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For full use of the by-products during Siberian sturgeon (Acipenser baerii) processing,
gelatin was extracted from the cartilages using the hot water method, and its physico-
chemical properties and protective function on ultraviolet-A injured human skin fibroblasts
(HFSBs) were measured. Using single-factor and orthogonal experiments, the conditions
for extracting gelatin from Siberian sturgeon cartilage were optimized as extraction time of
7 h, pH 9, material-to-liquid ratio (g/ml) of 1:5, and temperature of 45°C. The prepared
gelatin (TCG) with a yield of 28.8 ± 1.53% had Gly (307 residues/1,000 residues) as the
major amino acid and contained a lower amount (214 residues/1,000 residues) of imino
acids than that (227 residues/1,000 residues) of pigskin gelatin (PSG). Sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), ultraviolet spectrum, and infrared
spectroscopy analysis indicated that TCG had the main spectral characteristics of fish
gelatin and contained a chains (a1 and a2 chains) and b chain of type I collagen, but its
structural stability was lower than that of PSG due to its low content of imino acids, which
induced the smaller molecular bands observed in the SDS-PAGE pattern. TCG exhibited
lower water content, gel strength, emulsion stability index, foam capacity, foam stability,
and water-holding capacity but higher ash content, transmittance, emulsion activity index,
and fat-binding capacity (P < 0.05). Moreover, TCG could significantly protect HFSBs
against ultraviolet-A injury by enhancing the activity of superoxide dismutase, catalase,
and glutathione peroxidase to scavenge excess reactive oxygen species and decrease
the content of malondialdehyde. