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antibiotic resistance, and
genetic diversity of Harveyi
clade bacteria isolated from
coastal mariculture system in
China in the last two decades
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Vibrio bacteria, particularly members of the Harveyi clade, are the most

important pathogens of aquatic organisms that cause significant economic

losses in the world. It is difficult to provide specific data on taxa of the Harveyi

clade for biological research and prevention strategies. Therefore, we

conducted an extensive phenotypic and antibiotic resistance study, as well as

phylogenetic and molecular typing of 192 isolates of the Harveyi clade

collection from 2000 to 2020 with a typical interannual difference from a

coastal area in China. The isolates had a significant interspecific genetic and

antibiotic resistance diversity. Based on the multilocus sequence analysis

(MLSA) of housekeeping genes (gyrB, pyrH, recA, and atpA), 192 Harveyi

clade isolates were rapidly and accurately classified into 10 species. The

population of these isolates was composed of 95 sequence types (STs), of

which 92 STs were newly identified, indicating a high degree of genetic

diversity. ST327 ranked first, accounting for 11.5% of the total number of

isolates (22 out of 192), followed by ST215 with 6.25%, while 63 STs included

single isolates. At the metabolic level, the physiological and biochemical

experiments revealed that all the Harveyi clade isolates were positive for

oxidase and negative for melibiose. The isolates showed a varied tolerance to

11 antibiotics. No isolates were resistant to neomycin. The percentages of

sulfadimidine-resistant strains (61 out of 192), sulfadiazine (44 out of 192),

sulfamonomethoxine (44 out of 192), sulfamethoxazole (33 out of 192),

thiamphenicol (34 out of 192), ciprofloxacin (52 out of 192), and enrofloxacin

(31 out of 192) were 31.77%, 22.92%, 22.92%, 17.19%, 17.71%, 27.08%, and

16.15%, respectively. A proportion of 61.8% of the isolates presented a

multiple antibiotic resistance index (MARI) lower than 0.1, indicating that the
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risk of antibiotic resistance transmission of most of the Harveyi clade is low in

mariculture systems in China. These results provide substantial data to support

further studies on the identification and genetic and metabolic diversity of

Harveyi clade isolates in mariculture systems in China.
KEYWORDS

vibrio, harveyi clade, phenotype, multi-locus sequence analysis (MLSA), multi-locus
sequence typing (MLST), antibiotic resistance
Introduction

Vibrio spp. are curved rods of Gram-negative bacteria

composed of halophile species with significant biodiversity and

present naturally in marine, estuarine, and freshwater systems

worldwide (Thompson et al., 2004; Baker-Austin et al., 2017;

Baker-Austin et al., 2018; Hackbusch et al., 2020). A recent

evolutionary event within the genus Vibrio occurred 39 million

years ago (Sawabe et al., 2007). The genus Vibrio has over 100

species that have been classified into 14 clades (Ruwandeepika

et al., 2012; Romalde et al., 2014). The colloquially “Harveyi

clade” is considered as the most severely pathogenic Vibrio

cluster of aquatic organisms, capable of causing more than 50

different types of aquatic animal diseases and potentially

disrupting the aquaculture system due to its high mortality

(Del Gigia-Aguirre et al., 2017; Wang et al., 2021). Multiple

Harveyi clade species have been implicated in the aquatic

diseases from different countries, causing mortalities up to

100% of some common economic aquatic animals such as

Litopenaeus vannamei and tilapia, which are widely farmed

around the world (Tran et al., 2013; Prithvisagar et al., 2021).

Harveyi clade species were thought to be the major pathogens

threatening the health development of the aquaculture

industry globally.

The Harveyi clade consists of V. harveyi and 11 related

species, i.e., V. alginolyticus, V. parahaemolyticus, V. campbellii,

V. rotiferianus, V. natriegens, V. azureus, V. mytili, V. owensii, V.

jasicida, V. diabolicus, and V. sagamiensis (Lin et al., 2010; Cano-

Gomez et al., 2011; Ruwandeepika et al., 2012; Goudenège et al.,

2014). These species share high phenotypic and genotypic

homology, with 16S rDNA gene sequence similarities greater

than 97% and DNA–DNA re-association values close to 70%,

making it challenging to differentiate them (Sawabe et al., 2007;

Cano-Gomez et al., 2009). Furthermore, because the maritime

environment is complex and changing through time and space,

marine microorganisms that live in it have adapted to this

environment, and hence present a diverse range of species,

metabolic types, functional gene composition, and ecological

functions (Fraser et al., 2007). Traditional biochemical tests and

single-gene sequencing led often to the misidentification of
02
different species of the Harveyi clade (Gomez-Gil et al., 2004;

Cano-Gomez et al., 2009).

