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Trend detection by innovative
polygon trend analysis for winds
and waves
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It is known that densely populated coastal areas may be adversely affected as a

result of the climate change effects. In this respect, for coastal protection,

utilization, and management it is critical to understand the changes in wind

speed (WS) and significant wave height (SWH) in coastal areas. Innovative

approaches, which are one of the trend analysis methods used as an

effective way to examine these changes, have started to be used very

frequently in many fields in recent years, although not in coastal and marine

engineering. The Innovative Polygon Trend Analysis (IPTA) method provides to

observe the one-year behavior of the time series by representing the changes

between consecutive months as well as determining the trends in each

individual month. It is not also affected by constraints such as data length,

distribution type or serial correlation. Therefore, themain objective of this study

is to investigate whether using innovative trend methods compared to the

traditional methods makes a difference in trends of the climatological variables.

For this goal, trends of mean andmaximumWS and SWH series for eachmonth

at 33 coastal locations in Black Sea coasts were evaluated. Wind and wave

parameters WS and SWH were obtained from 42-year long-term wave

simulations using Simulating Waves Nearshore (SWAN) model forced by the

Climate Forecast System Reanalysis (CFSR). Monthly mean and maximum WS

and SWH were calculated at all locations and then trend analyses using both

traditional and innovative methods were performed. Low occurrence of trends

were detected for mean SWH, maximum SWH, mean WS, and maximum WS

according to the Mann-Kendall test in the studied months. The IPTA method

detected more trends, such as the decreasing trend of the mean SWH at most

locations in May, July and November December. The lowest (highest) values

were seen in summer (winter), according to a one-year cycle on the IPTA

template for all variables. According to both methods, most of the months

showed a decreasing trend for the mean WS at some locations in the inner

continental shelf of the southwestern and southeastern Black Sea. The IPTA

method can capture most of the trends detected by the Mann-Kendall method,

and more missed by the latter method.

KEYWORDS
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1. Introduction

The coastal areas are generally densely populated. The

attractiveness of the coasts leads to an increased number of

buildings and assets close to the coastline. For example, in 2000,

half of the major cities, counting more than 500,000 inhabitants,

were located within 50 km of the coastline (UNEP, 2006).

Variations in sea level caused by climate change, wave

conditions, and storm surges are only a few significant

environmental forces that have physical effects along the coast

(Camus et al., 2017). Human activities thus stress coastal areas,

and the impacts of climate change are expected to worsen the

problems that coastal areas are already facing (IPCC, 2013).

The wind speed, the duration of the wind, wind direction,

and fetch are the main factors influencing the wave climate in

the open ocean. Therefore, the change in the wind pattern

directly influences the wave height and period (Bhavithra and

Sannasiraj, 2022). Waves combine local wind-sea and swell

coming from distant storms (Young, 1999a). Despite being

entirely forced by the wind field, the long-term trends of wave

height may be affected by low-frequency variability, e.g., an

increasing number of cyclones, in the form of a swell

contribution (Young, 1999b; Gulev and Grigorieva, 2006). The

need for long-term and reliable time series of marine near-

surface winds and significant wave height (SWH) is increasing as

climate projections require a baseline climatology against which

to be compared, and even more so if dynamical models of the sea

state are to be included in future coupled climate scenarios

(Cavaleri et al., 2012; Dobrynin et al., 2012). There are also more

immediate needs for reliable time series of historical wind and

wave climates, such as estimates of return values in areas without

observational records (Caires and Sterl, 2005; Aarnes et al., 2012;

Breivik et al., 2013; Breivik et al., 2014) or decadal trends in wind

and wave parameters.

Trend analysis examines whether the direction of increase or

decrease in a time series changes over time. There are two types

of trend analysis methods: parametric and nonparametric. The

parametric approaches are dependent on the assumption that

data fit the normal distribution. They are often preferable in

trend analysis research since nonparametric methods do not

make this assumption (Onyutha, 2016; Akçay et al., 2022).

Mann-Kendall, Spearman’s rho, and Sen’s trend slope tests are

some examples of nonparametric methods. The Mann-Kendall

test is often preferred in trend analysis of hydro-meteorological

data (Saplıoğlu et al., 2014; Caloeiro et al., 2018; Ali et al., 2019;

Ay, 2020; Şan et al., 2021). It is also frequently used in trend

analysis of wave and wind data (Shanas and Kumar, 2015;

Akpınar and Bingölbali, 2016; Aydoğan and Ayat, 2018;

Meucci et al., 2020; Amarouche et al., 2021). Innovative

methods in trend analysis have attracted attention in recent

years (Şen, 2012; Şen, 2014; Şen, 2017; Güçlü, 2018; Şen, 2018;

Şen et al., 2019; Güçlü et al., 2020; Şen, 2021). The Innovative
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Trend Analysis (ITA) proposed by Şen (2012) forms the basis of

these innovative approaches. In this method, the data is divided

into two equal parts. Both half series are sorted in ascending

order, and the 45° line is added to the chart. If the scattering

points fall above (below) the 45° line, it indicates an increasing

(decreasing) trend. If the scattering points are lined up just above

the 45° line, there is no change between the first and second half

data. Besides, the data can be divided into low, medium, and

high groups in this method. The Innovative Polygon Trend

Analysis (IPTA) is one of the novel trend methods proposed by

Şen et al. (2019). In this method, polygon patterns are obtained

using the mean, minimum, maximum, standard deviation and

skewness parameters of the data at different time scales (daily,

monthly, etc.). In this way, the one-year behavior of the time

series is symbolized. This method can obtain information when

determining the trend and the magnitude and slope of trend

transitions between successive segments (e.g., months).

