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Tidal variation shaped
microplastic enrichment
patterns in mangrove blue
carbon ecosystem of northern
Beibu Gulf, China
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Yejin Lu2 and Haoqi Liu2

1Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable
Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China,
2College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China
Mangroves are considered to be a sink for microplastics (MPs) due to their

unique characteristics. Previous studies mainly focused on the spatial

distribution of MPs, but few researchers have addressed the influence of tidal

variation on this distribution, especially since the MP total number in

mangroves was unknown. In this study, surface sediment samples were

collected in mangroves from the Beibu Gulf, South China Sea, and the

abundance, composition, and number of MPs were investigated. The results

showed that MPs were widely present in all mangrove sediment samples, with

abundances ranging from 26.67 ± 9.43 to 239.94 ± 37.80 items/kg. The

distribution of MPs was heterogeneous among different sampling sites, with

the highest levels in the Shankou (SK) area. The MP abundance in the same

mangrove forest gradually increased from the low tidal zone to the high tidal

zone, with the enrichment factor ranging from 1.50 to 4.00. TheMP abundance

was significantly correlated with particulate organic carbon (POC) (n = 12, R =

0.664, p < 0.05). Results showed that mangroves had an interception effect on

MPs and factors affecting MP distribution in mangrove sediments included not

only tides but also human activities, such as aquaculture, agriculture, and

residential life. Finally, this paper estimated the MP total number in

mangroves at different sampling areas and tidal zones, and the middle tidal

zone was considered to be more accurate for MP pollution assessment

in mangroves.
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1 Introduction

The durability and high resistance to degradation of plastics

make them an attractive material; however, the tension between

human development and environmental protection is increasing,

which inevitably leads to environmental pollution (Ma et al., 2021).

With the 2019 coronavirus disease epidemic, the consumption of

plastics increases dramatically (Govender et al., 2020), but plastics

degrade relatively slowly in the ocean and environmental problems

increase (Barnes et al., 2009; Sivan, 2011). Plastics enter themarine

environment in various sizes and account for 80%–85% of total

marine litter (Derraik, 2002; UNEP, 2016). Plastic particles formed

when large particles are broken down by ultraviolet light are

referred to as secondary microplastics (MPs) (Thompson et al.,

2004; Thompson et al., 2009; Andrady, 2017). Primary MPs are

small directly manufactured plastics (Cheung and Fok, 2017), and

they include small particles added to everyday products (Napper

et al., 2015; Auta et al., 2017). In 2008, at the first International

Microplastics Symposium hosted by the National Oceanic and

Atmospheric Administration (NOAA), MPs were defined as

plastics with a diameter/size of plastics smaller than 5 mm

(Arthur et al., 2008). In the past decade, most of the research

attention has been focused on the marine environment (Barboza

and Gimenez, 2015; Wang et al., 2022; Zhang et al., 2022a), rivers,

and estuaries (Zhao et al., 2015; Gray et al., 2018; Mai et al., 2019),

freshwater and drinking water (Law et al., 2014; Koelmans et al.,

2019) in the distribution characteristics, transport, and fate ofMPs.

However, surveys have rarely been conducted at the interface

between water and land (e.g., mangroves, tidal flats, and

salt marshes).

Mangroves cover 0.5% of the world’s coastal areas and are one

of the most common ecosystems at the land–sea interface (Alongi,

2014; Li et al., 2019). In addition, mangroves play a key role in

providing food and habitat for a variety of marine and terrestrial

organisms, reducingmarine pollution, and protecting coastal areas

from the harmful effects of natural hazards such as hurricanes and

tsunamis (Kathiresan, 2003; Bayen, 2012; Kulkarni et al., 2018;

Deng et al., 2021), and their complex root systems like sieves can

impede water flow, thus allowing them to easily and adequately

capture and retain floating material (Martin et al., 2019). The

unique characteristics of mangrove ecosystems (such as high-

primary productivity and abundant organic carbon) have led to

the identification of mangrove ecosystems as important sinks for

various pollutants from both terrestrial and marine activities

(Bayen, 2012; Mohamed Nor and Obbard, 2014; Deng et al.,

2021). Mangroves serve as key blue carbon ecosystems, which are

located in the intertidal and sub-tidal zones where they are exposed

toMP pollution (Huang et al., 2021). Previous reports have shown

that blue carbonecosystemshave thepotential to captureMPs from

surface sediments and POCs (Furukawa et al., 1997; Kristensen

et al., 2008;Huanget al., 2021).Mangrovesnotonly cleanand retain

pollutants in general but also have an ecological interception effect
Frontiers in Marine Science 02
on MPs (Liu et al., 2022). The presence of mangrove plants can

modify hydrological conditions and affect the distribution and

separation of MPs in different tidal areas. Specifically, MPs of

different sizes, shapes, and sinking rates may have different

distribution patterns in different intertidal zones of mangroves

(Waldschläger and Schüttrumpf, 2019; Melkebeke et al., 2020;

Duan et al., 2021). Studies on mangrove MP pollution have

attracted attention. From 2015 to date, the literature studying MP

pollution in mangroves has risen at a rate of 1.5–2 times per year

and, today, there aremore than 700 publications.However, current

studies on mangrove MPs focus on abundance and spatial

distribution, but there is a lack of studies on mangrove MP load

and its influencing factors.