The development in bacterial identification technology has

been promoted by molecular identification techniques such as

multilocus sequence analysis (MLSA), core genome tree, average

nucleotide identity (ANI), DNA–DNA hybridization (DDH),

and genomic characteristic dissimilarity (Richter and Rosselló-

Móra (2009); Thompson et al., 2009; Fu et al., 2015). Meanwhile,

bacterial typing systems are used to distinguish genera, species,

and strains according to their phenotypic and genetic

characteristics, e.g., restriction fragment length polymorphism

(RFLP), amplified fragment length polymorphism (AFLP),

pulsed-field gel electrophoresis (PFGE), multilocus sequence

typing (MLST), core genome MLST (cgMLST), and

enterobacterial repetitive intergenic consensus PCR (ERIC-

PCR) (Botella et al., 2002; Yang et al., 2017; Alikhan et al.,

2018; Yan et al., 2021). MLSA is rapid and robust in classifying

all prokaryotes using a universal set of genes, and successful in

establishing species-level taxonomy within the Harveyi clade

based on different levels of genes (Gevers et al., 2005; Cano-

Gomez et al., 2009). Pascual et al. (2010) reported that the

concatenated sequences of rpoD, rctB, and toxR can be used to

identify species of Vibrio strains appropriately. Coincidentally,

the gene combination topA-mreB has also provided a practical

yet accurate approach for routine identification of V. harveyi-

related species (Cano-Gomez et al., 2011). Furthermore, MLST

outperformed the other typing techniques in studies of

evolutionary, phylogenetic, and population genetics, as it

provided unambiguous data using a large international

database (https://pubmlst.org/) (Maiden et al., 1998; Aanensen

and Spratt, 2005; Harun et al., 2021). Typing can also be

performed by directly identifying the nucleotide sequence and

variation of multiple housekeeping genes of strains, which has

been applied to numerous prokaryotes as well eukaryotic

organisms, including the Harveyi clade species V.

parahaemolyticus and the general database of Vibrio spp. (Han

et al., 2015; Jelocnik et al., 2019).

Antibiotic resistance of Harveyi clade isolates is an

important indicator of metabolic and phenotypic diversity. As

the most important pathogen clade in aquatic organisms,
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Harveyi clade strains caused more than 50 kinds of aquatic

animal diseases and were considered to be a major economic

threat to the aquaculture industry (Lin et al., 2010; Goudenège

et al., 2014; Wang et al., 2021). Among them, Vibrio harveyi is

one of the most serious Vibrio pathogenic, which can infect the

most diverse range of aquatic animals in the world (Santhyia

et al., 2015). Therefore, analyzing the antimicrobial resistance of

pathogens in a particular area is crucial to the development of

effective preventive measures.

China is the world’s largest aquaculture producer. The total

content of aquatic products exceeded 65 million tons in 2020,

which guaranteed the national demand for high-quality protein

(China Fisheries Yearbook, 2021). However, pathogens have

become a restrictive factor for the development of aquaculture

in China, resulting in annual losses of over 20 billion RMB, with

Vibrio spp. proved as the most important pathogen of marine

organisms (China Fisheries Yearbook, 2021). Moreover, the

Chinese mariculture sector is characterized by rich and

diversified breeding. In different aquaculture systems, a single

bacterial species exhibits diverse metabolic phenotypes and

ecological functions. During the past two decades, various

species of the Harveyi clade have been isolated from infected

animal in mariculture in China with dominance higher than 60%

in our laboratory. In the present study, the genetic populations

and evolutionary relationship of Harveyi clade strains isolated

from coastal areas of a mariculture system in China were

investigated based on different gene classes and levels. Following

that, the prevalence, antibiotic resistance, and genetic diversity of

all isolates were analyzed using phenotypic and molecular typing

methods. The results of this study provide a theoretical

foundation for understanding the differences in multivariate

epigenetic mechanisms among species of the Harveyi clade

from China with typical interannual variations, as well as basic

data for prevention and treatment of aquatic animal diseases.
Materials and methods

Strains and culture conditions

We chose 192 isolates identified as Harveyi clade with typical

temporal differences, isolated from animal parts of marine and

mariculture environments infected with bacteria with prevalence

and dominance of more than 60% in coastal areas of China from

2000 to 2020. Furthermore, 12 type strains served as process

control, namely, V. harveyi ATCC 14348, V. campbellii ATCC

25920, V. owensii DSM 23055, V. alginolyticus ATCC 17749, V.

natriegensATCC 14048,V. mytili LMG 19157,V. parahaemolyticus

ATCC 17802, V. jasicida DSM 21061, V. rotiferianus DSM 17186,

V. azureus NBRC 104587, V. sagamiensis NBRC 104859, and V.

diabolicus HE800.

All the strains were preserved in our laboratory in cryo-vials

with 20% (v/v) glycerol at −80°C. Data on the isolates are
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depicted in Supplementary Table 1. The isolates were

cultivated on trypticase soy broth (TSB) plates (TSB

supplemented with 1.5% agar) at 28°C for 24 h until use.
DNA extraction

Genomic DNA was extracted from the cultivated isolates

following the protocol described by Rahman et al. (2014) with

minor modifications. A single colony was collected from a fresh

culture and resuspended in 100 ml of nuclease-free water,

vortexed for 5 s, and incubated at 99°C for 10 min. After that,

the suspension was vortexed again and centrifuged at 12,000

relative centrifugal force (RCF) for 5 min. The supernatant was

then transferred to a fresh tube and stored at −20°C. The

concentration and purity of the extracted DNA were assessed

using NanoDrop 2000. Solutions with a 260/280 ratio of 1.7 to

2.0 were used for PCR assays.
PCR amplification and sequencing

PCR amplification and sequencing of the 16S rDNA or 16S

rRNA gene were performed according to Weisburg et al. (1991)

using the primers 27F and 1492R. The four housekeeping genes

gyrB, pyrH, recA, and atpA were amplified and sequenced using

the primers and the amplification conditions described by

Rahman et al. (2014). The complete list of genes analyzed in

this study and all primers used for PCR amplification and

sequencing are listed in Table 1. A PCR template of

approximately 100 ng of DNA was used for amplification.