Innovative approaches are frequently used in investigating the

trends of hydro-meteorological parameters (Haktanir and

Çıtakoğlu, 2014; Ay and Kisi, 2015; Dabanlı et al., 2016;

Caloeiro et al., 2018; Sanikhani et al., 2018; Kuriqi et al., 2020;

Harkat and Kisi, 2021; Ahmed et al., 2022). However, the use of

these methods in investigating the trend of wave parameters is

quite limited (Caloeiero et al., 2019; De Leo et al., 2020; De Leo

et al., 2021). The ITA procedure recommended by Şen (2012)

was applied in these studies. The IPTA method is applied to

wave and wind parameters for the first time in this study.

There are various trend analysis studies conducted on the

Black Sea (Valchev et al., 2012; Akpınar and Bingölbali, 2016;

Divinsky and Kosyan, 2017; Aydoğan and Ayat, 2018; Onea and

Rusu, 2019; Çarpar et al., 2020; Divinsky and Kosyan, 2020; Islek

et al., 2020; Islek et al., 2021). Valchev et al. (2012) investigated

the linear trends of storminess, mean wind speed (WS), mean

and total wave energy in the western Black Sea between 1948 and

2010. Akpınar and Bingölbali (2016) determined the long-term

changes of SWH and WS in 33 selected locations on the Black

Sea based on 31-year (1979-2009) long-term wave simulations

using Simulating Waves Nearshore (SWAN) model forced by

the Climate Forecast System Re-analysis. Trends for annual

mean and maximum WSs and significant wave heights (SWH)

were investigated based on the Mann-Kendall test. Divinsky and

Kosyan (2017) studied the spatiotemporal variability of the

Black Sea wave climate using 37–year (1979–2015) ERA-

Interim wind fields. Aydoğan and Ayat (2018) investigated the

long-term trends of SWH in the Black Sea, both on a basin

average and spatial basis, on an annual and monthly basis using

Sen’s slope method and least square linear regression. Divinsky

and Kosyan (2020) investigated trends in the average and

maximum power of wind seas, swell, and mixed waves using

Mann-Kendall test based on the MIKE 21 SWmodel results for a

40–year (1979–2018) ERA-Interim dataset. Çarpar et al. (2020)

spatially investigated the long-term trends of mean and 95%
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percentile wind speeds in the Black Sea between 1979 and 2016

on a monthly basis with the help of the Mann-Kendall test. Islek

et al. (2020) studied the long-term change of wind characteristics

(the wind speed, direction, number and duration of storms, and

wind power density) using linear regression on the Black Sea

with two widely used data sources ERA-Interim and CFSR,

spanning 40- year (1979-2018). Islek et al. (2021) determined the

long-term trends of mean and maximum SWH, mean wave

period, mean wave direction, storm duration, and wave

steepness using linear regression for two separate data sets

(SWAN simulations forced with the ERA-Interim and NCEP/

NCAR) covering the years 1979–2018 on the Black Sea.

As seen from the literature review in the area of interest and

the world, trends for winds and waves were not examined using

the IPTA method. With the help of polygon graphics in the

IPTA method, a new methodology, the annual behavior of the

time series can be followed from January to December. This

method questions the existence of a trend each month and

allows the direction and size of the transitions between months

to be determined. It provides the opportunity to make visual

comments as well as numerical data. The following are the

primary goals of this research:

* To investigate monthly long-term trends of mean and

maximum SWH and WS at 33 locations along the Black

Sea coast.

* To examine the one-year behavior of the mean and

maximum SWH and WS at locations by examining the

transitions between months with the IPTA method, which will

assess the month-to-month trends and slopes. In this way, to

observe seasonal variations through monitoring changes in

successive months.

* To compare traditional (Mann-Kendall) with innovative

(IPTA) methods.

For the purposes mentioned above, the locations and data in

the study carried out by Akpınar and Bingölbali (2016) were

preferred and used. The dataset produced by Akpınar and

Bingölbali (2016) was extended with SWAN simulations until

2020. After expanding the data, monthly mean and maximum

SWH and WS were obtained for 33 locations. Traditional

(Mann-Kendall) and the state of the art (IPTA) trend methods

were applied for 42-year mean and max WS and SWH for each

month, and trends were determined.
2. Materials and methods

2.1. Study area and data used

The deep-water basin, which covers most of the sea, and the

coastal shelf are two morphological aspects of the Black Sea. The

shelf band in the northwestern section of the sea stretches up to

200 kilometers broad. A 20-kilometer-long continental slope

and shelf differentiate the southern and eastern shores. With a
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maximum depth of 2212 meters, the center part of the Black Sea

basin is a relatively flat plain. The depths off the coasts of Crimea

and the Caucasus are steadily rising, reaching 500 meters just a

few kilometers from the shore (Divinsky and Kosyan, 2020).