The Beibu Gulf is located in the northwestern part of the

South China Sea, from the Leizhou Peninsula, Qiongzhou Strait,

and Hainan Island to Vietnam, and northward to the coast of

Guangxi (Zhang et al., 2018; Xue et al., 2020). The mangroves in

the Beibu Gulf are the second largest mangrove area in China,

accounting for more than 37% of the total mangrove area in

China (Jia et al., 2015), and are the richest area of mangrove

species in China (He et al., 2007; Gong et al., 2019). Nevertheless,

with rapid industrialization and urbanization, considerable

industrial and municipal sewage is discharged into Beibu Gulf.

As a semi-enclosed bay, Beibu Gulf has a weak self-purification

capability. In previous studies, organic pollutants such as

antibiotics, polychlorinated biphenyls, and organophosphate

esters have been found in the Beibu Gulf (Zheng et al., 2012;

Zhang et al., 2014; Zhang et al., 2020d) as well as MPs (Zhu et al.,

2019; Xue et al., 2020; Zhang et al., 2020a; Zhang et al., 2020b).

The diverse industries located along with the coastal areas,

frequent shipping activities, the marine aquaculture could

constitute a significant source of MP pollution in mangroves.

Conducting relevant studies can help to understand the

influence of tides on mangrove MP retention and provide

theoretical basis and scientific support for assessing and

detecting MP pollution in mangroves in Beibu Gulf.

To bridge the knowledge gap and provide an extensive

overview of the MP contamination in mangroves, this study aims

(1) to investigate the abundance, characteristics, diversity, and

spatial distribution characteristics of MPs in different mangrove

surface sediments; (2) to investigate the distribution patterns of

MPs in different intertidal zones of mangrove forests; (3) to study

the influencing factors ofMPs inmangroves; (4) and to estimate the

load of MPs in different sampling sites from the Beibu Gulf.
2 Material and methods

2.1 Study areas and field investigation

Mangroves, located in the river basin or estuary of the

northern Beibu Gulf, South China Sea, were selected as the
frontiersin.org
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target areas in this study. The details of sampling sites are shown in

Figure 1 (21°25′–21°41′N, 108°10′–109°46′E) and Supplementary

Table 1. The Lianzhou Bay (LZB) and SK are both located in Beihai

city. Among which, the LZB is in the Nanliu river estuary, which is

the largest river in Guangxi Province, whereas SK is the largest

mangrove reserve in Guangxi Province, and there are abundant

aquaculture ponds around it. The Maowei Sea (MWS) and

Qinzhou Port (QZP) are both located in Qinzhou city. The MWS

is close toQinjiang river estuary and the intensive aquaculture area,

whereas QZP is in the tourist areas of Qinzhou and also close to

Qinzhou Port. The mangrove forest areas involved in LZB, MWS,

QZP, and SK are 7.34 km2 (Li et al., 2018a), 22.87 km2 (Jia et al.,

2021), 2.00 km2 (Huang, 2017), and 9.22 km2 (Jia et al., 2021),

respectively (Figure 1).

In each sampling area, an intertidal section was selected

along the vertical coast, and surface sediment samples were

collected at the high (landward), middle (the midpoint of the line

between the seaward sampling site and the landward sampling

site of mangrove forests), and low tidal zones (seaward) of the

mangrove forests. The separation among sampling sites in each

section ranged from 33 to 763 m (distance away from the land),

depending on the length of the mangrove forest, in each locality

(the GPS was used to locate the middle point of each mangrove

when we collected the samples). Samples from each intertidal

section were collected during the lowest tidal period. In the

meanwhile, to ensure that landward points were also impacted

by the current tide, the entire sampling zone in each location was

within the scope of high tidal line. Two separate 1.5 m × 1.5 m

quadrats in each sampling site were set as replicates, with a

distance of approximately 2 m between each replicate. Surface

sediment (0–5 cm) was gathered with a stainless-steel grab

sampler and then stored in a clean aluminum box. Finally, the
Frontiers in Marine Science 03
entire sampling was completed in October 2020, and n =24 (12