PCR products were visualized on a 1.5% agarose gel. The

qualified rate of the products was determined according to the

molecular weight standard. Sequencing and purification of PCR

products were performed by Shanghai Sangon Biological

Engineering Technology and Services Co., Ltd. (Shanghai,

China). The DNA sequences were analyzed using the BLAST

tool of GenBank and optimized for highly similar sequences

(Mega BLAST) (Kumari et al., 2020).
Phylogenetic analysis and
genetic diversity

Sequences of the genes 16S rDNA, gyrB, pyrH, recA, and

atpA were aligned using ClustalX (Tamura et al., 2013).

Phylogenetic analysis based on the genes 16S rDNA (1298 bp),

gyrB, pyrH, recA, and atpA, as well as various concatenations of

four protein-coding loci (gyrB, pyrH, recA, and atpA), were

conducted using the neighbor-joining (NJ) approach. Bootstrap

(BT) support for individual nodes was calculated with the

Kimura 2-parameter model using 1000 BT replications. The

trees were constructed using MEGA 6.0 software. A fully
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resolved and highly harmonious tree topology was obtained,

depicting individual strain relationships.
Morphological, physiological, and
biochemical analyses

Single colonies of the Harveyi clade isolates were picked up

and inoculated on thiosulfate-citrate–bile salts–sucrose (TCBS)

agar, TSB, and HB7011-5 Vibrio chromogenic medium (hopebio

Biotechnology Co., Ltd, China) plates and incubated at 28°C for

24 h, after which colony morphology was observed. Twenty-

three biochemical tests were evaluated by the following tests:

gram staining, o-Nitrophenyl b-D-galactopyranoside (ONPG),

urease, xylose, sucrose, Simmons citrate agar, lysine

decarboxylase , gelat in, amygdal in, melibiose , a-L-
rhamnopyranose monohydrate, hydrogen sulfide (H2S),

malonic acid disodium salt, mannitol, D-glucose, methyl red

and Voges-Proskauer tests (MR-VP), inositol, ornithine

decarboxylase, DL-arabinose, sorbitol, lactose, arginine double

hydrolase, tryptone water, and glucose oxidase. All the selected

biochemical tests were determined with the Bacterial

biochemical identification kit (hopebio Biotechnology Co., Ltd,

China), according to the manufacturer’s instructions.
Antimicrobial susceptibility testing

The antibiotic susceptibility of the Harveyi clade isolates

was tested on TSB following the Kirby–Bauer disc diffusion

method (K-B method) and the Clinical and Laboratory

Standards Institute [CLSI], (2017) guidelines. Eleven

antimicrobial agents were tested, namely, aminoinositols:

florfenicol (FFC, 30 mg/disk) and thiamphenicol (THI, 30 mg/
disk); tetracycline: neomycin (NEO, 30 mg/disk) and

doxycycline (DOX, 30 mg/disk); quinolones: ciprofloxacin

(CIP, 5 mg/disk), enrofloxacin (ENR, 10 mg/disk), and

flumequine (FLU, 30 mg/disk) ; and sul fonamides :
Frontiers in Marine Science 04
trimethoprim/sulfamethoxazole (SMZ, 1.25 mg/disk and 25

mg/disk, respectively), sulfamonomethoxine (SMM, 250 mg/
disk), sulfadiazine (SDI, 250 mg/disk), and sulfadimidine

(SDM, 250 mg/disk). The isolates were inoculated in TSB with

1.5% NaCl solution and adjusted to an optical density (OD) 0.5

McFarland standard after a 24-h incubation period at 28°C. The

antibacterial discs were then applied after 100 ml of the bacterial
solution was equally spread over the agar plates. The inhibition

zones were measured using the SCAN 4000 automatic image

analysis colony counter (Interscience, France) after 20 h of

incubation at 28°C. The reference strain Escherichia coli ATCC

25922 was used for quality control. All the experiments were

performed in triplicates. Each strain was classified as resistant,

intermediate, or susceptible, according to Clinical and

Laboratory Standards Institute [CLSI] (2017). The multiple

antibiotic resistance index (MARI) was calculated based on

the formula described by Krumperman (1983).
MLST and UPGMA analysis

PCR primers, amplification conditions, and housekeeping

gene sequencing methods were carried out following the

methods of Rahman et al., (2014). The Vibrio spp. Pubmlst

database (http://pubmlst.org/Vibrio.spp) was used to obtain the

allele number and define the sequence type (ST). If STs or alleles

other than the database are identified, submit the new allele to

the database administrator to obtain a serial number of the

newly identified allele or STs (Jiang et al., 2019). Using

goeBURST (http://goeBURST.phyloviz.net) and the MLST

classification data, we created a minimal spanning tree based

on PHYLOViZ 2.0 (Ribeiro-Gonçalves et al., 2016) and assigned

STs to clonal complexes (CC). The nucleotide diversity was

determined using the software DNA Sequence Polymorphism

DnaSP version 6.12.03 (Rozas et al., 2017). The number of

po lymorphic s i te s , GC content , and the ra t io of

nonsynonymous to synonymous substitutions (dN/dS) were

calculated by START v 2.0 (Jolley et al., 2001).
TABLE 1 Primers used for amplification and sequencing of Harveyi clade isolates.

