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Cell size is a key ecological trait
associated with biogeographic
patterns of microbial eukaryotes
in coastal waters

Wenxue Wu1,2* and Hongbin Liu2,3

1State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University,
Haikou, China, 2Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China,
3Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon,
Hong Kong SAR, China
Bodysize isan importantecological trait,but ithasbeenpoorlyexplored inmicrobial

communities. Here, we examined the effect of cell size on coastal eukaryotic

communities across a size continuum of 0.2–3 (pico-), 3–20 (nano-), and 20–

200 mm (micro-sized), which were characterized via high-throughput sequencing

based on the V4 region of the 18S rRNA gene. We found that, at the alpha diversity

level, there was a decreasing trend across the pico-, nano-, and micro-sized

eukaryotic communities regarding both amplicon sequence variant (ASV) richness

andShannon index.At thebetadiversity level, the threecategoriesweresignificantly

different, and thesewereaccompaniedbya relatively high local contribution tobeta

diversity in contrasting freshwater and seawater locations. The community

variations observed for the microbial eukaryotes could largely be explained by the

environmental effects which decreased between the pico- (40.5%), nano- (37.3%),

and micro-sized (27.3%) fractions. These environmental effects were mainly

contributed by several ASV modules showing opposing responses to

environmental conditions. This might partly indicate the coalescence of the

freshwater and seawater groups of microbial eukaryotes. In summary, our

findings suggest that the cell size of microbial eukaryotes is a phylogenetically

conserved trait, which is tightly associated with biogeographic patterns.

KEYWORDS

marine microbial eukaryote, 18S rRNA gene, size continuum, environmental effect,
Pearl River Estuary
Introduction

Body size is perhaps the most fundamental ecological trait as it is associated with

many biological properties. For all marine life, from bacteria to whales, size has several

profound effects, for example, on the body temperature, resource encounter strategy (e.g.,

photosynthesis), mobility, sensing mode (e.g., echolocation), and life history strategy
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(Andersen et al., 2016). A lot of statistical characteristics, such as

biodiversity and abundance across marine taxa, have been

basically scaled with body size (Reuman et al., 2014) which

represents the most commonly measured trait in ecological

studies. As a consequence, size-fractionated categories at the

population or community levels often exhibit distinct

distributions across space. For example, large cells usually

dominate phytoplankton assemblages in estuaries in terms of

biomass and production, whereas small cells dominate the open

oceans (Cloern, 2018). This is because cell size represents a

determinant of phytoplankton metabolism (Marañón, 2015),

which is strongly affected by contrasting temperatures

(Mousing et al., 2014; López-Urrutia and Morán, 2015) and

the supply of resources (Finkel et al., 2010; Marañón et al., 2015)

across the marine realms. The phytoplankton size structure

principally consists of several categories, which can shift both

spatially and temporally in the global oceans (Acevedo-Trejos

et al., 2013). Body size is known to be more than simply a

trait that controls the physiological characteristics, and it is also

relevant for community-level phenomena linking environmental

conditions and compositional variations. However, the effect of

differences in size is still poorly understood in marine microbial

communities, partly due to the complexity of characterizing the

various microorganisms.

In recent years, marine microbial eukaryotes (mainly

unicellular eukaryotes) (Caron et al., 2009), have been intensively

assessed via high-throughput sequencing, and this has generated

important information about their taxonomic diversity (Adl et al.,

2019) coupled with their diverse ecological functions. For example,

research indicates that Syndiniales (Dinoflagellata, Alveolata) are

mainly intracellular parasites or symbionts (Guillou et al., 2008),

and Dinophyceae (Dinoflagellata, Alveolata) are of a mixotrophic

nature, feeding on other microbial eukaryotes such as

Bacillariophyta (Ochrophyta, Stramenopiles; also known as

diatoms) (Grattepanche et al., 2011). Bacillariophyta are major

primary producers (Malviya et al., 2016), while MAST (MArine

STramenopiles) are bacterivorous heterotrophs (Massana et al.,

2014). Mamiellophyceae, Chlorophyceae, and Trebouxiophyceae

(Chlorophyta, Archaeplastida) are representative autotrophic

microalgae in coastal waters (Tragin and Vaulot, 2018), and

Basidiomycota (Fungi, Opisthokonta) are described as being an

amoebophagous group (Corsaro et al., 2018; Grossart et al., 2019).