sites × 2 replicates) surface sediment samples were obtained for

further analysis.
2.2 Extraction and identification
of microplastics

Extraction and identification of MPs in sediment were

modified by prior methods (Masura et al., 2015), briefly: The

sediment samples were first homogenized in an aluminum tray

and then dried in an oven at 75°C. To avoid background

contamination, the samples were covered with aluminum foil

until dry. A 150-g sediment sample was taken in a 1 L of beaker,

and a prepared 450 ml of sodium chloride solution (density 1.2

g/cm3) was poured into the beaker containing the sediment

sample, stirred thoroughly for 5 min, and then left to stand for

15 min until the suspended solids were separated from the liquid

phase. And then, the upper liquid layer was passed through a 45-

μm stainless steel sieve, and the residue on the sieve was washed

three times with ultra-pure water and then transferred to a

250 ml of beaker. To dissolve the natural organic matter in the

water sample, 90 ml of 30% H2O2 and 90 ml of 0.05 M Ferrous

Sulfate solution were added to the beaker containing the sample.

The beaker was then heated to 75°C on a hot plate for 12h and

cooled at room temperature (25°C) for 24h. In the next step, the

samples were filtered through a 10-mm cellulose acetate filter

membrane under a vacuum pump and covered with an

aluminum membrane. The filter membranes were then dried

in an oven at 60°C for further analysis.

The collected MPs were visually inspected under a

stereomicroscope (SMZ1270, Nikon, Tokyo, Japan) with a
FIGURE 1

Map of mangrove sampling sites. (Note: the yellow triangles represents low, middle and high tidal sampling sites in each intertidal section).
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maximum size of 40 × 40 for systematic calculation of MPs

(Masura et al., 2015). The number of MPs potentially present in

each photograph was calculated manually, collated the data, and

then classified according to different standardized sizes, colors,

and shapes (Li et al., 2021). MP abundance was calculated as

items/kg dry sediment weight (items/kg d.w). MPs were

classified by shape (fiber, fragment, and film), color (black,

multicolored, blue, yellow, red, transparent, pink, green, and

purple), and size (length: 45–100, 100–330, 330–500, 500–1,000,

1,000–2,000, 2,000–5,000 mm). The width of each size class was

used as a standard. A micro-Fourier transform infrared

spectrometer (Frontier, PerkinElmer, Waltham, MA, USA)

was used to identify suspicious MPs. Suspicious MPs identified

by visual inspection were randomly selected and verified and

were the most common type. These spectra were compared to

the spectrogram on the instrument with a database for

validation. Matched spectra with a match rate higher than

70% were accepted (Gao et al., 2021).
2.3 Measurement of particulate
organic carbon

The sediment was dried in an oven at 60°C for 12h, and the

dried sediment was weighed for its volume to measure the

density of its dried sediment. The dried sediment was burned

in a muffle furnace at 500°C for 4h, and the loss of ignition has

been determined (Huang et al., 2021).
2.4 Enrichment index and diversity index
of microplastics

The enrichment index (EI) is the ratio of MP abundance at

high tide to middle or low tides. EI was calculated using

Equation (1) (Huang et al., 2021). EI > 1 indicates that MPs

were enriched in high tide, and EI < 1 indicates that MPs were

enriched in middle or low tides.

EIm = Ah
Am

or EIl =
Ah
Al

(1)

where EIm is the EI at middle tide, EIl is the EI at low tide, Ah is

the MP abundance at high tide, Am is the MP abundance at

middle tide, and Al stands for the MP abundance at low tide.

To estimate the complexity of MP types and sources across

intertidal zones in mangrove sediments, the diversity index

D’(MPs) was calculated based on Equation (2) (Jost, 2006;

Wang et al., 2019; Huang et al., 2020; Huang et al., 2021). In

conclusion, D’(MPs), that is, size D’(MPs), color D’(MPs), and

shape D’(MPs), were calculated based on shape, color, and size

features, respectively.
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x

y=1

Ny

N

� �2

(2)

where x is the number of MP categories,N is the total number of

MPs in a sample, andNy represents the number of MPs classified

as the yth type.
2.5 Quantifying the total number of
microplastics and inventory of
particulate organic carbon in the
mangrove sediment

A mathematical-statistical analysis of MP abundance and

POC from four sampling sites was conducted to quantify the

total amount of MPs and POC in the Beibu Gulf using Equations

(3) and (4).

