiometer

(MODIS-Aqua, 2002–present), and Medium Resolution

Imaging Spectrometer (MERIS, 2002–2012). The match-up

pairs were found based on Bailey’s criteria (Bailey and

Werdell, 2006). Figure 1 illustrates the spatial and temporal

distribution of the match-up pairs of SeaWiFS. Spatially, match-

up pairs covered both the open and coastal oceans and data from

low and high latitudes. Temporally, the matchups were

concentrated in 2001, with approximately twice as many

matches as in the other years.
Frontiers in Marine Science 03
Preprocessing of matchups

The satellite in situ matchups were separated into 12 range

segments according to Chla concentration, and pairs with

considerable noise in each range segment were eliminated

based on the trend of the spectral curve. We also eliminated

pairs containing negative Rrs(l). After the above steps, the noise
points of matchups were removed, which produced a more

consistent spectral reflectance curve in the segmented range

(Figure 2). SeaWiFS, MERIS, and MODIS-Aqua matchups were

reduced to 2151, 611, and 846, respectively. Table 1 shows the in

situ Chla concentration statistical information for three sensors

after noise rejection. As shown in Figure 2, the peak of spectral

reflectance shifted toward the long-wave direction as the

chlorophyll concentration increased, which is consistent with

the literature (Werdell and Bailey, 2005). Approximately 75% of

the matchups were less than 4 mg/m3, and fewer were greater

than 20 mg/m3, which resulted in some bias in matchups. We

used the log criterion to transform the Chla concentration and

remove the bias so that it conformed to the Gaussian

distribution (Zhan et al., 2003).

The matchups of SeaWiFS were used to assess the CHLNET

algorithm. The matchups of MERIS and MODIS-Aqua were

used to evaluate the generalization of the CHLNET algorithm on

cross-sensor types. Although MODIS-Aqua and MERIS satellite

in situ match-up pairs are accessible via the SeaBASS website, it

is impossible to directly use match-up pairs for the CHLNET

model owing to the difference in the number of bands and center

wavelengths. Thus, according to the nearest principle, the Rrs(l)
of MODIS-Aqua and that of MERIS were band-shifted to the

input band used by the CHLNET model. The subtle differences

in Rrs(l) caused by sensors are beyond the scope of this paper.

Table 2 lists the bands that required band shifting for Aqua and

MERIS sensors. The gray cell in Table 2 indicates the band

center that would be band-shifted. Band shifting uses Mélin's

method (Mélin and Sclep, 2015), which relies on a bio-optical

algorithm, namely, the quasi-analytical algorithm (QAA) (Le

et al., 2009) to calculate Rrs(l) at the target band.
FIGURE 1

Spatial distribution (A) and time histogram (B) of matchups of SeaWiFS.
frontiersin.org

https://doi.org/10.3389/fmars.2022.934536
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fan et al. 10.3389/fmars.2022.934536
Model development of CHLNET

CHLNET consists of a 1D CNN for automatic feature

extraction and a regression algorithm for Chla concentration

fitting for Chla concentration inversion. Figure 3 shows the
Frontiers in Marine Science 04
framework of CHLNET. Rrs(l) indicates the remote sensing

reflectance in the matchups dataset. The 1D CNN performs

feature extraction. We used SVR as a regression algorithm after

comparing its performance with other regression algorithms

(Supplementary Table S1).
FIGURE 2

Spectral line graph of satellite in situ matchups in different Chla segments of SeaWiFS.
TABLE 1 In situ Chla statistical information of three sensors after preprocessing.

Sensor MAX (mg/m3) MIN (mg/m3) MEAN (mg/m3) MEDIAN (mg/m3) STD (mg/m3) Number

SeaWiFS 138.046 0.009 3.083 0.943 5.932 2151

MODIS-Aqua 58.099 0.033 3.845 1.377 5.078 846

MERIS 40.230 0.017 5.395 3.471 6.237 611
fron
TABLE 2 Band-shifted bands of MODIS-Aqua and MERIS.

Target Band
Sensor

443 nm 490 nm 510 nm 555 nm 670 nm Number

MODIS-Aqua 443 nm 488 nm 531 nm 555 nm 667 nm 846

MERIS 443 nm 490 nm 510 nm 560 nm 665 nm 611
tiersin.org
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Feature extraction based on 1D CNN