Primer name sequence (5’-3’) Tm (°C) product size Reference

VigyrBF GAAGGTGGTATTCAAGCGTT 55 570 (Rahman et al., 2014)

VigyrBR CGGTCATGATGATGATGTTGT 55

VipyrHdgF CCCTAAACCAGCGTATCAACGTATTC 55 501 (Rahman et al., 2014)

VipyrHdgR CGGATWGGCATTTTGTGGTCACGWGC 55

VirecAF TGCGCTAGGTCAAATTGAAA 55 462 (Rahman et al., 2014)

VirecAdgR GTTTCWGGGTTACCRAACATYACACC 55

ViatpA-01-F CTDAATTCHACNGAAATYAGYG 57 489 (Rahman et al., 2014)

ViatpA-04-R TTACCARGWYTGGGTTGC 57

27F AGAGTTTGATCCTGGCTCAG 56 1298 (Weisburg et al., 1991)

1492R TACGGCTACCTTGTTACGACTT 56
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Results

Epidemiological investigation of the
Harveyi clade isolates

A total number of 192 isolates were identified, of which 101

isolates were isolated from fish (52.7%), 60 in flatfish (31.3%), 22 in

grouper (11.6%), 19 in other species (9.8%), 64 in shrimp (L.

vannamei) (33.3%), 23 in sea cucumber (12%), and 4 in crab (2%)

(Figure 1). In addition, 63 of the total strains (33.2%) were from

2010 and earlier, while 129 strains (66.8%) were collected from 2011

to 2020. Based on the BLASTn search of the 16S rDNA gene, V.

harveyi (79 isolates), V. alginolyticus (63 isolates), V. owensii (19

isolates), V. rotiferianus (11 isolates), V. natriegens (9 isolates), V.

azureus (3 isolates), V. parahaemolyticus (2 isolates), V. campbellii

(2 isolates), V. jasicida (2 isolates), and V. sagamiensis (2 isolates)

were identified.
Taxonomic evolution of the Harveyi
clade based on MLSA

As shown in Figure 2, the phylogenetic tree cluster analysis

based on the concatenated sequences of the genes gyrB, pyrH,

recA, and atpA divided the 192 isolates together with 12

reference strains into 10 distinct clades (representing 10 gene

species) and three outgroups. The numbers of the 10 gene

species were distributed as follows: 77 V. harveyi, 41 V.

alginolyticus, 19 V. parahaemolyticus, 17 V. owensii, 17 V.

natriegens, 12 V. rotiferianus, 3 V. campbellii, 3 V. diabolicus,
Frontiers in Marine Science 05
2 V. jasicida, and 1 V. mytili. Two subgroups emerged from all

the strains of V. alginolyticus and V. diabolicus. When we

compared the phylogenetic tree constructed using only 16S

rDNA sequencing, we could not identify the strains of V.

harveyi, V. campbellii, V. rotiferianus, V. parahaemolyticus,

and V. owensii within the Harveyi clade (99% to 100%

sequence identities) (Supplementary Figure 1).

Furthermore, the phylogenetic analysis based on different

gene combination levels indicated that it was possible to

accurately classify Vibrio species within the Harveyi clade

based on the phylogenetic tree constructed using the

concatenated sequences of the four genes. After analyzing all

the concatenated genes, the three-locus phylogeny (gyrB, pyrH,

and atpA) was consistent with the four-locus phylogeny and the

Harveyi clade was identified (Supplementary Figure 2). As for

the two-locus concatenated sequences, the genes gyrB and atpA

identified V. owensii, V. parahaemolyticus, and V. rotiferianus,

while the genes gyrB and pyrH identified V. owensii

(Supplementary Figure 3). A slightly more complicated

grouping emerged from all the single-gene trees of the

nucleotide sequences (Supplementary Figure 4). Nonetheless,

atpA was the only gene with the highest discriminatory power.

The aforementioned results indicate that the MLSA scheme

based on the concatenated sequences of four protein-coding

genes can offer a robust phylogenetic reconstruction to resolve

unitary relationships of the Harveyi clade isolates. Meanwhile,

the three-gene scheme based on gyrB, pyrH, and atpA is suitable

for Harveyi clade identification to some extent.

The 16S rDNA gene, gyrB, pyrH, atpA, and recA sequences

determined in this study have been deposited in the GenBank of
FIGURE 1

Host composition of the 192 Harveyi clade isolates (100%).
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NCBI under the accession numbers ON437347-ON437538,

ON469581-ON469772, ON778048-ON778239, ON778240-

ON778431, and ON4491819-ON492010, respectively.
Phenotypic and physiological
characterization of Harveyi
clade bacteria

The phenotypic analysis of the Harveyi clade isolates in this

study was in accordance with Bergey’s manual of determinative

bacteriology (Holt et al., 1994). All the Harveyi clade isolates

growing on TCBS agar were yellowish or greenish colonies,

Gram-negative, oxidase-positive, and glucose-fermenting

bacteria. Macroscopic observation showed that the upper

surface of the colonies of the Harveyi clade isolates on the

solid medium was raised, smooth, and wet (Supplementary

Figure 5). These characteristics can be first attributed to the

genus Vibrio. The biochemical features indicated that the

Harveyi clade isolates had a positive oxidase and were unable

to ferment melibiose, rhamnose, and amygdalin. In addition, 153

isolates were able to ferment sucrose and showed negative MR-
Frontiers in Marine Science 06
VP and positive inositol reactions, 85 isolates had a positive

ONPG reaction, 106 isolates produced a positive urease reaction,

175 isolates showed a positive lysine decarboxylase test, 55

isolates had a positive gelatin test, and 107 isolates showed a

positive arginine double hydrolase test and were unable to

decompose hydrogen sulfide (Table 2). On the other hand, all

the isolates of V. harveyi, V. alginolyticus, V. campbellii, V.

owensii , and V. diabolicus tested positive for lysine

decarboxylase. V. rotiferianus, V. campbellii, and V. diabolicus

were all citrate and urease positive (Table 2). The results

indicated that these biochemical markers may be employed for

the early screening of these Harveyi clade species.