Thirty-three locations along these coastal regions of the Black

Sea were determined within the scope of the study by taking a

degree difference between longitudes. Of these 33 locations, nine

are in the southeast (1-9), seven in the northeast (10-16), eight in

the northwest (17-24), and nine in the southwest (25-33) of the

Black Sea. The positions of these locations are shown in Figure 1.

Detailed information about the study area and locations can be

found in Akpınar and Bingölbali (2016).
2.2. Wave model setup

Forced with CFSR wind fields, SWAN cycle III version 41.01,

a third-generation wave model (Booij et al., 1999; Ris et al.,

1999), was used to generate and propagate wind waves between

1979 and 2009 by Akpınar and Bingölbali (2016) and extend the

dataset until 2020 in the scope of the present study in the Black

Sea. Thus, a 42-year long-term wind and wave dataset were

formed. The SWAN model was in the third generation and

operated in non stationary mode, with a time step of 15 min and

one iteration per time step. Akpınar et al. (2012) found this

setting to be adequately precise. As for the domain of the model,

the entire Black Sea (27°E to 42°E and 40°N to 48°N) was taken
FIGURE 1

Study area and locations.
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into consideration (shown Figure 1). In spherical coordinates,

the Black Sea was within a 225×120 regular grid, including the

Azov Sea. It has a consistent resolution of 0.067 degrees (1/15°)

in both directions, translating into about 7.7 km of latitude and

5.43 km of longitude. Thus, there is 15 cells per latitude and

longitude. Thirty-six directional bins and 35 frequency bins were

used to discretize the spectrum function of the directional wave

variance, which were geometrically positioned from 0.04 Hz to

1.0 Hz. The slightly dispersive BSBT (first-order upwind;

backward space, backward time) scheme was used for the

numerical scheme. Numerical settings of the SWAN model in

the Black Sea were discussed in Akpınar et al. (2012), where the

physical settings for the wave model calculations were done with

a calibrated SWAN model by Akpınar et al. (2016). The

formulation of Komen et al. (1994) was applied for wave

growth by wind. 1991b; Janssen’s (1991a) model’s adaptations,

where d=1 according to Rogers et al. (2003), were used for wave

energy dissipation by whitecapping. 2016; Akpınar et al. (2015)

found that the Cds=1.5 coefficient for whitecapping dissipation

was optimal for the SWAN model forced with the CFSR, so this

study used the same. Nonlinear quadruplet interactions were

calculated using the Discrete Interaction Approximation (DIA)

by Hasselmann et al. (1985), in which l is 0.25 and Cnl4 is 3×10
7.

A constant for the bottom-friction coefficient (Cfjon=0.038 m2

s−3) based on JONSWAP was used to evaluate energy dissipation

due to bottom friction as advised in Zijlema et al. (2012). The

bore model of Battjes and Janssen (1978), in which a is set to 1

and g is 0.73, was used to model energy dissipation by depth-

limited wave breaking. Triad Approximation (LTA) of

Eldeberky (1996) was employed to calculate triad wave-wave

interactions. The wave model was driven by NOAA, which

includes two versions for CFSR winds. Version 1 of the CFS

Re-analysis data set (Saha et al., 2010) is available from January

1, 1979, to March 31, 2011. Version 2 (Saha et al., 2014) of the

data sets started in March 2011. CFSR wind data sets have a

temporal resolution of 1 hour, and they possess a spatial

resolution of 0.3125◦ × 0.3125◦ from 1979 to 2010 and 0.2045◦

× 0.2045◦ from 2011 to the present. With a resolution is 30

arcseconds in both latitude and longitude, the bathymetry

shown in Figure 1 was collected from the GEBCO (2014)

database. Since currents and water level changes are

insignificant to affect the model’s results, they were simply not

considered. Parameters like SWH and WS have been saved at a

half-hour interval over the entire grid for 42 years. 2016; Akpınar

et al. (2015) provide details on the calibration and validation of

the SWAN model used.
2.3. Trend analysis

2.3.1. Mann-Kendall test
The Mann-Kendall test is a nonparametric trend analysis

tool extensively used. The test statistic S of the method is
Frontiers in Marine Science 04
calculated as (Mann, 1945; Kendall, 1975):

S = o
n−1

i=1
o
n

j=i+1
sgn xj − xi

� �
(1)

where n is the data length, xi and xj indicates data values at

times i and j, respectively.

sgn xj − xi
� �

=

          1          ;           xj > xi

      0          ;         xj = xi

     −1    ;           xj < xi

8>><
>>: (2)

When n>10, the variance of S is calculated as:

Var Sð Þ = n n − 1ð Þ 2n + 5ð Þ −o
p

i=1
ti ti − 1ð Þ 2ti + 5ð Þ

" #
=18 (3)

In Equation (3), p is the number of tied groups. It means

there is equal data in the time series. ti indicates how many times

a data is repeated. Finally, the Z value is obtained from Equation

(4):

Z =

S−1ffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p            ,                 S > 0  

        0                          ,                         0            

S+1ffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p          ,                     S < 0  

8>>><
>>>:

(4)

The significance of this test is compared with the standard z

value according to the confidence level (90%, 95%, 99%)

determined in the standard normal distribution table. If the

absolute calculated Z value is greater (less) than the standard z

value, there is a significant trend (no trend). In the case of trend,

i f S is posi t ive (negat ive) , there is an increas ing

(decreasing) trend.
2.3.2. Innovative polygon trend analysis
Nonparametric tests have some limitations: Mann Kendall

and Spearman’s Rho tests are affected by the data length as a

result of the simulation studies. As the data length increases,

these tests become more powerful (Yue and Wang, 2002; Şen,

2012). In addition, another disadvantage of the Mann-Kendall

test is that it accepts serial independence. The presence of serial

correlation in a time series showed that the Mann-Kendall test

detects trends that do not actually exist (Von Storch, 1995; Şen,

2012). However, Douglas et al. (2000) stated that the

prewhitening method, which is used to reduce the serial

correlation, will lose some of the existing trend. Contrary to

these restrictions, Innovative Trend Analysis (ITA) method

proposed by Şen (2012) does not contain any restrictions such

as data length, normal distribution fit, and serial correlation

removal. The validity of the method was tested by Monte Carlo

simulations (Şen, 2012). The IPTA is one of the novel trend

methods proposed by Şen et al. (2019). The method has no

limitations as it is based on the ITA method. In this method,
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polygon templates are obtained using the mean, minimum,

maximum, standard deviation, and skewness parameters of the

data at different time scales (daily, monthly, etc.). If the monthly

time scale is preferred, the method is applied as: The monthly

values (mean or maximum) of the relevant parameters were

divided into two equal groups. In this way, the first half of 42

years of monthly data (21 * 12 = 252 months of data) represent

the first group, while 252 months of data for the recent period

represent the second group. After that, for each month, the

averages (or optionally minimum, maximum, standard

deviation, skewness, etc.) of the first half data group (monthly

means of the past 21 years) and the second half data group

(monthly means of the recent 21 years) were taken and the

averages of the first group data were marked on the x-axis and

the averages of the second group data were marked on the y-axis,

and the 12 points obtained were connected and a polygon was

obtained. Finally, the slope and length between two points are

obtained by standard formulas. The difference between two

months is measured by the line length (transition). The line

slope concerning the horizontal axis is known as the trend slope.

In the Cartesian coordinate system 1:1 (45°), a straight line

divides the diagram into two parts. If scatter points are above

(below) the 1:1 line, there is an increasing (decreasing) trend

(Şen, 2012). In this method, the measure of significance can be

obtained by the relative error percentage (a) between the two

half-series (Şen, 2020):

a = 100
�x1 − �x2j j
�x2

(5)

When a< ± 5%, it is considered that there is no significant

trend in the given time series (Şen, 2020).

This approach is a nonparametric method with no

assumption. The polygon symbolizes the one-year behavior of

the time series. The straight lines connecting the months give

information about the changes between months. If the slopes of

the straight lines between the months are close, the contribution

of the changes between months to the average change in the time

series is not significant. The more dynamic and complex a

hydro-meteorological event is, the more complex polygons

tend to arise.
3. Results

3.1. Mann-Kendall test results

The Mann-Kendall Test results at 95% confidence level for

mean and maximum SWH and WS are shown in Figures 2–5,

respectively. A significant trend was not observed in

approximately 89% of all time series (33 locations x 12

months) of mean SWH (Figure 2). No trends were detected in

April, June, July, and October. Increasing trends in March (six

locations), August (sixteen locations) and September (ten
Frontiers in Marine Science 05
locations) and decreasing trends in May (five locations) are

noteworthy. Trends detected in other months are limited to a

few locations. Increasing trends were concentrated in the

southeast for March and in the northwest for August and

September. Decreasing trends were generally observed at

locations in the southwestern part. For the maximum SWH

(Figure 3), no trend was observed in any location in February,

June, July, and October. There is no trend in approximately 94%

of the all time series, but an increasing trend is detected in 5%.

Increasing trends were observed in January, August, and

September and mostly in locations in the western region.

Figure 4 presents the monthly Mann-Kendall test results of

mean WS. Similar to the mean SWH, increasing trends in the

western and northern regions were observed in August and

September. A decreasing trend was observed in all months at

location 30, located in the southwest. An increasing (decreasing)

trend was detected in the winter months (other months) in the

some locations belonging to the southeast part where the trend

was determined. No significant trends were found in 340 of the

396 (33 locations x 12 months) months (33 locations x 12

months) for maximum WS (Figure 5). In the southeast (west)

region, the decreasing (increasing) trends in July and December

(January) are noteworthy.
3.2. Innovative polygon trend analysis
results

The graphs of the IPTA were obtained for 33 selected

locations. A single plot for locations with similar characteristics

was presented to provide a summary presentation and ease of

review. Results were given for eight locations, two in each of the

four identified regions (Figures 6–9). Eight different locations

were preferred to evaluate different wind and wave parameters.

Trends for the months are seen in the IPTA charts visually.

However, when querying the trend assets of the months the

relative error percentage (a) between two half series is required to
be greater than 5%, as mentioned in the method section 2.3.2.