A traditional CNN includes three main elements: a

convolutional layer, a pooling layer, and a fully connected

layer. The convolutional layer extracts local characteristics

from the input features through a convolutional kernel, the

output of which is then sampled by the pooling layer. The 1D

CNN differs slightly from traditional networks. The input of the

convolutional layer is a three-dimensional (3D) vector (samples,

time steps, and features), and the output is also a 3D vector

(samples, time steps, and channels). Actually, the 1D CNN views

the input data as a sequence, on which it can perform

convolutional operations. The pooling layer follows the

convolutional layer, which is also a 3D vector (samples, time

steps, and channels). The pooling layer is used to reduce

dimensionality, remove redundant information, and reduce the

complexity of the network. Since the original training samples

are two-dimensional vectors (samples and features), it is

necessary to convert the two-dimensional vector into a 3D

vector. It is also desirable to perform a convolution operation

to extract more features from a limited number of features (five

spectral bands). Too few features limit the number of

convolution layers. In this study, there were only five features

corresponding to five central bands. Therefore, it is necessary to

add input features to meet the quantity requirements of input

features for the convolution operation. There are two ways to

solve this problem: one way is to repeat features, that is, to
Frontiers in Marine Science 05
simply repeat a feature without changing the feature; for

example, the original input vector is (F, 1), and in the case of

repeated features, the input vector becomes (F*n, 1), with n

denoting the number of repetitions and the other way is to use a

fully connected layer for feature addition, such as using a fully

connected action of n neuron nodes on the input vector (F, 1),

whose output is (F, n), and after performing a reshape operation,

the same dimensionality as the first method can be obtained.

Both approaches have been tested and have almost the same

inversion accuracy. Since the first method requires extra

operation, the second method was selected in this study for

extending the feature volume. Its structure is shown in Figure 4.

As shown in Figure 4, the 1D CNN is divided into three

stages. Stage 1 is the input feature preparation stage, where 500

new input features consisting of original features [Rrs(l) at 443,
490, 510, 555, and 670 nm] are constructed using the fully

connected layer. Stage 2 is the feature extraction stage. As the

original number of features is five, a convolutional layer with a

convolutional kernel size of 5, strides of 5, and filters of 16 is used

to extract 100×16 high-dimensional features. Three CNN blocks

follow. Each block consists of two convolutional layers and one

pooling layer. In the same block, both convolutional layers have

the same parameters, such as kernel size and strides. The pooling

layer is calculated according to the maximum pooling, with its

pool size set to 2. Figure 5 shows a CNN block where the

convolutional kernel size is 3, the stride is 1, and the maximum

pooling size is 2. Meanwhile, in each convolutional layer, the
FIGURE 3

Framework of CHLNET.
FIGURE 4

1D CNN structure.
frontiersin.org

https://doi.org/10.3389/fmars.2022.934536
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fan et al. 10.3389/fmars.2022.934536
activation function is set. The activation function is uniformly

set to the ReLU function throughout the 1D CNN network,

because the ReLU function showed the best performance during

the experiment, as shown in Table 3. Stage 3 is a linear regression

that fits the features extracted in Stage 2 to the in situ Chla

concentration. The detailed parameters of the 1D CNN are

shown in Supplementary Table S2.
Chla inversion workflow of CHLNET

As CHLNET is composed of a 1D CNN and an SVR, its

training and testing processes differ from those of conventional

neural networks. Therefore, it is necessary to clarify the training

and testing processes for CHLNET. During the training phase,

five Rrs(l)s are taken as input features (X), which are input to

the 1D CNN for training after normalization. The Chla

concentration in log space represents the 1D CNN output (Y).

When the model loss settles within an error range around the

final value, the 1D CNN completes the training. Then, the

outputs of 1D CNN in Stage 2 are normalized to X’, which are

used as inputs by the SVR algorithm to fit Chla concentration in

log space (Y). During the testing phase, the samples are
Frontiers in Marine Science 06
normalized and predicted with the first two stages of the 1D

CNN. The output results are normalized and then input to the

SVR model for an estimate to obtain the final prediction results.

The training and testing workflow of CHLNET is shown

in Figure 6.
Performance assessment metrics

Standard statistical metrics such as the coefficient of

determination (R²), root mean square error (RMSE), and

regression slope, are often used to evaluate the accuracy of an

inversion algorithm. However, these evaluation metrics are

usually applied to Gaussian distribution samples without

outliers and are still inadequate in the Chla inversion

algorithm (Seegers et al., 2018). Thus, we used the raw and

log-transformed Chla metrics for the performance assessment.

These metrics included:

R2 = 1 − on
i=1 log10 Mið Þ − log10 Eið Þð Þ2

on
i=1 log10 Mið Þ −mean(log10 Mið Þð Þð Þ2 (1)

RMSLE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1 log10 Eið Þ − log10 Mið Þð Þ2
n

s
(2)

MSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1 Ei −Mið Þ2
n

s
(3)

MAE = 10
on

i=1 log10 Eið Þ − log10 Mið Þj j
n (4)
FIGURE 5

1D CNN block.
TABLE 3 Performance of different activation functions.