Ni,j = Ai,j · Si  · ri,j · D (3)

POCi,j = Pi,j · Si · D (4)

where Ni,j (items) is the liability of MPs in mangrove sediment i

at the study tidal zone j, POCi,j (kg) is the inventory of POC in

mangrove sediment i at the tidal zone j, Ai,j (items/kg) is the

mean MP abundance in mangrove sediment i at the tidal zone j,

Pi,j (kg/km
3) is the average POC in mangrove sediment i at the

tidal zone j, Si (km
2) is the area of mangrove i, ri,j (kg/km3) is the

density of mangrove sediment i at the tidal zone j, and D (km) is

the sampling depth.
2.6 Tidal hydrodynamic data
determination

Previous studies showed that the periodic rise and fall of

seawater and the tidal range in this study area were very similar

from month to month (Zhang, 2009; Zhang et al., 2010; Yang

et al., 2018; Zhang et al., 2020c). To further analyze the influence

of tidal variation on the distribution of MPs, the tidal current

velocity and tidal range during the flood and ebb tides within 1

month were continuously monitored three times (during the

high, middle, and low tide periods, 24h each time). All the

measuring points were situated in the seaward waters close to

the objective mangrove forest. The interval from the first and

third monitoring was 15 days.

Three single-point current meters (Aanderaa DCS blue

5430) were used to measure current velocities. While

monitoring the tidal velocity, the ping number was set as 300

and the sound speed was 1.52 × 103 m/s. The tidal range was

obtained from the National Marine Data Center (http://mds.

nmdis.org.cn/pages/tidalCurrent.html).
frontiersin.org
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2.7 Statistical analysis

Station maps were created using Google Earth and Ocean

Data View, and mangrove areas were measured at four sites (LZB,

MWS, QZP, and SK). Data were analyzed using the software Excel

2019 and plotted using Origin 2022, including MP characteristics

(abundance, shape, color, size, and diversity) of mangrove

sediments. MP abundance and inventory were analyzed using a

one-way variance (ANOVA) analysis with SPSS28. MP size, color,

shape, and diversity were analyzed using two-way ANOVA

(station location and tidal area for two factors). The values were

considered statistically significant when p < 0.05 and p < 0.01

indicated high significance.
2.8 Quality assurance and quality criteria

Samples were collected based on the latest quality assurance

and quality control standards with stringent control measures in

place (Koelmans et al., 2019; Adomat and Grischek, 2020). First,

to avoid potential contamination, non-plastic laboratory tools

were used throughout the sample collection, extraction, and

identification process as far as possible. All solutions, including

ferrous sulfate and distilled water, were filtered through a 0.45-mm
cellulose acetate filter membrane before use. In all experiments,

three blank controls were used for each medium. The filtered

distilled water was used as a blank in the laboratory and processed
Frontiers in Marine Science 05
according to the same procedure used for the samples (Zhu et al.,

2021). The average blank MP sample contained an abundance of

26.67 items/kg, and the final corresponding MP data were

calibrated against the corresponding blanks.
3 Results

3.1 Microplastic pattern in different tidal
zones in the mangrove sediment

Variation in the MP abundance in mangrove forests was

shown (Figure 2). MPs were widely detected in all sediment

samples collected from 12 sites, with significant spatial variation

in both sampling areas and tidal zones (p < 0.05). A total of 303

MPs were identified in the mangroves. In addition, the abundance

of MPs was highly variable, ranging from 26.67 to 239.94 items/kg

of dry sediment, with the lowest abundance in QZP–L (26.67 ±

9.43 items/kg) and the highest in SK–H (239.94 ± 37.80 items/kg),

accounting for 2.51% and 22.57% of the total abundance,

respectively. In addition, except for this area of LZB, the

variation in the mean abundance of MPs in mangrove areas of

MWS, QZP, and SK varied: low tidal zone < middle tidal zone <

high tidal zone, for example, the meanMP abundance in SK at the

low, middle, and high tidal zones was 83.33 ± 23.57 items/kg,

116.66 ± 108.43 items/kg, and 239.94 ± 37.80 items/kg,

respectively. Significant increases in the MP abundance of 2.06-
FIGURE 2

Variation in microplastic (MP) abundance in the studied mangrove forests.
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fold and 2.88-fold were observed in the high tidal zone compared

to the middle and low tidal zones, respectively.

3.2 Microplastic characteristics, diversity,
and enrichment in different tidal zones in
the mangrove sediment

There was little size difference between the sampling areas and

tidal zones (p > 0.05) (Figure 3A), where 100–330 μmwas themost

abundant size category (mean percentage 29.37% ± 6.96%),

followed by 500–1000 μm (24.57% ± 10.61%). While 2000–5000

μm (7.07% ± 2.28%) had little contribution from MPs. One
Frontiers in Marine Science 06
hundred to 330 μm was the most abundant size category at the

high and middle tidal zones in this study; however, 500–1000 μm

was the most abundant size category at the low tidal zone.