Tables 1–4 are considered a significant trend only in the months

that meet this condition. The IPTA graphs for the monthly mean

SWH are shown in Figure 6. Significant trends detected in mean

SWH are shown in Table 1. While a narrowing polygon structure

was observed in the summer months at the locations in the

southeast (locations 1-9) region, a wider polygon was

encountered in the spring and winter months (Figure 6). The

lowest (highest) SWH values are observed in the summer

(winter) months when the one-year behavior is examined.

Especially the increasing (decreasing) trends in March

(November) are stronger in terms of distance to the 45° line.

The transitions between February-March-April and October-

November-December are large compared to the others. In

October, November, and December, the transitions were

increasing. They still remained in the decreasing trend region
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FIGURE 3

Mann-Kendall results for monthly maximum SWHs during 42 years between 1979 and 2020.
FIGURE 2

Mann-Kendall results for monthly mean SWHs during 42 years between 1979 and 2020.
FIGURE 4

Mann-Kendall results for monthly mean WSs during 42 years between 1979 and 2020.
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FIGURE 5

Mann-Kendall results for monthly maximum WSs during 42 years between 1979 and 2020.
FIGURE 6

IPTA results for monthly mean SWHs during 42 years between 1979 and 2020.
FIGURE 7

IPTA results for monthly maximum SWHs during 42 years between 1979 and 2020.
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because mean SWH values in the second half were lower than in

the first half. Transitions between February–May period show a

decrease. At locations 11 and 15 in the northeast region (locations

10-16), a significant increase (decrease) was observed for the

mean SWH values in the January-March period (December). In

the northwest (locations 17-24) locations, two separate loops

were formed for low and high values. Transitions from July to

August were from decreasing area to increasing area. A

significant decreasing trend was observed for May and July and

the October-December period (locations 25-33). The significant

decreases in value in the second half of May, July, November, and

December caused a complex structure in the transition between

the months, with five different polygons. The IPTA graphs

between successive months for the monthly maximum SWH

were presented in Figure 7. Table 2 shows significant detected
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trends in maximum SWH. Similar to the mean SWH, the highest

(lowest) values were observed in the winter (summer) months for

all locations. A wide loop starting from October and ending in

March-April was formed at the upper values. Strong increasing

(decreasing) trends were observed in March (May) in most

locations. For maximum SWH, a complex structure was

observed in which more than two loops were formed.

IPTA graphs for monthly mean WS were presented in

Figure 8. It was observed that the data of the waves in the two

locat ions represent ing the regions were genera l ly

compatible with

each other; this was not the case for the wind data. For

example, increases (insignificant) occurred for almost all months

in location 2 in the southeast, but a decreasing trend occurred in

location 7 in the same region for almost all months. This
FIGURE 8

IPTA results for monthly mean WSs during 42 years between 1979 and 2020.
FIGURE 9

IPTA results for monthly maximum WSs during 42 years between 1979 and 2020.
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situation can be seen in Table 3. However, the largest (smallest)

mean WS occurred in winter (summer) months, similar to wave

data. For high values in the northern locations, loops were seen

starting in October and ending at the transition of March-April,

but a more complex structure emerged in this range in the south.

The transitions between months in the mean WS increase

(decrease) from August (January) to December (May). The

trend increases at location 15 in the northeast, and decreases

in trend at location 30 in the southwest were very severe.

IPTA graphs for monthly maximum WS are presented in

Figure 9. There were severe increases (decreases) in maximum
Frontiers in Marine Science 09
WS in location 2 (location 7) in the southeastern part. Table 4

shows that the first three locations 1-3 and the others 4-9 in

this region showed opposite trends. As in other wind and wave

parameters, high values in maximum WS occurred in winter

and low values in summer. The formation of narrower

polygons compared to other parameters reveals that the

months show similar trend behavior. Transitions between

months were in increasing (decreasing) direction between

August and December (February and May). In the graphs of

the eight stations examined, there are generally increasing

trends except for location 7. However it can be seen from
TABLE 1 Comparison of trend test results from different methods for mean SWH.

Parameter Region Location Mann-Kendall IPTA

Months Months

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
SWH (mean) SOUTHEASTERN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 1 0 0 -1 -1

2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 -1 1 -1 1 0 -1 -1 -1

3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 -1 -1 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 0 -1 -1 0

5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 -1 0 0 0 -1 0

6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 0 -1 -1 0

7 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 1 0 -1 0 -1 0 -1 0 -1 0

8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 -1 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 0 -1 0 -1 0 -1 -1 -1 -1

NORTEASTERN 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 0 0 -1 0 -1 0

11 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 -1 0 -1 -1

12 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 -1

13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 -1 0 0 0 -1 -1

14 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 -1 0 0 1 1 0 -1 -1

15 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 -1 1 0 1 1 1 0 -1

16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 -1 0 0 1 1 1 -1 -1

NORTHWESTERN 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 -1 0 0 0 -1 -1