In addition to MLSA, all members of the V. campbellii, V.

jasicida, and V. parahaemolyticus group showed green colonies

on TCBS agar, indicating that they were unable to ferment

sucrose. Nevertheless, V. diabolicus and V. owellii were sucrose

positive. The other groups showed yellow and green colonies on

TCBS, and thus were either sucrose positive or negative. The

colonies of V. harveyi, V. campbellii, V. sagamiensis, and V.

aliginolyticus appeared translucence on TSB, while the colonies

of the other strains were transparent. On the modified Vibrio

chromogenic medium, V. parahaemolyticus and V. jasicida
FIGURE 2

Neighbor-joining phylogenetic analysis based on concatenated gene sequences of four protein-coding loci (i.e., gyrB-pyrH-recA-atpA). Vhh, V.
harveyi; Val, V. alginolyticus; Vro, V. rotiferianus; Vca, V. campbellii; Vpa, V. parahaemolyticus; Vow, V. owensii; Vna, V. natriegens; Vdi, V.
diabolicus; Vsa, V. sagamiensis; Vaz, V. azureus; Vja, V. jasicida; Vmy, V. mytili. Bootstrap values based on 1,000 resamplings are shown as
percentages at the branch nodes.
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TABLE 2 Results of Harveyi clade isolates based on biochemical tests.

Biochemical kit Number of positive isolates

2) Val(n=41) Vca(n=3) Vpa(n=19) Vja(n=2) Vmy(n=1) Vna(n=17) Vdi(n=3)

3 3 10 0 1 15 2

16 3 6 2 0 2 3

0 0 0 1 1 0 0

35 3 5 1 1 17 2

38 3 13 0 1 1 3

41 3 18 1 4 3

5 0 0 0 1 16 2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 2 1 0 1 3

31 14 1 1 16 3

37 3 19 1 1 15 3

36 3 19 0 1 16 2

1 0 0 0 0 0 0

3 0 0 0 0 0 0

29 3/3 11 1 0 6 3

11 0 17 0 1 15 0

2 0 1 0 0 1 1

6 0 1 0 1 2 2

16 3 4 2 1 8 3

5 3 7 0 0 6 1

41 3 19 2 1 17 3
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Total(n=192) Vhh (n=77) Vow(n=17) Vro(n=1

ONPG 85 35 15 1

Urease 106 56 6 12

Xylose fermentation kit 4 2 0 0

Sucrose 153 68 16 5

Simon's Citrate 147 60 16 12

Lysine decarboxylase 175 77 17 11

Gelatin 55 21 10 9

Amygdalin 20 1 0 0

Melibiose 0 0 0 0

a-L-Rhamnopyranose monohydrate 3 2 0 0

H2S biochemical kit 11 2 0 2

Malonic acid disodium salt 162 75 13 8

Mannitol 174 74 15 6

D (+)-Glucose 179 73 17 11

3% NaCl MR-VP 4 3 0 0

Inositol 8 5 0 0

Ornithine decarboxylase 125 51 12 9

DL-Arabinose 46 0 1 1

Sorbitol 12 5 0 2

Lactose 18 0 4 2

Arginine double hydrolase 107 55 7 8

Tryptone water 22 0 0 0

Glucose oxidase 192 77 17 12
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showed large colonies of blue-green color and the colonies of V.

alginolyticus were pale yellow or beige, while the other species

were inhibited.
Diversity and clustering analysis of
sequence types

The nucleotide sequence variations of the four gene

fragments are summarized in Table 3. The GC contents of

every locus were similar and varied per locus from 47.31%

(atpA) to 48.53% (pyrH). The number of alleles of each locus

in the 192 Harveyi clade isolates was distributed as follows: 53

pyrH, 56 atpA, 79 gyrB, and recA. The number of polymorphic

sites ranged per locus from 137 (atpA) to 170 (recA). The

nucleotide diversity varied from 0. 0.02643 (atpA) to 0.08482

(pyrH), indicating that allele loci had a low mutation rate. The

value of dN/dS of each locus was lower than 0.25, suggesting a

purifying selection of the four housekeeping genes for the 192

Harveyi clade isolates.