MP color did not show significant differences between the

different sampling areas and tidal zones (p > 0.05) (Figure 3B).

Among all MPs that we studied, the most dominant color was

transparent (21.63 ± 6.16%), followed by blue (18.98 ± 6.60%),

multicolored (17.52 ± 4.25%), and green (16.34 ± 5.37%). All

other colors were below 10%.

Generally, there were no significant differences in the detected

MP shapes (fragment, film, and fiber) from various mangroves

forests (p > 0.05) (Figure 3C), among which fragments were the
A

B

C

FIGURE 3

Characteristic percentage variation of microplastics (MPs) in mangrove forests (A) size, (B) color, and (C) shape.
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most common shape, accounting for an average of 50.37 ± 13.16%

of all samples, followed by fibers (33.05% ± 11.25%) and films

(16.58% ± 5.29%), respectively. In most sampling areas, fragments

were the dominant part, for example, 62.61% ± 24.29% in LZB,

49.70% ± 22.17% in MWS, 56.89% ± 11.65% in SK, except that

fibers were dominant in QZP (48.54% ± 32.21%).

The typical MPs trapped in surface sediments of mangrove

forests under micro-Fourier Transform infrared spectroscopy

(FTIR) were shown in Figure 4. Four main polymer types were

found in selected samples of multicolored fragments: (a) red

fragment, (b) blue fragment, (c) blue film, and (d) blue fiber; the

main types included polyethylene (a), polypropylene (b),

polyethylene (c), and cellulose (d).

Diversity of theMPsize index, that is, sizeD′ (MPs), showedno

significant differences (p > 0.05) among the sampling areas

(Table 1), with the size D’ (MPs) value of 0.67 ± 0.08 in LZB, 0.68

±0.07 inMWS, and0.71±0.06 in SK, except the sizeD′ (MPs)value

in QZP (0.61 ± 0.10) was significantly lower than that in SK.

Diversity of MP color indices, that is, color D′ (MPs), also did not

show significant differences in all four sampling zones (p > 0.05),

with color D′ (MPs) values of 0.73 ± 0.04 in LZB, 0.64 ± 0.05 in

MWS, and 0.70 ± 0.00 inQZP, except that color D′ (MPs) values in

SK (0.76±0.02)were significantly higher than inMWS.Diversity of

the MP shape index, that is, shape D′ (MPs), did not show
Frontiers in Marine Science 07
significant differences among the various sampling areas (p >

0.05), with the shape D′ (MPs) value of 0.45 ± 0.15 in LZB, 0.43 ±

0.09 inMWS, and 0.45 ± 0.01 in SK, except that the shapeD′ (MPs)

value in LZBwas significantly higher than that inQZP (0.35±0.13).

For all studied mangrove forests, their EIs were greater than 1

and their enrichment indices range from 1.50 to 4.00. Except for

LZB, the enrichment indices ofQZP,MZS, andSKwere lower at the

middle tidal zone than at the low tidal zone. For example, the EIs of

QZP–L, and QZP–Mwere 4.00 and 3.20, respectively.
3.3 Microplastic total number in different
tidal zone in the mangrove sediment

Based on Equation (3), the MP total number and their average

values at different tidal zones for the studied mangrove sediments

were estimated. Results showed that MP total number was

significantly different among studied mangroves and tidal zones

(p < 0.05).Among all sampling areas, themeanMP total number in

MWSwas the largest (40.44%),whileQZPwas the smallest (3.19%)

(Figure 5). Similar toMPabundance, theMPtotal number formost

studiedmangrove forests, except LZB, increased gradually from the

low tidal zone to thehigh tidal zone. Inaddition, in termsof the ratio

of the MP total number to its mean, the values were closest to 1 at
FIGURE 4

Typical microplastics (MPs) trapped in surface sediments of mangrove forests. (A) red fragment, (B) blue fragment, (C) blue film, and (D) blue fiber.
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the low tidal zone in the LZB and middle tidal zones in the MWS,

QZP, and SK, with values of 0.99, 0.92, 0.61, and 0.81, respectively.
4 Discussion