18 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 -1 0 -1 1 1 1 -1 0

19 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 -1 0 -1 1 1 0 -1 0

20 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 -1 0 -1 1 1 0 -1 0

21 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 -1 0 0 1 1 0 -1 0

22 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 -1 0 0 1 1 0 -1 0

23 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 -1 0 -1 1 1 0 -1 0

24 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 -1 0 0 1 1 0 -1 0

SOUTHWESTERN 25 0 0 0 0 0 0 0 1 1 0 -1 0 0 0 -1 0 -1 0 -1 1 1 0 -1 -1

26 0 0 0 0 0 0 0 1 1 0 0 0 0 0 -1 1 -1 0 -1 1 1 -1 -1 -1

27 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 -1 1 -1 1 0 1 1 -1 -1 -1

28 0 -1 0 0 -1 0 0 0 0 0 0 0 0 -1 -1 1 -1 0 -1 0 1 -1 -1 -1

29 0 0 0 0 -1 0 0 1 0 0 0 0 0 -1 -1 1 -1 1 -1 0 1 -1 -1 -1

30 0 0 0 0 -1 0 0 0 0 0 -1 0 -1 -1 -1 0 -1 1 -1 0 0 -1 -1 -1

31 -1 0 0 0 -1 0 0 0 0 0 -1 -1 -1 -1 -1 0 -1 0 -1 0 0 -1 -1 -1

32 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 1 -1 0 -1 0 0 0 -1 -1

33 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 -1 1 -1 1 0 0 -1 -1
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Akçay et al. 10.3389/fmars.2022.930911
Table 4 that the relative error percentage of most of them is less

than 5%.
4. Discussion

The monthly analysis findings for mean SWH using the

Mann-Kendall test and IPTA were presented in Table 1. The
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Mann-Kendall test revealed significant trends in 45 of the 396

months (33 locations x 12 months) studied and these results

mostly were consistent with the IPTA. In 220 of the 396

months examined, the IPTA approach revealed trends. The

IPTA identified a decreasing trend in most locations in May,

July, November, and December; the Mann-Kendall test only

detected a trend in a small number of locations. The

northwestern, where increasing trends were detected in

August and September, is where the two approaches
TABLE 2 Comparison of trend test results from different methods for maximum SWH.

Parameter Region Location MK IPTA

Months Months

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
SWH (max) SOUTHEASTERN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 1 0 1 -1 0 0 -1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 -1 0 0 -1

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -1 1 -1 0 0 0

5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -1 1 -1 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 -1 1 -1 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 1 -1 1 -1 0 0 -1

8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0

9 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 1 0 1 -1 1 0 0

NORTEASTERN 10 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 0 -1 1 -1 0 -1 1 -1 -1

11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 -1

12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 -1 0 0 1 0 0 0 -1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 -1 1 0 1 0 0 0 0

15 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 -1 1 0 1 0 1 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 -1 0 0 1 0 1 0 -1

NORTHWESTERN 17 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0 -1 0 0 1 -1 0 -1 0

18 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 1 0 -1 -1 1 1 -1 1 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1 0 1 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 1 0 1 0 0

21 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 -1 0 1 1 1 1 0 0

22 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 -1 0 0 1 1 0 -1 0

23 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 -1 0 0 1 1 0 0 0

24 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 -1 -1 0 1 1 1 -1 0

SOUTHWESTERN 25 1 0 0 0 0 0 0 1 1 0 0 0 1 1 -1 1 -1 -1 0 1 1 0 -1 0

26 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 1 -1 -1 0 1 1 0 -1 0

27 1 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 1 -1 -1 0 1 1 0 -1 1

28 1 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 1 -1 -1 0 1 1 0 0 0

29 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 -1 0 0 1 1 0 -1 0

30 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 1 -1 -1 -1 0 0 0 -1 1

31 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 1 -1 0 -1 0 -1 1 -1 0

32 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 -1 0

33 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 -1 0 0 1 0 1 -1 0
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produced identical results to a considerable extent. In

addition, the decreasing trends measured in May at

locations 28-32 in the southwest by the IPTA were also

determined by the Mann-Kendall test. The maximum

SWHs according to the two methods are presented in

Table 2. According to the Mann-Kendall test, increasing

(decreasing) trends were seen at 19 (5) months. These

trends overlapped very highly with the results obtained in

the IPTA.
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For mean WS, the percentages of increasing, decreasing,

and non-trending months analyzed in the Mann-Kendall test

are 9%, 18%, and 73%, respectively (Table 3). The trends

observed in this test were also detected by the IPTA. Most of

the months showed a decreasing trend according to two

methods at locations 4, 7, 28 and 30-31. Decreasing trends

in many months at locations 28-31 in the southwest were

remarkable according to both methods. In the Mann-Kendall

test, no trend was found in most of the months analyzed for
TABLE 3 Comparison of trend test results from different methods for mean WS.