Activation
function

R² RMSE RMLSE
(mg/m³)

MAE

relu 0.852 10.319 0.075 1.57

tanh 0.85 10.515 0.076 1.563

sigmod N/A 25.653 0.514 3.992
frontiersin.org
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Bias = 10
on

i=1log10 Eið Þ − log10 Mið Þ
n (5)

The R², root mean squared log error (RMSLE), MAE, and

Bias metrics were evaluated in the log-transformed space of

Chla. The RMSE was also calculated for Chla without log

transformation to assess the standard deviation. The mean

absolute error (MAE) was used to quantify the actual error

between the estimated Chla and the measured Chla. Slope was

used to calculate the linear relationship between estimated Chla

and measured Chla in the log-transformed space. The model win

percent (MWP) was used to evaluate different Chla inversion

models (Seegers et al., 2018).

When there are multiple assessment metrics, it is difficult

to judge the pros and cons of the algorithm from one metric.
Frontiers in Marine Science 07
We improved the star plot visualization method proposed by

Seegers to evaluate the performance of the algorithm

comprehensively. To avoid exaggerating the differences

between different metrics, the maximum and minimum of

each metric were set according to Equations 6–9, where Pi
denotes the ith metric (Chambers et al., 2018). For R², Slope,

and MWP, the scalar results could be calculated directly using

Equations 6 and 7. For RMSE, RMSLE, and MAE, the smaller

the values, the better the performance. The max and min of the

scalar were set using Equations 8 and 9, respectively.

Maximum = Max Pið Þ + 10% Max Pið Þ −Min Pið Þð Þ (6)

Minimum = Min Pið Þ − 10% Max Pið Þ −Min Pið Þð Þ (7)
FIGURE 6

Chla inversion workflow of CHLNET.
frontiersin.org
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Maximume = Maximum −  Minimum (8)

Minimume = 0 (9)
Experiments and results

Performance assessment of CHLNET

To evaluate the performance metrics of the CHLNET model,

RFR, SVR (Hu et al., 2020), and MDN were used for

comparison. Because SeaWiFS L3 Chla product data were

derived from the OC4 and CI algorithms, the performance

results of OC4 and CI algorithms were no longer listed. The

SeaWiFS Chla product data were listed as a comparative

analysis. In machine learning algorithms, input features can

directly affect the model's accuracy. Hu et al. (2020) extended the

original features when applying the SVR algorithm to the inverse

of ocean surface Chla. So, in this paper, we followed Hu's

method for feature extension, using the raw spectral features
Frontiers in Marine Science 08
and extended features to train and evaluate the RFR and SVR

models. The matchups of SeaWiFS were split into training and

testing datasets according to the ratio of 7:3. All algorithms use

the same training data (n = 1505) and testing data (n = 646).

Table 4 lists the performance metrics of these algorithms. We

normalized the performance metrics of the four algorithms on

the whole dataset and testing dataset according to the

comprehensive evaluation method in Section 3.3, using the

SeaWiFS Chla product metric as the baseline. Figure 7 shows

the Seegers plot based on the normalized results for whole

dataset and testing dataset.

Because the inputs of SVR and RFR are merged features of

original Rrs(l)s and extended features that are based on the

band ratio and band difference, the performance metrics of the

two algorithms in this paper were higher than those of the

SeaWiFS Chla product. Some metrics were even higher than

those of the neural network (MDN and CHLNET) algorithms,

such as the bias of SVR. RFR covered the largest area on the

whole dataset, but it covered only a small area on the testing

dataset, indicating the overfitting of RFR on the training data. In
TABLE 4 Performance metrics of different algorithms on whole dataset and testing dataset.

Algorithm Dataset R² Slope RMSE (mg/m³) RMLSE Bias MAE MWP

OC4+CI
(SeaWiFS)

All 0.852 0.854 24.473 0.075 1.004 1.597 N/A

Test 0.833 0.849 15.394 0.085 1.008 1.633 N/A

RFR All 0.946 0.933 7.172 0.027 1.000 1.267 75%

Test 0.859 0.876 8.793 0.072 0.998 1.544 57%

SVR All 0.885 0.895 15.824 0.058 1.020 1.482 56%

Test 0.866 0.893 8.114 0.068 1.027 1.507 61%

MDN All 0.899 0.926 11.723 0.051 1.068 1.372 65%

Test 0.866 0.908 7.105 0.068 1.060 1.504 59%

CHLNET All 0.893 0.896 15.241 0.054 1.013 1.452 58%

Test 0.874 0.892 8.178 0.064 1.019 1.487 62%
frontie
BA

FIGURE 7

Comparison of seven metrics in the star plot on the whole (A) and testing dataset (B).
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Hu et al.’s study, SVR showed better performance, which is also

corroborated by this paper, where SVR was second only to

CHLNET in terms of the coverage area on the testing dataset.