These complex trophic roles of microbial eukaryotes support the

suggestion that they represent pivotal players in marine

biogeochemical processes (Worden et al., 2015).

Marine microbial eukaryotes exhibit a wide spectrum of cell

sizes, which span more than five orders of magnitude (Caron

et al., 2012), and they show distinct biogeographic patterns

among the different size-based categories (Sommeria-Klein

et al., 2021). At the alpha diversity level, the smaller-sized

fractions in general have higher estimates of diversity indices.
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For example, the smallest size fraction (i.e., pico-sized) often

shows the highest richness (de Vargas et al., 2015). However, it is

still unclear whether there is a size-dependent trend in alpha

diversity across a fine size scale. At the beta diversity level, due to

the vast differences in richness and taxonomy, size-fractionated

microbial eukaryotes are (as expected) distinct from each

other (Massana et al., 2015; Xu et al., 2020). Microbial

eukaryotes of different sizes are supposed to have different

traits (at least regarding the cell size), efficiently indicating

niche differentiations, which can be further realized by

environmental adaptions (Caron et al., 2012). Their

community variations (beta diversity) are anticipated to be

driven by environmental effects by different amounts (Clarke

and Deagle, 2020). Therefore, size-based comparisons offer a

more comprehensive understanding of marine microbial

eukaryotes than considering them as a biological pool.

In this study, we focused on size-fractionated microbial

eukaryotes in the Pear River Estuary, located in the northern

South China Sea. This estuary connects rivers, tidal wetlands,

and continental shelves comprising a coastal ocean with unique

and changing biogeochemical cycles (Bauer et al., 2013). In

particular, the Pear River Estuary harbors typical coastal

waters, which exhibit large environmental gradients within a

small geographical area. For example, salinity is one of the

strongest barriers for organisms within the eukaryotic tree of

life to cross (Jamy et al., 2022). This likely explains the big

changes in biogeographic patterns of microbial eukaryotes that

occur in the coastal waters. The data we acquired in this new

estuarine region survey, when combined with those from

previous studies conducted in the upper Pearl River Delta

(Zou et al., 2021), Pearl River-South China Sea Continuum

(Wu and Liu, 2018), and offshore South China Sea (Wang

et al., 2021), will together provide a more complete picture of

the microbial eukaryotic communities in this region. Moreover,

size-fractionated microbial eukaryotes have previously been

investigated in some isolated coastal locations (Massana et al.,

2015; Genitsaris et al., 2016; Elferink et al., 2020); however, they

have not been well documented via a fine sampling design over

an entire estuary. We collected microbial eukaryotic

communities during the summer season across a size

continuum of 0.2–3 mm (pico-sized eukaryotes, PE), 3–20 mm
(nano-sized eukaryotes, NE), and 20–200 mm (micro-sized

eukaryotes, ME). We characterized these three categories using

high-throughput sequencing of the V4 region of the 18S rRNA

gene, and as mentioned above, we tested whether there was a

decreasing trend of alpha diversity at this fine scale (i.e., from PE,

NE to ME) and whether the strength of the environmental effects

driving beta diversity was strong and varied across the size

continuum. We conclude that this study contributes to the long-

standing task of understanding the biodiversity of marine

eukaryotes from a trait-based perspective.
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Materials and methods

Sample collection and environmental
factor

Sampling was carried out on 10–21 July 2017 in a summer

cruise supported by the OCEAN-HK project. Field seawater

samples were collected from the surface (i.e., at a depth of 1 m)

and bottom (i.e., depths of 6–48 m at 1–6.1 m above the

sediment) layers at 19 stations (Figure 1), using Niskin bottles

mounted on an SBE 32 carousel water sampler (Sea-Bird

Electronics, Bellevue, WA, USA). For the molecular analyses,

seawater (350–1000 ml) was immediately pre-filtered through a

200-mm mesh and then sequentially through 20 mm, 3 mm, and

0.2 mm pore-sized polycarbonate membranes (47 mm diameter,

Millipore, Carrigtwohill, Cork, Ireland). Cells retained on the 20

mm, 3 mm, and 0.2 mm filters represented the collections of ME,

NE, and PE, respectively. The filters were kept at –20°C onboard

and then frozen at –80°C in the laboratory until required

for analysis.