Parameter Region Location MK IPTA

Months Months

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
WS (mean) SOUTHEASTERN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0

3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

4 0 0 0 -1 0 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0

5 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1

6 1 1 1 0 0 -1 -1 -1 0 -1 0 1 1 1 1 0 0 -1 -1 -1 -1 -1 0 1

7 -1 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 -1 0 0 -1 -1 -1 -1 -1 -1 -1 0 0

8 0 0 1 0 0 0 -1 -1 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0

9 -1 0 0 -1 0 0 -1 0 0 0 -1 -1 -1 -1 0 -1 -1 0 0 0 -1 -1 -1 -1

NORTEASTERN 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1

11 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 -1 0 0 -1 -1 -1 -1 -1

12 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 -1 0 -1 0 0 0 0 -1

13 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 -1 0 -1 0 1 0 -1 -1

14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 1 0 -1 0

15 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0

16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 -1

NORTHWESTERN 17 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 1 0 -1 0 -1 0 0 0 -1 -1

18 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0

19 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0

20 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 -1 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0

22 0 0 0 0 0 -1 -1 0 1 0 0 0 0 0 0 0 0 -1 0 0 1 0 -1 0

23 0 0 0 0 0 0 -1 1 1 0 -1 0 0 0 0 0 0 0 -1 0 1 0 -1 0

24 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 0

SOUTHWESTERN 25 0 0 0 0 0 0 0 1 1 0 -1 0 0 0 0 0 0 0 -1 0 1 0 -1 0

26 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 -1

27 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 -1

28 0 -1 -1 0 -1 -1 0 0 0 -1 -1 -1 0 -1 0 0 -1 0 -1 0 0 -1 -1 -1

29 0 0 0 0 -1 0 0 0 0 -1 -1 -1 0 0 0 0 -1 0 0 0 0 -1 -1 -1

30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

31 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1

32 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

33 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 -1 0 0 0 0 0 0 1
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maximum WS, whereas an increasing (decreasing) trend was

observed in 4% (10%) of the months (Table 4). These trends

were also detected by the IPTA.

Considering the findings of the mean and maximum values,

there was no 100% agreement for the wave data, and in certain

months, contrary patterns were seen (Tables 1, 2). Most locations

exhibited an increasing trend for mean and maximum SWH in

March and August, but in May, they showed a decreasing trend. The

mean andmaximumdata analysis results weremore compatible than

the wave data in examining wind data (Tables 3, 4). There was,

however, no exact resemblance. Mean and maximum WS showed
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decreasing trends inmostmonths at locations 4, 7, 9, 30-31. Although

there was no 100% agreement between the results of mean winds and

waves, the months of March, May, November, and December were

typically similar. November showed decreasing trends in most of the

locations. Tables 1, 3 also show themonths when the mean wind and

wave characteristics produced opposite results. The opposite and

identical directional results were obtained for the maximumWS and

SWH (Tables 2, 4). However, practically all locations, particularly in

May, exhibited a decreasing trend in maximum WS and SWH.

A few studies in which parametric and nonparametric

methods were applied to waves and winds in the Black Sea,
TABLE 4 Comparison of trend test results from different methods for maximum WS.

Parameter Region Location MK IPTA

Months Months

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
WS (max) SOUTHEASTERN 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

2 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0

4 0 0 0 0 0 0 -1 0 -1 0 0 -1 0 0 0 -1 -1 -1 -1 0 -1 -1 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 -1 0 0 0

6 0 0 0 0 0 -1 -1 -1 -1 0 0 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

7 -1 -1 0 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0

9 -1 0 0 0 0 0 -1 0 0 0 0 -1 -1 -1 -1 0 -1 0 -1 0 0 0 -1 -1

NORTEASTERN 10 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 -1 -1 0 0 0 0 0 -1 -1

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 -1 -1 -1 0 0 -1

12 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 -1

13 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 0 0 -1

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0

15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 -1 0 0 0 -1 0

NORTHWESTERN 17 -1 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 -1 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 1 0 1 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 1 0 1 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0

21 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

22 1 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 1 1 0 0 0

23 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 1 1 0 0 0

24 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 -1 0 0 1 1 0 0 0

SOUTHWESTERN 25 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

26 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 -1 0 1 1 0 0 0

27 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 1 1 0 0 0

28 0 0 0 0 -1 -1 0 0 0 0 0 0 1 -1 0 0 -1 -1 0 0 0 0 0 0

29 0 0 1 0 0 0 0 0 0 0 0 0 1 -1 1 1 0 0 0 0 0 0 0 0

30 0 -1 0 0 -1 -1 -1 -1 -1 0 0 0 0 -1 0 0 -1 -1 -1 -1 -1 0 0 -1

31 0 0 0 0 -1 0 -1 -1 -1 0 0 0 0 -1 0 1 -1 0 -1 -1 -1 0 -1 -1

32 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 -1 0 0 0 0 1 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0
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although there is no study in which the IPTA was applied to

wave and wind data. Aydoğan and Ayat (2018) investigated the

long-term trends of SWH in the Black Sea, both on a basin

average and spatial basis, on an annual and monthly basis.