Overall, SVR and RFR outperformed the SeaWiFS Chla product,

showing that when extended features are available, the SVR and

RFR algorithms have the capability of inversing Chla.

The MDN used in the experiment consists of one input layer

(n = 5), five hidden layers (n = 100), one mixture layer, and one

output layer. From Table 4, the performance metrics Slope and

RMSE of MDN were the best performers, which outperformed

those of the other four algorithms. However, in terms of real

metric values, the Slope and RMSE metrics of CHLNET were

close to the values of MDN, and the difference between them was

only 0.016 in Slope and 1.073 mg/m³ in RMSE on the testing

dataset. CHLNET showed good performance on the testing

dataset, outperforming the other four algorithms in several
Frontiers in Marine Science 09
metrics (e.g., R², MWP, and MAE). From the scatter plot

(Figure 8), we can see that there was an overestimation of low

Chla concentration and an underestimation of high Chla

concentration for all algorithms (Slope < 1). These four

algorithms were very close to each other in scatter

morphology on the testing dataset. Table 4 shows that the

CHLNET outperformed the SVR and RFR, which indicates

that the CHLNET without feature extension provides a novel

perspective on Chla inversion.
Evaluation of CHLNET performance at
different trophic levels

To further analyze the accuracy of CHLNET at different

Chla concentrations, the testing dataset was divided into three
B

C D

A

FIGURE 8

Scatter plot of CHLNET (A), MDN (B), SVR (C) and RFR (D) on the testing dataset.
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trophic levels, defined as oligotrophic (Chla ≤ 0.1 mg/m3),

mesotrophic (0.1 < Chla ≤1 mg/m3), and eutrophic (Chla > 1

mg/m3) (Seegers et al., 2018). Table 5 lists the performance

metrics on the testing dataset for each trophic level. For

oligotrophic waters, although CHLNET was not the optimal

model, its performance metrics (RMSE, RMSLE, MAE, and

MWP) were the second best. Bias metrics for all models were

greater than 1, which indicates that all models overestimate for
Frontiers in Marine Science 10
oligotrophic waters. For mesotrophic waters, CHLNET

outperformed other models on almost every metric, except for

the Bias metric (1.041), which is slightly lower than that of MDN

(0.995) and SVR (1.031). The Slope metric improved from 0.866

to 0.984. The Bias metric was closer to 1, moving from 1.587 to

1.041. This indicates that the predicted Chla concentrations are

more evenly distributed on both sides of the in situ

measurements at this trophic level. CHLNET also offered
TABLE 5 Performance metrics for different trophic levels.

Water Type N (646) Algorithm R² Slope RMSE (mg/m³) RMLSE Bias MAE MWP

Oligotrophic 66 OC4+CI N/A 1.047 0.927 0.160 1.783 1.847 N/A

RFR N/A 0.920 0.282 0.121 1.558 1.622 65%

SVR N/A 0.847 0.540 0.131 1.589 1.667 71%

MDN N/A 0.757 0.436 0.123 1.411 1.596 64%

CHLNET N/A 0.866 0.424 0.122 1.587 1.639 68%

Mesotrophic 265 OC4+CI 0.372 0.958 0.115 0.051 1.074 1.465 N/A

RFR 0.351 0.947 0.594 0.053 1.059 1.442 52%

SVR 0.376 1.007 0.321 0.051 1.031 1.441 51%

MDN 0.288 0.979 0.443 0.058 0.995 1.459 55%

CHLNET 0.419 0.984 0.273 0.048 1.041 1.428 56%

Eutrophic 315 OC4+CI 0.365 0.804 53.427 0.091 0.836 1.669 N/A

RFR 0.493 0.807 40.770 0.073 0.863 1.556 58%

SVR 0.554 0.849 35.342 0.064 0.907 1.509 61%

MDN 0.524 0.836 33.313 0.068 0.964 1.513 57%

CHLNET 0.545 0.819 41.103 0.065 0.908 1.513 58%
frontie
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FIGURE 9

Predicted Chla frequency distribution of SeaWiFS (A), RFR (B), SVR (C), MDN (D), and CHLNET (E) on the testing dataset.
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performance advantages at the eutrophic level compared to

other models. The R², RMSLE, Bias, MAE and MWP of

CHLNET had the second-best performance. In Figure 9, the

Chla frequency distribution of CHLNET and SVR was

significantly better than that of the other models. As the

frequency distribution plots of Chla concentration of SVR and

CHLNET seem to be similar, it is difficult to directly infer which

model is better. However, in Table 4, the MAE metric of

CHLNET (1.487) was slightly lower than that of SVR (1.504).