Temperature, salinity, and turbidity were measured at all 19

sites using a conductivity-temperature-depth (CTD) profiler.

Chlorophyll a was extracted in 90% acetone and quantified

fluorometrically with a Turner Designs fluorometer (Turner

Designs, Sunnyvale, CA, USA). The concentration of dissolved

oxygen was determined by the Winkler titration method, and

nutrients (including NO2, NO3, PO4 and SiO3), dissolved

organic carbon, and total suspended matter were all measured

using standard protocols, as described in previous studies (Dai

et al., 2009; Han et al., 2012). More details of the environmental

factors measured are also as described previously (Wu

et al., 2021).
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DNA extraction and amplification

Each filter was cut into small pieces using sterile scissors and

then each piece was transferred to a 2 ml tube provided in the

FastDNA Spin Kit (MP Biomedicals, Solon, OH, USA). The

pieces of filter were vortexed in a mixture of 978 ml sodium
phosphate buffer and 122 ml MT buffer, at a speed of 3,500 oscl

min–1 using a Mini-Beadbeater-24 (Biospec Products,

Bartlesville, OK, USA). DNA was then extracted from the filter

pieces following the FastDNA Spin Kit manufacturer’s protocol.

The hypervariable V4 region of the 18S rRNA gene was

amplified using the following primer pair: TAReuk454FWD1

(5 ′-CCAGCA(G/C)C(C/T)GCGGTAATTCC-3 ′ ) and

TAReukREV3 (5′-ACTTTCGTTCTTGAT(C/T)(A/G)A-3′),
with a dual-index strategy (Stoeck et al., 2010). Each

polymerase chain reaction (PCR) mixture (50 ml) contained 1×

PCR buffer, 1.5 mM MgCl2, 0.2 mM dNTP mix, 0.5 mM each

primer, 2 U Invitrogen Platinum Taq DNA polymerase (Life

Technologies, Carlsbad, CA, USA), and 2.5 ml of template DNA.

In general, the reaction was run under the following conditions:

95°C for 5 min, and then 35 cycles at 94°C for 30 s, 47°C for 45 s,

and 72°C for 1 min, with a final extension step at 72°C for 5 min.

However, since many of the ME samples failed to be amplified

with 35 cycles, 40 cycles were used for the PCR amplification of

them. We assessed the data from 14 samples that were

succes s fu l l y ampl ified by both 35 and 40 cyc le s

(Supplementary Table 1). We showed that there were no

significant differences (p > 0.05) at the alpha diversity level by

the nonparametric Kruskal-Wallis H test (Kruskal and Wallis,

1952) (Supplementary Figure 1), or at the beta diversity level by

analysis of similarity (ANOSIM) when comparing these 35- and

40-cycle groups. In addition, four ME samples were not

successfully amplified even when using the modified 40-cycle

protocol, and so these were replaced by filters immersed in

RNAlater, which had been simultaneously collected in the same

locations and water depths (Supplementary Table 1). All the

products were sequenced on a HiSeq 2500 platform (Illumina,

San Diego, CA, USA) with a (2 × 250 bp) paired-end strategy.
Sequence processing

Sequence data were de-multiplexed using the QIIME 2

(v. 2019.1.0) bioinformatics platform (Bolyen et al., 2019) and

trimmed using cutadapt (Martin, 2011). Sequences were then

quality filtered and dereplicated with DADA2 (Callahan et al.,

2016) implemented in the QIIME 2 pipeline. Amplicon sequence

variants (ASVs) were identified, and their taxonomies were

assigned using the BLAST+ consensus classifier (Camacho

et al., 2009; Bokulich et al., 2018) against the PR2 database (v.