4.1 Abiotic factors influencing the
microplastic accumulation in Beibu Gulf

4.1.1 Tidal influence
MPs were detected in surface sediments from the same

mangrove forest, and their levels varied greatly at different
Frontiers in Marine Science 08
tidal zones. Zhang et al. (2022a) reported that some of the

plastic litters may have migrated from low and mid-tide areas to

high tide areas with tidal changes. In the present study, the MP

content was the highest at the high tidal zone in all sampling

areas, with EI values of 1.50 to 4.00. Moreover, the MP

abundance in mangroves generally tended to decrease from

the high tidal zone to the low tidal zone, which also indicated

the interception of MPs by mangroves. To study the influence of

tidal velocity on the distribution of MPs in different tidal zones

of mangroves, the average flood and ebb tidal current velocity of

the seaward waters close to the objective mangrove forest was

monitored, and the results were listed in Table 1. Based on the
FIGURE 5

The microplastic (MP) total number and their percentages for different mangrove forests at different tidal zones.
TABLE 1 Microplastic (MP) shape, color, size diversity indices (M ± SD) in studied mangrove forests (M ± SD) and the current velocity at the flood
and ebb tides (cm/s).

Sampling sites enrichment shape D′(MPs) color D′(MPs) size D′(MPs) Flood tide Ebb tide
LZB–L 1.50 0.75 ± 0.03 0.70 ± 0.06 0.62 ± 0.03 0.16 0.25

LZB–M 2.44 0.59 0.78 0.38

LZB–H / 0.68 ± 0.03 0.70 ± 0.03 0.36 ± 0.05

MWS–L 2.33 0.69 ± 0.03 0.58 ± 0.19 0.33 ± 0.47 0.34 0.31

MWS–M 1.75 0.61 ± 0.11 0.67 ± 0.02 0.52 ± 0.20

MWS–H / 0.74 ± 0.03 0.66 ± 0.13 0.44 ± 0.12

QZP–L 4.00 0.49 ± 0.25 0.69± 0.04 0.46 ± 0.03 0.93 1.05

QZP–M 3.20 0.68 ± 0.02 0.70 ± 0.05 0.20 ± 0.29

QZP–H / 0.65 ± 0.10 0.70 ± 0.08 0.38 ± 0.39

SK–L 2.88 0.65 ± 0.11 0.76 ± 0.06 0.44 ± 0.17 0.50 0.43

SK–M 2.06 0.71 ± 0.06 0.74 ± 0.10 0.46 ± 0.03

SK–H / 0.76 ± 0.02 0.77 ± 0.08 0.45 ± 0.05
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obtained data, we conducted a linear fitting for the MP EI values

and the tidal velocity (Figure 6). The results showed that the MP

EI values at both middle and low tidal zones showed a significant

positive correlation trend with the flood and ebb tide velocity,

indicating tide velocity was one main factor that influenced the

variation of MP total number in different tidal zones. The reason

could be that the high and low tidal zones could disturb the

sediments at the bottom of mangrove forests and release MPs

into seawater (Liu et al., 2022); however, since the sea level was

higher at the high tidal zone, the transport distance of MPs in

mangroves increased. Consequently, the turbulence disappeared

or weakened and the water velocity slowed down, so the

hydrodynamics was poor, which easily led to the accumulation

of MPs. Nevertheless, at the low tidal zone, the continuous high-

velocity water flow hindered the deposition of MPs and plankton

due to the lower sea level and the weaker barrier force of the river

(Nguyen and Luong, 2019), and the suspended particulate

matter sank easily as the turbulence dissipated or decreased

(Furukawa and Wolanski, 1996). However, it was worth noting

that although the MP total number of LZB was highest at the

high tidal zone, the MP total number at the low tidal zone was

more than that at the middle tidal zone, so the EI index of LZB-L

was larger. In addition, the large EI index but the small tidal

velocity of LZB indicated that the variation of MP total number

in mangroves was influenced not only by tides but also by other

influencing factors.

4.1.2 Dominant factors affecting microplastic
abundance at each sampling area

Geographically, MP abundance varied among sampling

areas. It was found that human activities in the surrounding

environment, such as agricultural activities, aquaculture,

tourism activities, and residential life, affect MP abundance

(Hinojosa and Thiel, 2009; Li et al., 2018a; Martin et al., 2019;

Huang et al., 2020). The sampling area of LZB was located at the
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estuary of Nanliu River, which was the largest river in Guangxi

with an annual average runoff of 68.9 × 109 cm3. And the LZB

mangroves were also surrounded by residential and agricultural

areas. Li et al. (2020) found that the colored MPs may come from

packaging and clothing from the surrounding residential areas.