Therefore, CHLNET at the three trophic levels is more

consistent with the in situ measurements. Based on the results

it can be concluded that CHLNET exhibits higher inversion

accuracy at different trophic levels and avoids the problem of

combining OWT-based inversions to establish a consistent

inversion model of Chla.
Spatial mapping capability of CHLNET

The spatial mapping capability of CHLNET was verified at

two time scales: one is the monthly average (June 2010) Chla

concentration, and the other is the 8-day (24–31 October 2010)

fused Chla concentration. Figures 10C–F show the SeaWiFS

global Chla distributions derived from CHLNET and SVR

algorithms. SeaWiFS Chla product data (Figures 10A, B) from
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the same period were used as a comparison. For Chla

concentration mapping on two time scales, the inversion

results of CHLNET, SVR, and SeaWiFS products have similar

spatial patterns. Large-scale oceanic elements, such as upwelling

near the Equator and the phenomenon of high Chla

concentration in coastal waters, could be seen. Although there

were some differences in the performance of CHLNET, SVR, and

SeaWiFS, as shown in Table 4, such differences would be difficult

to be observed at large-scale global Chla concentrations.

Therefore, we compared the Chla concentration of CHLNET,

SVR, and SeaWiFS from three latitudes (30°N, 0°, 30°S).

Figure 11 shows the scatter plots of the concentrations in the

range of −180° to 180° for the three latitudes and the difference

plots (Diff = CHLNET/MDN−SeaWiFS). For simplicity, only

differences in the range of −0.5 (mg/m³) to 0.5 (mg/m³) are

retained in Figure 11. The differences in Chla of both CHLNET

and SVR at latitude 30°N, 30°S (Figures 11A, C) show a

consistent fluctuation pattern; that is, the estimated Chla was

generally higher than that of SeaWiFS in the open ocean

(difference > 0). The estimated Chla was generally lower than

that of SeaWiFS in the coastal waters (difference < 0). The

differences on the equatorial line (Figures 11B) had a significant

fluctuation. However, there were some subtle differences in

CHLNET and SVR. Although the differences in CHLNET

were bigger than SVR’s on the Equator, it is hard to conclude
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FIGURE 10

(A, B) SeaWiFS Chla distribution, (C, D) SVR Chla distribution, and (E, F) CHLNET Chla distribution of the global map on monthly and 8-day scales.
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that SVR mapping results were better, due to the lack of ground

truth. In oligotrophic waters (Chla < 0.1 mg/m³), the Chla values

assessed by CHLNET showed dispersion (green scatter points

for Chla < 0.1 mg/m³ in Figures 11A). This result is consistent

with the evaluation of oligotrophic waters in Figure 9 based on in

situ measurements.

The eastern waters of Tasman Asia, Australia (147°–156°E,

49°–38°S) in the southern hemisphere were selected for further
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analysis of CHLNET performance at local scales (as shown in

Figure 12) because of the occurrence of mesotrophic and

eutrophic waters in this region. The MODIS-Aqua Chla

product from NASA in this region was introduced as the

reference to observe more detailed Chla spatial patterns

because of its higher spatial resolution than SeaWiFS.

CHLNET (Figure 12C) and SVR (Figure 12B) have nearly

consistent spatial patterns. Compared with SeaWiFS data
B C
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A

FIGURE 11

(A–F) indicate the scatter plot of CHLNET, MDN, and SeaWiFS Chla distribution at 30N°, 0°, and 30°S, respectively, on an 8-day scale (24–31
October 2010).
FIGURE 12

Comparison of region (147°–156°E, 49°–38°S) Chla distribution of the SeaWiFS product (9 km) (A), SVR model (9 km) (B), CHLNET model (9 km)
(C), and MODIS-Aqua product (4 km) (D) on 24–31 October 2010.
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(Figure 12A), the CHLNET data are smoother and almost

contain no noise points at the same spatial resolution in the

open ocean (pale blue ellipse), indicating that CHLNET has a

higher noise tolerance. In the coastal region (blue ellipse),

CHLNET data are higher than those of the SeaWiFS and

MODIS-Aqua Chla product , and changes in Chla

concentration are smoother throughout this region. In another

open ocean (red ellipse), Chla concentration of MODIS-Aqua

generally had higher Chla values, with the highest values

occurring at the bottom of this region. Compared to the

SeaWiFS Chla product, the distribution of CHLNET Chla

concentration was more similar to that of the MODIS-Aqua

Chla product, indicating that even at a low spatial resolution

(9 km), CHLNET can still capture detailed changes. In addition,

the MODIS-Aqua Chla product showed a striped distribution

(black ellipse), and CHLNET represents the Chla distribution in

this region. In contrast, SeaWiFS showed a break and low Chla

concentration in the middle part.