4.12) (Guillou et al., 2013). Singletons, metazoa, and sequences

unsuccessfully assigned at least at rank 2 in PR2 (e.g., Alveolata,
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Map showing the sampling sites (indicated by filled triangles) in
the Pearl River Estuary located in the northern South China Sea.
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Stramenopiles, Archaeplastida and Opisthokonta) were removed

from the subsequent analyses. The ASV representatives were

aligned using MAFFT (Katoh and Standley, 2013) and a

phylogenetic tree was built using FastTree (Price et al., 2010).
Alpha diversity

The numbers of ASVs found across the PE, NE, and ME

were illustrated with a Venn diagram, based on the full ASV-

sample table. To compare alpha diversity among the three

categories, the ASVs in each sample were counted using a

rarified ASV-sample table (4,982 sequences per sample). The

Shannon index (Shannon, 1948) was also calculated for each

sample using this rarified table. For both the observed ASV

numbers and Shannon indices, the nonparametric Kruskal-

Wallis H test was used to examine differences among the PE,

NE, and ME.
Fraction-inferred size analysis

To differentiate between the ASV proportions in the PE, NE,

and ME, we defined a fraction-inferred size (FIS) index. For the FIS

calculation, the full (non-rarified) ASV table was proportionally

normalized and rare ASVs (average proportion <0.001% in all 114

communities) were not included. For a given ASV, we recorded its

average proportions in the PE, NE, and ME, for which we gave a

size weight of 1, 2, and 3, respectively. The FIS was calculated as the

sum of the fraction classification-weighted proportions. The

observed FIS values ranged between 1 and 3, indicating a

fraction-inferred size from smaller to larger. The phylogenetic

placements of the FIS index were combined through a FastTree

using the ggtree package (Yu et al., 2017) in R (R Core Team, 2018).

The phylogenetic signal was further analyzed using Pagel’s l index

(Pagel, 1999) with the phytools package (method = ‘lambda’)

(Revell, 2012). The phylogenetic signal measure (l) ranged

between 0 and 1, indicating the extent by which a trait’s

correlations among closed related ASVs matched the motion

model of evolution. The p-value for l was based on a likelihood

ratio test. Given a significant phylogenetic signal, the FIS index

could be assumed to indicate a set of synthesized traits associated

with size (Salazar et al., 2015; Mestre et al., 2018).
Beta diversity

For beta diversity among the PE, NE, and ME, we used the

unweighted and weighted UniFrac index (Lozupone and Knight,

2005). The UniFrac dissimilarities were then analyzed by

principal coordinate analysis (PCoA), and ANOSIM was used

to test the significance of community dissimilarities among the

three categories (999 permutations).
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To identify where community dissimilarities occurred

intensively, we calculated the local contribution to beta

diversity (LCBD) index (Legendre and De Cáceres, 2013),

using the adespatial package (Dray et al., 2022). We performed

a principal component analysis (PCA) using standardized

environmental factors, and the first axis (PC 1) was used as a

proxy of the overall environments. Salinity, as the most

representative variable (Wu et al., 2021), was positively and

significantly correlated with the PC 1 measurements

(Spearman’s rank correlation coefficient r = 0.98, p < 0.05).

The chlorophyll a concentration was not included when

performing the PCA, because this (biotic) factor did not

belong to typical physical and chemical parameters. The

relationship between the LCBD values and PC 1 was tested

using generalized additive models implemented in the mgcv

package (Wood, 2011).
Variation partitioning

To examine pure environmental effects apart from spatial

autocorrelation, we performed variation partitioning using the

vegan package (Oksanen et al., 2018). It is well known that

proportional (abundance-weighted) metrics mirror more

environmental condition information than unweighted ones,

and so the weighted UniFrac distance was used to account for

community variations in this analysis. The environmental

variables (excluding chlorophyll a) were standardized, and

spatial distances were transformed to principal coordinates of

neighbor matrices (PCNM) using the pcnm function. The

relative importance of the environmental and spatial factors

was determined using the varpart function, and significance was

tested using distance-based redundancy analyses (999

permutations).

In addition, the permutational multivariate analysis of

variance (PERMANOVA) was carried out using the adonis

function (999 permutations) implemented in the vegan

package to further identify the relationship between a

particular environmental variable and community variations.

Consistent with the variance partitioning analysis, the weighted

UniFrac distances and standardized environmental variables

were used.
Co-occurrence network analysis

To identify clusters contributing to community variations,

we constructed co-occurrence networks using the igraph

package (Csárdi and Nepusz, 2006). Prior to network

construction, ASVs present in at least five sites were included

to ensure the regional representativeness of the resulting co-

occurrence relationships. In brief, robust co-occurrence

relationships of pairwise ASVs (p < 0.01, r > 0.8, Spearman’s
frontiersin.org
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rank correlation coefficient) were retained to build the networks.