Finally, with the effects of rainfall, river inputs as well as tides

transportation, the multicolored MPs were inevitably deposited

in mangroves, which could be the main explanation for more

multicolored MPs found in LZB. The surrounding marine area

of MWS had intensive aquaculture activities, especially for

oysters, the open culture area of which was about 135 km2

(Zhang et al., 2021). Therefore, MP pollution in this area was

associated with plastic films used in aquaculture barrels and

nylon rope, as well as fishing processes. Moreover, there was

Maowei River (with an annual average runoff of 15.9 × 109 cm3)

draining into the bay, which could also be one main source of

MPs detected in the MWS. While for the sampling areas of QZP,

which was located around a small park, the MPs may be mainly

from plastics left by tourists. According to previous reports,

packaging products that were discarded in the environment were

physically, chemically, and biodegraded, resulting in large

amounts of debris (Zhang et al., 2020c). In the meanwhile, as

described in part 3.1, the detected amount of MPs in QZP was

the smallest among all sampling areas, which was also because

the parking area was relatively less affected by anthropogenic

and industrial activities. However, the MP abundance in SK,

especially in the high tidal zone, was the largest among the four

sites. Since Hepu County accounted for two-thirds of the entire

population of Beihai City, the high population density was one of

the sources of MPs in the SK area located in Hepu County. The

mangrove area in SK was surrounded by abundant aquaculture

ponds and was also a tourist area, so the MP load in SK was the

largest among all samples.Overall, river input and human activities

(including aquaculture and fisheries) are important factors

influencing the distribution of MPs in mangrove sediments.
FIGURE 6

The conducted linear fitting for the microplastic (MP) enrichment index (EI) values and the tidal velocity.
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4.2 Characteristics and diversity of
microplastics in mangrove forests

4.2.1 Shape
MP shape is a significant feature for tracking plastic sources

and bio-intake (Huang et al., 2021). The highest proportions of

fragments and fibers were observed at the high and low tidal

zones in mangroves of LZB, MWS, and QZP, respectively, which

could be attributed to the accumulation of MP fragments at the

high tidal zone due to fishing gear left behind by activities such

as fishing (Li and Liu., 2018b), fibers at the low tidal zone due to

river intake (industrial or domestic wastewater). In the present

study, the fragment was the predominant shape among the three

tidal zones in SK, with SK having the highest mean MP

abundance among all studied mangrove forests, suggesting

that the high abundance of MPs in SK may increase the

occurrence of all shapes except fibers and decrease the relative

proportion of fibers themselves (Huang et al., 2021). The reason

for the high percentage of fragments was that deviations from

perfect sphericity resulted in the greater surface area and thus

greater pressure and friction (Kowalski et al., 2016). MPs with

many regular shapes settled easier than the irregularly shaped

MPs in sediments, because they had less settling resistance

(Kowalski et al., 2016; Jiao et al., 2022). According to previous

studies, fibers and fragments of MPs may affect the uptake of

biota, which could cause intestinal obstruction and may hinder

intestinal digestion (Wright et al., 2013; Shim and Thompson,

2015; Wu et al., 2019).

4.2.2 Color
MP color can reflect the source of MPs. In the present study,

the MP colors in MWS and QZP were predominantly

transparent, while blue in LZB and multicolored in SK. In the

former case, it was possible that some commercial fish and their

larvae were visual predators that preyed on small plankton and

may feed on more prey-like colored MPs, thus transparent MPs

may increase and accumulate more in mangrove sediments

(Maghsodian et al., 2022). In the latter case, multicolored MPs

may originate from the packaging of various fishing gears during

fishermen’s fishing activities (Maghshidan et al., 2020). Blue

MPs were derived from the paint color of fishing boats (Aliabad

et al., 2019), and nets and ropes were often blue.

4.2.3 Size
In this study, the size of MPs collected from mangrove

sediments ranged from 45 to 1,000 μm. The majority of MPs in

mangrove sediments were < 1,000 μm in size (73.24%), which

was consistent with studies from other mangrove regions, such

as China and Singapore (Mohamed Nor and Obbard, 2014; Li

et al., 2018a; Zuo et al., 2020). Overall, the MP size found in this

study was dominated by 100–330 μm (28.41% ± 13.99%).

Smaller-sized MPs had a higher surface-to-volume ratio than
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larger-sized MPs, which increased their adhesion (Huang et al.,

2021), and smaller MPs were more difficult to remove by water

flow (Yan et al., 2019). Tides were an important factor affecting

the transport of suspended particulate matter in mangroves,

with the most pronounced effect of light particulate matter

(Zhang et al., 2020a). The MPs found in this study were

mainly 100–330 μm in size at high and middle tides and 500–

1000 μm at the low tidal zone, which may be since that light

suspended particulate matter increased with tides and the

continuous high-velocity current at low tide in mangroves

hindered the settlement of MPs, thus more MPs of smaller

size could be found at high tide and a relatively larger size at low

tide sedimentation. However, smaller size MPs were easily

absorbed by mangrove organisms (Lusher et al., 2013; Bour

et al., 2018; Zhou et al., 2018), which may adversely affect

mangrove wetland organisms (Zuo et al., 2020; Huang

et al., 2021).