The eastern U.S. coastal region in the northern hemisphere

was selected for further analysis of CHLNET’s mapping

capabilities at low Chla concentrations, which was used by Hu

in developing the OCI algorithm. Figure 13 shows the mapping

results of Chla concentrations in this region. In eutrophic waters

(blue ellipse), the spatial pattern of Chla concentration was

different for the four data. CHLNET’s Chla concentrations

showed a smooth transition, unlike MODIS-Aqua’s Chla

concentrations, which suddenly rose from the northeast to the

southwest, as well as the Chla concentrations of both SeaWiFS

and SVR, which had high values. In oligotrophic waters,

CHLNET ’s Chla spatial pattern no longer exhibited

smoothness (red ellipse). The CHLNET model generally shows

excellent mapping performance in mesotrophic and eutrophic

waters. However, the mapping ability at low Chla concentrations

could be improved.
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Generalization of CHLNET on
cross-sensor

In addition to accuracy, the CHLNET model was evaluated

for its ability to generalize across sensors, rather than sensor-

specific algorithms. To quantify the generalization ability of the

CHLNET model on cross-sensor data, the satellite in situ

matchups of MERIS and MODIS-Aqua after band shifting

were split into training and testing datasets in the ratio of 7:3.

The CHLNET model trained on the SeaWiFS dataset was

applied to the MERIS and MODIS-Aqua testing datasets.

Table 6 shows the performance metrics of the two sensors.

CHLNETseawifs denotes the CHLNET model trained on

SeaWiFS matchups. Product denotes the OCx algorithm used

to generate the Chla product. In addition, we wanted to

investigate how the model’s accuracy changes when a specific

sensor sample is covered.

From Table 6, it can be seen that the CHLNETseawifs could

still achieve good performance metrics in the cross-sensor Chla

inversion, indicating that the CHLNETseawifs captures some of

the spectral features when applied to new sensor data and has

certain generalization ability. For the MERIS testing dataset,

except for the Slope metric, which was slightly smaller, the

performance metrics of CHLNETseawifs were better than the

MERIS Chla product accuracy. For the MODIS-Aqua testing

dataset, the accuracy of the CHLNETseawifs model was greater

than that for the Chla product, but the difference was small

(MWP = 51%). Note that the Slope metric of the

CHLNETseawifs was low (Slope = 0.728). This is because the

model overestimated Chla concentration at the oligotrophic

level and underestimated it at the eutrophic level. As a result,

R2 was larger (0.859), while the Slope was lower.

For horizontal comparison, a cross-sensor inversion model

was built, called CHLNETcross, based on the CHLNETseawifs
FIGURE 13

Comparison of region (76.6°–70.5°W, 28.5°–36.5°N) Chla distribution of the SeaWiFS product (9 km) (A), SVR model (9 km) (B), CHLNET model
(9 km) (C), and MODIS-Aqua product (4 km) (D) on 24–31 October 2010.
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model using 70% match-up pairs of MERIS and MODIS-Aqua.

Compared to the CHLNETseawifs, CHLNETcross performance

metrics were improved. The performance improvement of the

CHLNETcross model on the MODIS-Aqua testing dataset was

significantly greater than that of MERIS. For example, on the R²

metric, the performance of MODIS-Aqua increased by 6%, while

that of MERIS increased by only 2%. This phenomenon might be

because the band to be band-shifted in MODIS-Aqua was too far

(~21 nm) from the target band, resulting in a significant error

after the band shift. After the addition of match-up samples from

MODIS-Aqua, the CHLNET model filled the gap that failed to

capture the features for this sensor, and the model accuracy was

immediately improved. The above results demonstrate that the

CHLNETseawifs can capture the standard spectral features of

cross-sensor types. With the addition of specific sensor samples,

the CHLNETcross captured some features on the MERIS and

MODIS-Aqua testing datasets that CHLNETseawifs did not

extract. This demonstrates that the CHLNET model can be

applied for cross-sensor generalization when the target sensor

samples are insufficient for building CNN models.
Discussion

Feature extension effect on the
performance of CHLNET

The CNN is excellent at detecting simple patterns in data

and then in leveraging those simple patterns to produce more

complex patterns in higher layers. In the Chla inversion model,

the Rrs(l) can be viewed as a shorter sequence with a fixed

length. Then, the 1D CNN can extract features efficiently from

such a sequence segment. Therefore, we designed the first layer

of the CHLNET network with a kernel size of 5 and a stride of 5.

Under this convolution layer, each newly extracted feature

combines five bands [Rrs(l) at 443, 490, 510, 555, and 610

nm]. This concept is similar to the classical concept of

combining through bands (two- or three-band combination).

Based on this, when creating the network structure, this paper

employs 1D CNN to extract features and SVR as a regression

algorithm for Chla fitting, and the two combine to form the new

model, CHLNET. The difference is that the CHLNET model
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learns the weights of the band combinations through

convolutional networks. Through multiple iterations, the

model learns the mathematical form similar to the band

combination to realize the inversion of Chla.