In the resulting networks, each node represented an ASV, each

edge represented the significantly positive or negative

coexistence of two nodes, and the number of connections for

each node represented its degree. Modules (i.e., clusters) in

networks were inferred using a fast-greedy algorithm (Clauset

et al., 2004). The co-occurrence networks were visualized using

the interactive Gephi platform (Bastian et al., 2009).

The environmental effects within network modules were

further examined. Nodes in the same module were expected to

show similar or dissimilar responses to environmental

conditions given significantly positive or negative co-

occurrence relationships, respectively. Although it is generally

accepted that the co-occurrence network can partly reveal biotic

interactions among nodes (Fuhrman et al., 2015), our

examinations primarily focused on the co-occurrence patterns

themselves rather than biotic interactions due to several

cautionary challenges (Röttjers and Faust, 2018). We then paid

more attention to modules showing >10% contributions to the

total degrees. We calculated the Spearman’s rank correlations

between the PC 1 (inferred from PCA) and regional patterns of

each ASV in a module. It was anticipated that significant (p <

0.05) and non-significant (p > 0.05) correlations would be

detected in ASVs linked to environmental factors either

directly (e.g., autotrophs) or indirectly (e.g., parasitic groups),

respectively. Consequently, the former would uncover a series of

ASVs responsible for environmental effects inferred from the

variation partitioning analyses above.
Results

Library characterization and alpha
diversity

A total of 5,816,445 sequences (4,982–79,400 per sample)

were retrieved from 114 microbial eukaryotic communities.

Regarding the relative abundances, Alveolate, Stramenopiles,

Archaeplastida, and Opisthokonta represented the four most

abundant supergroups with an average abundance of 36.9%,

26.1%, 22.5%, and 9.7%, respectively. The PE, NE, and ME

categories showed opposite trends of regional relative

abundances (mean ± SD) of Alveolate (i.e., PE, 45.8 ± 20.2%;

NE, 35.3 ± 17.7%; and ME, 29.5 ± 15.3%) and Stramenopiles

(i.e., PE, 9.3 ± 4.8%; NE, 25.6 ± 14.1%; and ME, 43.5 ± 23.4%)

(Figure 2A). With regard to the average relative abundances

roughly at the class level (i.e., rank 4 in the PR2 database),

Syndiniales, Dinophyceae, Bacillariophyta, Chlorophyceae,

Trebouxiophyceae, and Basidiomycota were the six groups

with an average relative abundance >5% in the 114

communities (Supplementary Table 2).

The total sequences grouped into 7,011 ASVs, and the PE,

NE, and ME accounted for decreasing unique proportions of
Frontiers in Marine Science 05
30.1%, 18.7%, and 10.8%, respectively (Figure 2B). Based on the

ASV table rarified to 4,982 sequences per sample, we found that

the ASV richness (i.e., the number of observed ASVs)

significantly decreased from the PE-to-NE-to-ME (p < 0.05)

(Figure 2C). However, there were no significant differences in

the Shannon index between the PE and NE (p > 0.05)

(Figure 2D), even though the PE had a higher mean than the NE.
FIS

The phylogenetic signal was strong (l = 0.85) and significant

(p < 0.001), indicating that cell size was a phylogenetically

constrained trait of microbial eukaryotes. For this reason,

ASVs with close phylogenetic placements showed approximate

FIS calculations and a similar presence in the PE, NE, and ME

(Figure 3A). The distribution of the FIS index displayed a high

frequency density of 1, 2, and 3 (Figure 3B), which indicated the

presence of unique ASVs in the PE, NE, and ME, respectively. At

the rough phylum or class level, some clusters showed

consistently distinct FIS values (Figure 3C). For example,

Perkinsea mainly consisted of taxa of low FIS values, whereas

Streptophyta generally included ASVs of high FIS.
Beta diversity and relative importance of
environmental effects

The PE, NE, and ME were significantly different at the beta

diversity level, according to the ANOSIM test (p < 0.001).

However, these three categories were not separate from each

other in the PCoA plots based on either unweighted or weighted

UniFrac dissimilarities (Figure 4).

Moreover, the LCBD values in general showed a U-shaped

curve against PC 1 which indicated an environmental transition

from low- to high-salinity (Figure 5). Therefore, the two ends of

the freshwater- and seawater-like habitats were the main

contributors to the community variations in the Pear

River Estuary.