A total of 95 STs were identified, of which 92 were newly

identified STs (Supplementary Table 1). The MLST analysis

revealed high molecular diversity among the Harveyi clade

isolates, with most strains forming unique sequence types in

the Chinese mariculture system of this study. ST327 was the

most common among the newly identified STs, accounting for

11.5% of the total number of isolates (22 out of 192), with all of

them being V. alginolyticus. ST215, represented by V. harveyi,

was the second most common STs and accounted for 6.25% of

the total number of isolates (12 out of 192). Sixty-three STs had

single isolates. Twenty-seven were identified in 77 isolates of V.

harveyi, with each ST comprising 1 to 12 isolates. Fifteen STs

were found in 41 isolates of V. alginolyticus, with each ST having

1 to 22 isolates. Eleven STs were identified in 19 V.

parahaemolyticus isolates, with each ST containing 1 to 5

isolates, followed by V. natriegens (15 out of 17), V. owensii

(11 out of 17), V. rotiferianus (9 out of 12), V. campbellii (3 out

of 3), V. diabolicus (3 out of 3), V. jasicida (2 out of 2), and V.

mytili (1 out of 1). Furthermore, the statistical classification of

the ST strains according to their host origin showed that 42 STs

were present in 101 isolates from fish, 26 STs in 64 isolates from

shrimp, 4 STs in 4 isolates from crab, and 23 STs in 23 isolates

from sea cucumber.
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The identification of the CC clustering patterns indicated

that 95 STs were separated into 7 CCs (CC0, CC1, CC2, CC3,

CC4, CC5, and CC6) and 4 doublets (D1–D5) (Figure 3), while

the remaining 36 STs were singletons. The most common CC

was CC0, which included 78 isolates with 5 STs, all of which

were identified as V. harveyi. Based on UPGMA analysis, the STs

that belong to the same CCs and doublets were also clustered

together in the UPGMA tree (Figure 4). CC0 was composed of

V. harveyi and represented the core group, which was divided

into two major branches. One branch included V. campbellii, V.

rotiferianus, V. owensii, V. mytili, and V. jasicida, while the other

branch included V. parahaemolyticus, V. diabolicus, V.

alginolyt icus , and V. natriegens . Among them, V.

parahaemolyticus and V. campbellii had the closest genetic

distance to V. harveyi. V. jasicida (composed of D2) and V.

natriegens (composed of CC1 and CC5) were the most

genetically distant species from CC0.
Antimicrobial susceptibility
characteristics of the Harveyi
clade isolates

The antibiotic resistance profiles of each Harveyi clade

isolate are illustrated in Figure 5. The results showed that

93.8% of the Harveyi clade isolates were resistant to NEO.

SDM resistance was found in 31.9% of the isolates. SDI and

SMM resistance were observed in 22.9% of the isolates.

Resistance to SMZ, THI, and ENR was recorded in 17.3%,

14.6%, and 8.3% of the isolates, respectively. On the other

hand, Harveyi clade isolates were highly sensitive to certain

antibiotics. Susceptibility to FFC, THI, FLU, ENR, CIP, SMZ,

SMM, and SDI was recorded in 92.8%, 82.3%, 89%, 84%, 73%,

78%, 72%, and 61% of the isolates, respectively (Figure 6).

Multiple antibiotic resistance analysis indicated that the

multiple antibiotic resistance index (MARI) of all the isolates

ranged from 0 to 0.82 (Figure 7 and Supplementary Table S1),

which revealed that 97.9% of the isolates (188 out of 192) were

resistant to at least one antibiotic. A MARI value higher than 0.2

was observed in 30.7% of the resistant isolates (59 out of 192).

These isolates have a transmission potential since the MARI was

higher than 0.2, indicating a high antibiotic exposure risk. The

isolates Vhh 50, Vhh 60, Val 14, and Vna 09 had the highest
TABLE 3 Nucleotide sequence variations of each MLST locus for 192 Harveyi clade isolates.

Locus Fragment size (bp) Alleles number GC content (100%) Nucleotide diversity Polymorphic site number dN/dS ratio

gyrB 570 79 48.01 0.07722 160 0.10715

pyrH 501 53 48.53 0.08482 145 0.06443

recA 462 79 47.99 0.06461 170 0.04899

atpA 489 56 47.31 0.02643 137 0.16802
f

The ratio of nonsynonymous to synonymous substitutions (dN/dS).
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FIGURE 4

MLST hierarchical clustering phylogenetic map of the Harveyi clade. : V. harveyi; : V. parahaemolyticus; : V. diabolicus; : V. alginolyticus;
: V. natriegens; : V. jasicida; : V. owensii; V. mytili; : V. rotiferianus.
FIGURE 3

goeBURST minimum spanning tree for all the 95 sequence types obtained from the combination of all allele types of the four MLST loci gyrB,
pyrH, recA, and atpA using the PHYLOViZ 2.0 analysis software. The genetic relationships between all the analyzed Chinese Harveyi clade
isolates are indicated. Note: The different numbers in the circles represent different STs.
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FIGURE 5

Levels of antibiotic resistance profiles of 11 tested antibiotics. The black bar, the gray bar, and the light gray bar represent the proportion of
resistant strains, intermediate strains, and sensitive strains, respectively. The gray striped bar represents the proportion of the multiple antibiotic
resistance index of the strains.
FIGURE 6

Antibiotic resistance profiles of the Harveyi clade isolates. The colors represent different levels of resistance. : resistance, : intermediate, :
susceptibility. Note: MAR index is calculated by dividing the total numbers of the tested antibiotics into the numbers of antibiotics, to which the
isolate was resistant.
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MARI value (0.82) and were resistant to nine antibiotics. The

remaining 55 isolates showed multidrug resistance to at least

three tested antibiotics (Figure 6).