To determine whether the CHLNET model can learn the

band combination or higher-dimensional features, we added

extended features into the input to observe the change in

CHLNET performance. To simplify the work, we only discuss

the R² and MAE performance metrics. In order to prevent the

influence of random noise, the performance metrics were

recorded at a median value of 20 times when a new feature

was added. Figure 14 shows the changes in the R² and MAE

metrics when the input features increased. o denotes the original

band feature, e denotes the extended feature, and the detailed

description of each feature combination is shown in

Supplementary Table S3. For comparison, we performed 3

experiments on the original band features (o, o1, and o2) and

11 experiments on the extended feature combinations. As

illustrated in Figure 14, when features were added, except for

metrics that fluctuated in the training dataset (solid line), there

was little change in the testing dataset (dash line). The metrics

when o was used as the input feature were treated as the baseline

in Figure 14, and the metrics of different input features were

subtracted from this baseline as difference. The maximum

change in R² was found to be 0.007, while the maximum

change in MAE was 0.011. The amount of change compared

to the original metric value was essentially negligible. This

indicates that the introduction of extended features hardly

improves the accuracy of CHLNET, thus verifying that

CHLNET is capable of extracting more complex or high-

dimensional features from simple bands [Rrs(l)].
Effect of network structure on model
convergence for Chla inversion

MDN can implement one-to-many inversion, that is, the

same input can output multiple different values. In recent years,

the model has been frequently used for regression applications

with multiple normal distribution patterns (Pahlevan et al., 2020;

Smith et al., 2021). MDN is a combined model based on MLP

and Gaussian Mixture Model (GMM). GMM consists of several
TABLE 6 Performance metrics of cross-sensor.

Sensor Algorithm R² Slope RMSE (mg/m³) RMLSE Bias MAE MWP

MERIS
(N=184)

Product 0.864 0.936 19.949 0.072 1.059 1.618 N/A

CHLNETseawifs 0.918 0.927 13.989 0.044 0.996 1.452 61%

CHLNETcross 0.915 0.950 12.523 0.045 1.058 1.465 57%

MODIS-Aqua
(N=254)

Product 0.820 0.911 11.112 0.079 1.176 1.619 N/A

CHLNETseawifs 0.859 0.728 7.723 0.063 1.094 1.574 51%

CHLNETcross 0.894 0.833 6.727 0.047 1.058 1.448 63%
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Gaussian components. MLP is responsible for extracting each

Gaussian component's weight, variance, and mean. Prediction

output is based on the mixture weights and the morphology of

Gaussian components, which enables MDN to predict multiple

outputs based on the same input. In this paper, we propose

CHLNET, combining 1DCNN and SVR. CHLNET and MDN

have many similarities: both models are ensemble models; the

former is MLP+GMM, and the latter is 1D CNN+SVR;

moreover, the input features of the models are original

features; so, there is no need to extend the features. MLP and

1D CNN play a similar role in the overall model, that is, feature

extraction. From the experimental results (Table 4), it can be

noted that both MLP and 1D CNN obtained better performance

and played an essential role in completing the feature extraction.

However, the following questions need further discussion: what

is the difference between the two structures? Which network

structure should be chosen when inversing Chla.

Theoretically, there is a fundamental difference between how

MLP and 1D CNN extract features. As MLP is a fully connected

form, one fully connected layer can extract features consisting of

different numbers of bands. If there are five input feature bands

and 100 neurons in hidden layer (Figure 15A), and if the weights

w11, w12, and w13 tend to 0, then the X1 feature consists of two

bands, Rrs (555) and Rrs (670). Similarly, X1 can also be

composed of any three or four bands. However,1D CNN

networks perform feature extraction by way of convolution.

Figure 15B shows the case of extracting features consisting of

two bands with a convolution kernel size of 2, and a stride of 1. It

shows that the number of parameters used by the 1D CNN to

extract features was less than that of MLP. In an extreme case,

when extracting 100 new features consisting of two bands, in the

structure shown in Figure 15B, the MLP required 5 × 100 = 500

parameters, while the 1D CNN required only 2 × 100 = 200
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parameters. We built a five-layer network structure using MLP