Significant environmental effects on beta diversity were also

detected. Based on weighted UniFrac dissimilarities, a purely

relative importance of 40.5%, 37.3%, and 27.3% was observed for

the PE, NE, and ME, respectively (Figure 6). In parallel, the

spatial effects were much lower, and even non-significant in the

ME fraction.
Co-occurrence pattern

Microbial eukaryotes mostly exhibited positive relationships

in co-occurrence patterns (Figures 7A–C), and there were three,

three, and one modules showing >10% contributions to total

degrees in the PE, NE, and ME networks, respectively. The ASVs
frontiersin.org

https://doi.org/10.3389/fmars.2022.933256
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wu and Liu 10.3389/fmars.2022.933256
belonging to each module showed variable taxonomic

compositions (Figures 7D–F) and relationships related to

environmental conditions (Figures 7G–I). Remarkably, the PE

and NE each displayed one module composed of ASVs showing

a significant linear regression relationship between degrees and

correlation coefficients.
Discussion

This study shows that microbial eukaryotes across the size

continuum were significantly different in multiple aspects.

Overall, our results support the two expectations that (1) the

alpha diversity of microbial eukaryotes in general, decreased as

the cell size increased, and (2) the strength of the environmental

effects on the beta diversity was strong and varied across the size

continuum. These results support the historical perspective that
Frontiers in Marine Science 06
organism size is a useful trait for understanding biogeographic

patterns, even for microbial communities at a fine size scale.
Size dependence of alpha diversity

Microbial eukaryotes have an expected trend in size-

fractionated alpha diversity. This pattern is well supported by

the overall ASV numbers of each fraction (Figure 2B) and the

ASV richness estimations of the rarified communities

(Figure 2C), which is consistent with previous global surveys

(de Vargas et al., 2015). Meanwhile, differences between the PE

and NE were not significant when using a proportional measure

(i.e., the Shannon index) (Figure 2D). Proportional measures of

alpha diversity often carry information on environmental

adaptions of populations in a given community (i.e.,

evenness), which suggests that this size-dependent pattern of
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(C, D) Boxplots showing the (C) observed ASV numbers and (D) Shannon indices using the rarified ASV-sample table. In (C) and (D), the letters
above each boxplot indicate significant differences at p < 0.05.
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alpha diversity can be shaped by environmental conditions. We

note that the results from this study were inconsistent with those

from some previous reports. For example, Logares et al. (2014)

found that the nano-sized fraction had higher richness than the

pico- and micro-meso-sized fractions. This discrepancy might
Frontiers in Marine Science 07
be partly due to the difference in the targeted regions of the 18S

rRNA gene (i.e., V4 versus V9), which resulted in variable

diversity estimations (Dunthorn et al., 2012; Decelle et al.,

2014; Tragin et al., 2018). Alternatively, the size-dependent

pattern relies on the spatial scale of the sampling design,
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(A) Phylogenetic placement of the fraction-inferred size (FIS) index combined with a heatmap showing the ASV occurrence (indicated by the
black bars) in each category. Taxonomic assignments at the supergroup level are added on the right side of the heatmap. (B) Histogram
showing the distribution of the FIS index. The line indicates kernel density estimates for the FIS frequency. (C) Boxplots indicating the FIS index
for the main lineages (generally collapsed at ranks 3 and 4 of the PR2 database). One Dinoflagellata ASV (FIS = 1.3), which could not be further
assigned to a lower taxonomic level (e.g., Syndiniales and Dinophyceae), and the Amoebozoa and Apusozoa supergroups, consisting of just one
(FIS = 1.2) and two (FIS = 1.2 and 1.6) ASVs, respectively, were not included in the boxplots.
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which varies from isolated sites (Logares et al., 2014), an entire

estuary (i.e., this study) to global oceans (de Vargas et al., 2015).

More importantly, the pattern we observed is consistent with

other previous investigations, which mostly address the marine

diversity spectrum of large organisms (Reuman et al., 2014).

Differences in diversity are mainly due to resource partitioning,

through niche differentiation. Indeed, natural environments are

expected to support more organisms of smaller sizes than of

larger sizes, generating a decreasing trend in alpha diversity as

the size of the organisms increase. Therefore, the diversity

spectrum can perhaps be extended to microbial eukaryotes

based on our observations.