4.2.4 Diversity
Wang et al. (2019) proposed an MP diversity index (D’

[MPs]) to reflect the complexity of MP sources. There was no

significant difference between the mean shape D′ (MPs), color D′
(MPs), and size D′ (MPs) for the four sites (p > 0.05), indicating

that the number of pollution sources may be similar in the study

area. The MP diversity in terms of size, color, and shape was

different at the low, mid, and high tidal zones. As the results

showed, the shape D′ (MPs) of mangroves was high at the low

tidal zone, the color D′ (MPs) was high at the middle tidal zone,

and the size D′ (MPs) was high at the high tidal zone. Tides

affected the distribution of MPs within mangroves, and flow

velocity affected the degree of flocculation between MPs and

viscous suspensions (Zhang et al., 2020a), thus affecting the

settlement of MPs at different tidal zones (Li et al., 2018a).

Overall, the number of pollution sources in the study area, and

tides may also contribute to the diversity differences.
4.3 Interactions between particulate
organic carbon and microplastic total
number

MP total number and POC were calculated according to

Equations (3) and (4), respectively. As is shown in Figure 7, MP

total number is strongly correlated with POC (n = 12, R = 0.664,

p < 0.05). A similar direct link between POC and MPs was

reported by Huang et al., 2022, and the transport processes of

MPs in the woods may also be trapped in the external blue

carbon in the sediment (Huang et al., 2021). However, special

attention was paid to the SK-H site. According to Figure 1, it was

clear that SK-H had the largest MP abundance. According to the

analysis in Discussion 4.1.2, there were many farming ponds

around the mountain pass, which was also a tourist area, and it
frontiersin.org

https://doi.org/10.3389/fmars.2022.927884
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2022.927884
was highly influenced by human activities, and MPs tended to

accumulate at the high tidal zone under tidal action, resulting in

the highest MP abundance in SK-H. Therefore the relationship

between this site and POC was difficult to reflect on. So far, the

mechanisms of MP accumulation in blue carbon storage are

unclear and need further exploration.
4.4 Monitoring and assessment of
microplastic total number in mangrove
forests

The analysis resulted in a significant correlation between MP

total number and MP abundance (R = 0.674, p < 0.05), suggesting

that MP abundance can quantify MP total number to some extent.

Zhanget al., 2020demonstrated that the blockageofMPsdepended

mainly on hydrodynamic factors (tidal difference, flow velocity,

etc.). It was shown that the MP total number at the middle tidal

zones in MWS, QZP, and SK were closest to their mean values.

Therefore, themiddle tidal zonewas considered tobemoreaccurate

for detectingMP accumulation in the wholemangrove, whichmay

also be a significant indicator for assessingMPpollution in regional

mangroves. However, the MP total number at the low tidal zone

was closest to themean value in LZB, whichmay be due to the poor

stability of themangrove ecosystem in the area and its vulnerability

to environmental changes and increasing habitat fragmentation

fromyear to year (Yang et al., 2017; Liao et al., 2020). In conclusion,

the pre-requisite for detecting MPs at the middle tidal zone in
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mangroves was to examine whether the mangroves at the station

were highly affected by the environment. Further studies are still

needed to assess MP contamination in mangroves within a

geographic area to accurately quantify MP deposition.
5 Conclusions

Mangroves have an interception effect on MPs, and the

factors affecting MP distribution in mangrove sediments include

not only tidal action but also human activities. The results

showed that the MP abundance and MP total number of

mangroves in Beibu Gulf varied greatly in different tidal areas

and sampling sites, and their influencing factors were different in

different locations. MP abundance in all sampling areas was

highest at the high tidal zone. Smaller size MPs were enriched at

the high and middle tidal zones due to the hydrodynamic effects

on MP suspension and deposition. In addition, there was a

strong correlation between POC andMP abundance (n = 12, R =

0.664, p < 0.05). When high environmental effects were

excluded, MP abundance at the middle tidal zone was

applicable to assess MP contamination levels throughout the

region. The findings of this work may help us to improve our

understanding of the effect of POC on mangrove MP total

number and improve the accuracy of models for estimating

MP pollution levels in a given area. However, the factors

affecting MP contamination in mangrove sediments are
FIGURE 7

The linear regression relationship between total particulate organic carbon (POC) and microplastic (MP) total number in mangrove sediments.
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complex, and which factors are primary and which are

secondary require further investigation and research.
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