and 1D CNN, where the MLP consisted of five fully connected

layers and the 1D CNN consisted offive CNN layers. The impact

of parameter increases on model loss can be observed by

increasing the network parameters by changing the number of

neurons in the hidden layer (1D CNN is the number of

channels). Figure 15C shows the changes in the loss metric on

the training dataset when the MLP and 1D CNN network

parameters increased. The loss of the 1D CNN stabilized at

5000 parameters, while the loss of MLP stabilized at 10,000

parameters. The 1D CNN could stabilize the loss with one and a

half fewer parameters than MLP. Therefore, the 1D CNN could

achieve the expected inversion results with a smaller network

structure compared to MLP networks. Thus, it can be inferred

that CNN networks can be widely used in water color remote

sensing inversion, especially when the number of samples

is limited.
Capability of CHLNET

CHLNET is an empirical model obtained by training based

on in situmeasurements. Therefore, it also has the pros and cons

of an empirical model. As CHLNET does not have an explicit

functional form, it is impossible to determine the physical

meaning of the features. Therefore, obtaining Chla accuracy

beyond the training range is challenging when the training data

are insufficient. Greater attention should be paid to the CHLNET

model when Chla exceeds the training range. In Table 5 and

Figure 9, the limited inversion capability of CHLNET in low

Chla concentration waters would overestimate the Chla

concentrations. When performing global Chla mapping,

discrete noise points appeared (Figures 11E, F). However, this
BA

FIGURE 14

Effect of different input features on R² and MAE metrics of CHLNET. (A) represents the change of R² and MAE when input features have
changed. (B) indicates the metric variation of R² and MAE using the accuracy of origin input features as the baseline.
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does not mean that the model cannot be used for low

concentration Chla inversion. CHLNET performance metrics

(Supplementary Figure S4) outperformed the model built on the

whole dataset when the model was trained individually on

different trophic level samples (Table 5). From Supplementary

Figure S4, it can be seen that the overestimation and

underestimation of the CHLNET model occurred at the head

and tail of the training dataset, respectively. They were not

related to the trophic level, which is an inherent flaw of the

model. Therefore, when applying the CHLENT model, attention

needs to be paid to the range where the Chla concentrations are

in the head and tail of the training dataset.

CHLNET could perform better than the OCx algorithm for

cross-sensor applications (Table 6), which provides a new idea

for the retrieval of Chla. When the sensor sample size is limited,

CHLNET’s feature extraction weights learned in the original

sensor (e.g., SeaWiFS matchups) can be transferred to the new

sensor (e.g., MERIS matchups) via transfer learning. A small

number of new sensor samples can be used to optimize the

original CHLNET and establish high-performance inversion

capabilities of the target sensor. For example, the performance

of CHLNETcross, as shown in Table 6, was better than that of
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CHLNETseawifs. However, it should be noted that the capability

of the cross-sensor model was affected by the band-shift

algorithm. In Table 6, the performance metrics of the

CHLNETseawifs model on the MERIS testing dataset were

significantly better than the performance metrics on the

MODIS-Aqua testing dataset. The reason for this result might

be that the MERIS sensor only needs two bands (560 nm and 665

nm) for the band shift. The band center was close to the SeaWiFS

band center (555 nm and 670 nm), while the MODIS-Aqua

sensor required three band shifts (488 nm, 531 nm, and 667 nm),

and the center bands of 531 nm and 510 nm were far from each

other, which might cause a more significant error.

Supplementary Table S5 shows the performance results for

cross-sensor applications with the original bands of MERIS

and MODIS-Aqua as input features of CHLNET. It can be

seen that without band shifting, the performance of MODIS-

Aqua was significantly reduced. For instance, R² of the testing

dataset was reduced from 0.859, 0.894 to 0.838, 0.889 on model

CHLNETseawifs and CHLNETcross, respectively. Therefore,

attention should be paid to the impact of the accuracy of the

band-shift algorithm on the accuracy of the cross-sensor model

based on CHLNET.
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FIGURE 15

Feature extraction diagram of MLP (A), 1D CNN (B), and loss change with increasing parameter number (C).
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Conclusion

In this study, we developed a newmodel for ocean surface Chla

inversion using the SeaWiFS Chla validation dataset provided by

SeaBASS. The performance assessment demonstrated that the

CHLNET algorithm performed better than the state-of-the-art

algorithms, namely, OCx, SVR, RFR, and MDN algorithms.

Application on different trophic waters indicates that CHLNET

avoids the need to combine OWT-based inverse algorithms to

establish a unified inversion model for Chla across various water

types. The Chla mappings on global and local scales illustrate the

quality of the spatial pattern. Although performance was slightly

poor when mapping oligotrophic waters, CHLNET inversion

results in coastal waters were more realistic and showed richer

details and higher tolerance to noise. The generalization

applications on MERIS and MOIDS-Aqua satellite–in situ

matchups indicate that CHLNET can significantly improve the

performance of CHLNET in cross-sensor Chla inversion by adding

a small number of target sensor matchups to the training dataset.

Therefore, CHLNET can serve as an alternative approach for ocean

surface Chla concentration retrievals. With the widespread

implementation of multispectral and hyperspectral satellites, the

hybrid algorithm of the inversion of Chla based on the 1D CNN

and SVR to extract high-dimensional features from raw Rrs(l) can
be a new approach to inverse more bio-optical properties.
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