The cell size of microbial eukaryotes is suggested to be

associated with a set of organismal characteristics related to

niche and fitness, and this suggestion was supported by our

finding that cell size is a phylogenetically conserved trait

(Figure 3A). It is well known that phylogeny is tightly

connected to functional traits in microorganisms (Martiny et al.,

2013; Goberna and Verdú, 2016). Although niches cannot be

simply inferred through cell size alone, differences in size can

predict variations in the niche and fitness of different microbial

eukaryotes (Gallego et al., 2019). For example, Syndiniales are one

of the most highly represented groups in the world oceans (de

Vargas et al., 2015), and in general they exhibit small FIS values

(Figure 3C), mainly due to their parasitic and symbiotic life

strategies. In contrast, in the Pearl River Estuary, the

Bacillariophyta class is known to be a highly represented group

(Wu and Liu, 2018), and this group exhibited high FIS values.

These findings agree with previous reports that the larger-sized

Bacillariophyta can dominate the estuarine phytoplankton

(Cloern, 2018), despite their variable cell sizes across the world
Frontiers in Marine Science 08
oceans (Malviya et al., 2016). Together with the dominance of

Syndiniales and Bacillariophyta (Supplementary Table 2), our data

suggest that the co-existence of most of the microbial eukaryotes

might be putatively inferred from both their size and related

characteristics, which contributes to the size-dependent

diversity pattern.

There are some limitations in our assessments of alpha

diversity when relying on pore-sized filters and 18S rDNA

gene sequencing. For example, we cannot rule out some biases

caused by body fragments from larger-sized organisms (Liu

et al., 2017). In addition, extracellular DNA putatively

adhering to small particles might also be a source of some

larger-sized taxa in the smaller-sized fractions (Sørensen et al.,

2013). In contrast, grazing might contribute to the existence of

smaller taxa in the larger-sized categories. Indeed, some

herbivorous eukaryotes can exert grazing pressures on

phytoplankton independent of cell size (Cabrerizo and

Marañón, 2021), which leads to biases in the size

classifications. Despite these limitations, 59.6% of the total

ASVs were still restricted to a single category (Figure 2B),

suggesting that the protocols we used to separate the whole

microbial eukaryotes into the PE, NE, and ME were effective

(Logares et al., 2014). Moreover, our size dependence of alpha

diversity was based on the DNA signatures found in complex

estuarine waters. This pattern might be affected by including

dormant taxa and mixing organisms from freshwater, seawater,

and sediments in the estuarine area. Employing RNA signatures

(only including active taxa) and/or surveying other waters might

result in a changed pattern with an absence of the size

dependence of alpha diversity found in this study (Xu

et al., 2020).
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Environmental effect on beta diversity

The community variations of microbial eukaryotes are

largely driven by environmental effects, which decreased from

the smaller- to larger-sized categories (Figure 6). The main

possibility for the difference in environmental effects might be

that smaller-sized microbial eukaryotes are more responsive to

environmental changes. For example, a recent study conducted

in the coastal waters off the Rıá de Vigo in northwestern Spain

showed that pico- and nano-sized eukaryotes (particularly of

pigmented groups) responded profoundly to the addition of

inorganic and organic nutrients (Hernández-Ruiz et al., 2020).

From the size spectrum perspective, smaller microbial

eukaryotes are mainly found in the lower trophic levels, and so

they might respond to hydrographic conditions more efficiently.

Moreover, it is supposed that as well as higher richness, smaller

microbial eukaryotes also have higher cell densities (White et al.,
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2007). The smaller categories with more diverse and abundant

assemblages might also have higher potentials to track

environmental changes, which contributes to higher

environmental effects.