Association analysis of antimicrobial resistance with the

genetic population of the isolates is shown in Figure 5. ST132

consisted of seven isolates of V. harveyi, all of which were

resistant to neomycin, while the other STs had sensitive

phenotypes. The resistance profiles of the other isolates of the

same ST showed different profiles. Moreover, 59 strains were

resistant to the three antibiotics mentioned above, including 40

non-repetitive STs scattered in different years. Due to the large

number of various STs and the significantly varying ST numbers,

the relationship between the different STs and antimicrobial

resistance was difficult to determine.
Discussion

We analyzed a total of 192 isolates of the Harveyi clade from

infected parts of animals from marine and mariculture

environments in coastal areas of China from 2000 to 2020.

The phenotypic, metabiotic, and genotypic properties of these

isolates were investigated thoroughly in this study. Many

researchers confirmed that the phenotypic traits do not affect

the differentiation of Harveyi clade isolates (Gauger and Gómez-

Chiarri, 2002; Thompson, 2003). Lukjancenko et al. (2012)

showed that the traditional phenotypes were unable to

distinguish sister species due to large conserved regions in the

proteome prediction. Gomez-Gil et al. (2004) demonstrated that
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V. harveyi, V. campbellii, and V. rotiferianus had similar

phenotypes and were misidentified. The results of this study

also revealed that the phenotypic methods have a limited ability

to discriminate Harveyi clade members. Although 16S rDNA

gene sequencing is considered as a gold standard method for

bacterial taxonomy, it does not have sufficient resolution to

correctly identify Harveyi clade species (Gomez-Gil et al., 2004;

Janda and Abbott, 2007; Chatterjee and Haldar, 2012). The low

discriminating ability of the 16S rDNA gene in identifying the

192 isolates in the present research was consistent with previous

studies. In recent years, studies have shown that MLSA can

accurately identify Harveyi clade strains with high resolution

and reproducibility (Thompson et al., 2005; Xie et al., 2020).

Rahman et al. (2014) found that most Vibrio species could be

easily identified using population and phylogenetic analyses

based on the combination of the genes gyrB-pyrH-atpA-recA.

Using five housekeeping genes (i.e., rpoA, pyrH, topA, ftsZ, and

mreB), Cano-Gomez et al. (2011) identified 36 Vibrio harveyi-

related isolates as V. harveyi, V. campbellii, V. rotiferianus, and

V. owensii. Furthermore, Pascual et al. (2010) identified rapidly

and accurately 44 Vibrio core groups as V. harveyi, V. campbellii,

V. rotiferianus, and V. parahaemolyticus using seven

concatenated genes (i.e., 16S rDNA, recA, pyrH, rpoD, gyrB,

rctB, and toxR). Xie et al. (2020) have recently demonstrated that

the two pathogenic bacteria HM-12 and HM-14 were confirmed

as V. harveyi and V. alginolyticus, respectively, using the five

housekeeping genes ftsZ, gapA, gyrB, mreB, and topA.

Furthermore, the NJ tree analysis of the species V.

alginolyticus and V. diabolicus revealed two subgroups, which
FIGURE 7

Distribution of multi-antibiotic resistance strains.
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supports the reports stating that the two species were originally

one species (Rahman et al., 2014). In the present study, 192

Harveyi clade isolates were accurately identified to 10 species

using the four concatenated genes gyrB, pyrH, atpA, and recA.

Likewise, V. rotiferianus and V. jasicida revealed two subgroups,

which led us to speculate that these two species may also have

originated from one species. These studies clearly show that

MLSA can effectively resolve phylogenetic relationships at the

genus and species level; however, there are no general criteria for

selecting the genes and their number for MLSA. Therefore, the

use of MLSA needs to be improved to make its application more

viable and ubiquitous.

Molecular subtyping is widely used for epidemiological and

population genetic analysis of pathogenic bacteria. MLST was first

introduced in the epidemiology of pathogenic Neisseria

meningitidis strains (Maiden et al., 1998). MLST has been

widely employed in recent years for V. parahaemolyticus. Han

et al. (2015) found that 218 V. parahaemolyticus clinical isolates in

China produced 137 STs, indicating that V. parahaemolyticus

from China has a high genetic diversity. Using MLST, Jiang et al.

(2019) found that 90 V. parahaemolyticus strains from Bohai and

Yellow Seas of China were composed of 68 sequence types,

displaying a high level of genetic diversity. Rahman et al. (2014)

reported that 182 Vibrio strains obtained from the Venice Lagoon

and a marine environment were classified into 162 STs and were

processed as distinct species/taxa. We analyzed in the present

study the extent of genetic diversity on nucleotide variations

among the Harveyi clade isolates. Han et al. (2015) and Turner

et al. (2013) reported the same phenomena inV. parahaemolyticus

strains. The observed alleles, polymorphic site numbers, and

nucleotide diversity reveal the richness and uniqueness of the

Harveyi clade isolates from coastal areas of China.

In this study, we identified 95 STs among 192 Harveyi clade

isolates. In comparison to the pubMLST database, 92 STs were

newly discovered, demonstrating that our research contributed

substantially to the diversity of Vibrio spp. in the MLST

database. ST28, ST88, and ST132 were found to be identical to

the sequence types of isolates recovered from the Venice Lagoon

(Rahman et al., 2014). When examining the three STs with the

largest number, no significant relationship between the STs and

the annual change was observed. The analysis of the STs and

their origin (host and collection data) shows that the isolates

with the same ST may have originated from the same host (e.g.,

ST327). Nevertheless, the majority of the STs consisted of

isolates from different regions and sampling years (e.g., ST215

and ST216). However, cgMLST correlates with time and regions

of bacterial isolates well (Alikhan et al., 2018). As a bacterial

typing system, it has become an innovative tracing tool in recent

years (Monte et al., 2021). Gonzalez-Escalona et al. (2017)

demonstrated that cgMLST clearly showed higher resolution
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than traditional MLST for V. parahaemolytics. With the

development of whole genome sequencing technology, we will

use comparative genomics and cgMLST scheme for higher-

resolution analysis of Harvey clade isolates.