Aydoğan and Ayat (2018) detected decreasing trends in the

southeast (western) of the Black Sea in July (November) similar

to the results of the IPTA method in this study. In May and

December, Aydoğan and Ayat (2018) detected significant trends

at less than the 90% confidence level in the Black Sea region. In

this study, while the Mann-Kendall test detected a trend in very

few locations for May and December (95%), the IPTA detected a

decreasing trend in most locations. Aydoğan and Ayat (2018)

analyzed the MIKE 21 SW model simulations between 1979 and

2016 using the ERA-Interim winds. The present study used

SWAN wave model simulations between 1979 and 2020 using

CFSR winds. It is therefore estimated that the reason for the

inconsistency between the present study and the study

performed by Aydoğan and Ayat (2018) for Mann Kendall

trend test results may be due to the use of different reanalysis

datasets, different physical parameterizations, and numerical

settings usage in third-generation models and the difference in

data lengths of the wave model used. Çarpar et al. (2020)

spatially investigated the long-term trends of monthly mean

and 95% percentile WSs in the Black Sea between 1979 and 2016.

Results of ERA-Interim and CFSR winds were compared.

According to the CFSR, increasing trends were seen in the

southeast in March, June, and September. According to Mann-

Kendall and IPTA in this study, trends were detected in very few

locations for the southeast of the Black Sea in January, February,

and March. In September (Çarpar et al., 2020), an increasing

trend was determined, especially in the northern and eastern

regions, according to the CSFR. This study detected increasing

trends, especially in locations 18-27 in September, according to

both methods. The reason why this study does not fully agree

with Çarpar et al. (2020) may be the different data intervals.

The IPTA approach, according to the findings of this study,

can broadly match the trends observed by the Mann-Kendall

test. On top of it, the IPTA detected trends in more locations and

months; this shows that this new approach to trend analysis is

more sensitive. The past studies showed that the IPTA can

successfully detect the trends detected by the Mann-Kendall test

and give more sensitive results (Şan et al., 2021; Akçay et al.,

2022). Innovative graphical ways can provide both visual

numerical and verbal comments in addition to trendsetting

success. IPTA is a new method in the literature that provides

information about trend transitions between successive parts of

a time series and determining the trend. No other study applies

the IPTA to wave and wind data. By applying this method to

mean and maximum wave and wind data, the one-year behavior

of these data was observed with the help of polygons. Monthly

transitions (January-February, February-March, etc.) were

examined, and trends between consecutive months were also

discovered. In this way, besides questioning the existence of the
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trend in the examined months, its relationship with other

months was obtained with the help of polygon. In the graphs

of the mean SWHs, a polygon structure can be noticed, which

narrows in the summer and widens in the spring and winter. The

polygon graphs of the maximum SWHs had a more complex

structure. The maximum WSs polygon graphs were narrower

than the other variables, indicating that the behavior of the

months was similar.
5. Conclusions

The results of this study have distinguished IPTA from the

Mann-Kendall test, as IPTA detected more trends. The monthly

mean and maximum SWH and WS did not show mostly a trend

according to the Mann Kendall Test. Besides, the trends detected

by the Mann-Kendall test were also caught by the IPTA at a very

high rate. Considering the IPTA, in the analysis of mean SWH, the

decreasing trends in the May, July, and November-December

periods draw attention in most locations. In the analysis of

maximum SWHs, most of the stations in the east showed an

increasing trend in March, June and August, while all locations in

the west showed a decreasing trend in May. Most of the months

showed decreasing trends in the mean andmaximumWS series at

a few eastern locations. Based on a yearly cycle, the lowest

(highest) mean SWH was seen in summer (winter); this is also

valid for other variables: maximum SWH, average WS, and

maximum WS. The transitions between months with the IPTA

method showed that there are no temporal shifts, one of the effects

of climate change in the meteorological and thus wave events.

Wind or wave trends could be different for the same location and

month due to distant storms. Significant wind trends in the same

locations do not always coincide with SWH trends. This situation

may be caused by the main wind direction and the waves that

develop in reaction to the wind direction. It is thought that it will

be useful to increase the number of locations and also analyze

trends of the daily, annual and seasonal mean and maximum

wave parameters.
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Akçay, F., Kankal, M., and Şan, M. (2022). Innovative approaches to the trend
assessment of streamflows in the eastern black Sea basin, Turkey. Hydrolog. Sci. J.
67 (2), 222–247. doi: 10.1080/02626667.2021.1998509
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Çarpar, T., Ayat, B., and Aydoğan, B. (2020). Spatio-seasonal variations in long-
term trends of offshore wind speeds over the black sea; an inter-comparison of two
reanalysis data. Pure Appl. Geophysics. 177 (6), 3013–3037.

Cavaleri, L., Fox-Kemper, B., and Hemer, M. (2012). Wind waves in the coupled
climate system. Bull. Am. Meteorolog. Soc. 93 (11), 1651–1661. doi: 10.1175/BAMS-
D-11-00170.1
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Akçay et al. 10.3389/fmars.2022.930911
Douglas, E. M., Vogel, R. M., and Kroll, C. N. (2000). Trends in floods and low
flows in the united states: impact of spatial correlation. J. hydrology. 240 (1-2), 90–
105. doi: 10.1016/S0022-1694(00)00336-X

Eldeberky, Y. (1996). Nonlinear transformation of wave spectra in the nearshore
zone (Ph.D. thesis) (The Netherlands: Delft University of Technology).

GEBCO (2014). British Oceanographic data centre, centenary edition of the
GEBCO digital atlas [CDROM]. (Liverpool: Published on behalf of the
Intergovernmental Oceanographic Commission and the International
Hydrographic Organization).
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