The co-occurrence patterns further differentiate the

responses of the size-fractionated microbial eukaryotes to the

environmental contexts (Figures 7A–C). Indeed, many ASVs

showed significant correlations with environments, suggesting

that these are the main contributors of the environmental effects

on the community variations observed (Figures 7G–I). However,

some modules were of remarkably different taxonomic

compositions. For example, modules composed mainly of

ASVs with non-significant environmental correlations, had

large contributions of Alveolata (Figures 7D–F), indicating

that these modules might be controlled mainly by biotic

interactions by parasitic or symbiotic taxa. Interestingly, the

ASVs in M1 of the PE and M2 of the NE showed linear
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regression relationships between the degrees and coefficients

(Figures 7G, H). Indeed, the three ASVs with the largest degrees

(two ASVs for PE and one ASV for NE) are closely affiliated to

freshwater Chlorophyta, supported by 100% sequence

similarities with hits in a BLAST (NCBI) search. The negative

coefficients mostly resulted from intensive filtering towards

offshore environments. This phenomenon supports our

cautiousness to not simply interpret the co-occurrence

networks as biotic interactions (Blanchet et al., 2020), which

can suffer from rapidly changing environments. We suggest that

network analyses are informative for understanding

environmental effects based on module-level characteristics.

In addition to the environmental effects, we acknowledge

that spatial effects are also important in shaping the beta

diversity of microbial eukaryotes. The spatial effects are

particularly crucial for large geographical scales when ocean

connectivity (rather than environmental differences) might be

the key player (Villarino et al., 2018). Moreover, a considerable

number of components could not be attributed to either

environmental or spatial effects (Figure 6). These might result

from unmeasured environmental variables or biotic factors such

as via predator–prey interactions. For example, the microbial

eukaryotes encompass numerous bacterivores, including

mixotrophic phytoplankton (Unrein et al., 2014). These

bacterivores are themselves controlled by grazing pressures

commonly observed in the PE, NE, and ME (Wikner and

Hagstrom, 1988; Tamigneaux et al., 1997; Caron et al., 1999).

Notably, biotic interactions (e.g., grazing) can also be regulated

by environmental factors (e.g., temperature) (Cabrerizo and

Marañón, 2021), which suggests that there are mixed effects

between biotic interactions and environmental conditions.

Taking these ideas together, we suggest that environmental,

spatial, and biotic factors exhibit combined and complicated

effects on the beta diversity of the PE, NE, and ME.

It should be noted that the environmental effects we

observed represent a single temporal scenario of the
Frontiers in Marine Science 10
community variations across the Pearl River Estuary. A

characteristic feature of the Pearl River Estuary is the

occurrence of seasonal discharges of freshwater into the sea;

this reaches a peak in the summer, which is when we collected

our samples. As shown by the shapes of the LCBD graphs

(Figure 5), the turnover of the inshore and offshore

communities is considerable. This represents the outcome of

the environmental gradients caused mainly by the Pearl River

runoff, in comparison to other coastal waters that lack large

freshwater discharges (Genitsaris et al., 2016). We suggest that

more temporal investigations in this region are required to

achieve a more complete view of the microbial eukaryotes.

Moreover, we suggest that our results represent a view that is

restricted to estuarine ecosystems. In particular, the large

environmental gradients might weaken the between-fraction

differences, as indicated by the overlap observed in the PCoA

plots (Figure 4). A similar situation occurred in open oceans

(Duret et al., 2015), which indicates that size-fractionated

microbial eukaryotic communities can be strongly rearranged

by water depth. More efforts are also required to survey diverse

habitats in addition to estuaries.
Conclusions

This study provides new insights into the microbial

eukaryotes across a size continuum of pico-, nano-, and micro-

sized fractions. We showed that Alveolate, Stramenopiles,

Archaeplastida, and Opisthokonta represent the four most

abundant supergroups. In addition, we found that there was a

decreasing trend of alpha diversity with increasing cell size. The

phylogenetic signal was strong and significant for the fraction-

inferred sizes, indicating that cell size was a phylogenetically

conserved trait of microbial eukaryotes. Moreover, the three

categories were significantly different at the beta diversity level,

although they were not distinct in ordination analyses. In the Pear
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River Estuary, the two ends of the freshwater- and seawater-like

habitats were the major contributors of the community variations

observed. In addition, the community variations of the microbial

eukaryotes could mainly be explained by the environmental

effects, which decreased from the smaller- to larger-sized

categories. The co-occurrence patterns of each category further

identified a few modules with opposite responses to the

environmental context, suggesting that they were largely

responsible for the community variations. In conclusion, in

addition to cell size, it is important to conduct more trait-based
Frontiers in Marine Science
 11
examinations to achieve a better understanding of marine

planktons.
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