Antibiotic resistance of Harveyi clade isolates is an

important indicator of metabolic and phenotypic diversity.

In the current investigation, antibiotic susceptibility tests

showed that all the Harveyi clade isolates were resistant to

neomycin, but showed low resistance to other antibiotics.

Similarly, Obaidat et al. (2017) reported that all V.

parahaemolyticus isolates in the Harveyi clade were

neomycin resistant. In the Indian subcontinent, Vibrio spp.

exhibited high neomycin resistance (Guardiola et al., 2012).

Ciprofloxacin was the most active quinolone antibiotic against

the Harveyi clade in this study, which is consistent with the

results of Zanetti et al. (2001). The increased resistance to

quinolones in Vibrio spp., with spatial and temporal

differences, may be related to various antibiotic resistance

mechanisms (Blair et al., 2015; Blanco et al., 2016; Deng

et al., 2020). In this study area, compared with other areas,

we found the uniqueness and diversity of Harveyi clade isolates

between the coastal areas of China and other countries. For

instance, the MARI values of the Harveyi clade isolates ranged

from 0 to 0.82. The MARI reflects the degree of the

environmental pollution caused by antibiotics that may be

dangerous to human health (Tanil et al., 2005; Páll et al., 2021).

A value higher than 0.2 indicates a high antibiotic exposure

risk, while a value lower than 0.2 indicates a low antibiotic

exposure risk (Mohamad et al., 2019). According to our

findings, 61.8% of the Harveyi clade isolated from coastal

areas in the past 20 years have a MARI value less than 0.1,

indicating that the risk of antibiotic resistance transmission of

most Harveyi clade is low in mariculture systems in China.

However, the resistance to the 11 antibiotics was found in

various combinations, showing that this resistance was not

concentrated in a single ST. Thus, the Harveyi clade isolates

analyzed by MLST are multidrug-resistant bacteria. New non-

antibiotic bacteriostatic medications and alternatives should be

developed to reduce the impact of the extensive use of

antibiotics on the environment and ecological health (Tan

et al., 2016). In recent years, antibiotic drugs have been made

into dietary microspheres by scholars to achieve high

availability, attractiveness and digestibility to fish, which will

promote the source of antibiotics, reduce antibiotic

contamination in fisheries, and ease the control of antibiotic

resistance (Zhang et al., 2021). Therefore, analyzing the drug

resistance of pathogens in different regions of the eastern coast

of China in the past 20 years is of great significance for

formulating antibacterial drug reduction policies and

effective antibacterial drug use programs.
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Conclusions

Our analyses showed that the strains have significant

interspecific genetic and antibiotic resistance diversity. The

Harveyi clade isolates were classified rapidly and robustly

using the MLSA approach. The MLST analysis showed high

genetic diversity and uniqueness of the Harveyi clade isolates

from China with multiple sequence types. Furthermore, our

study confirmed the presence of multiple antibiotic resistance in

the Harveyi clade from the coastal areas of China collected in the

last two decades. Although the MARI demonstrated that most

Harveyi clade isolates from marine and mariculture

environments in coastal areas of China had a low probability

of antibiotic resistance transmission, they were still highly

resistant to various antibiotics, emphasizing the need to

increase the development of non-antibiotic drugs and

antibiotic alternatives. These results will provide a basis for

further studies on the genetic and metabolic diversity of

Harveyi clade isolates in mariculture systems in China.
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SUPPLEMENTARY TABLE 1

Allele profiles, sequence types, multiple antibiotic resistance index values

(MARI), antimicrobial resistance profiles’ identification based on
multilocus sequence analysis (MLSA), and sources of 192 Harveyi

clade isolates.

SUPPLEMENTARY FIGURE 1

Neighbor-joining (NJ) phylogenetic analysis based on 16S rDNA gene

sequences of Harveyi clade isolates and reference strains used in this
study. Numbers at nodes represent the bootstrap (BT) values based on

1000 resamplings.

SUPPLEMENTARY FIGURE 2

NJ phylogenetic analysis based on all three-locus concatenated

sequences of Harveyi clade isolates and reference strains used in this
study. Numbers at nodes represent the BT values based on

1000 resamplings.

SUPPLEMENTARY FIGURE 3

NJ phylogenetic analysis based on two-locus concatenated sequences of
Harveyi clade isolates and reference strains used in this study. Numbers at

nodes represent the BT values based on 1000 resamplings.

SUPPLEMENTARY FIGURE 4

Phylogenetic reconstructions based on individual analyses of gyrB, pyrH,

recA, and atpA using the NJ method. Numbers at nodes represent the BT

values base on 1000 resamplings.

SUPPLEMENTARY FIGURE 5

Morphology of Harveyi clade type strains. (A) growth of Harveyi clade type
strains on TCBS agar; (B) microscopy Harveyi clade type strains on

TCBS agar.
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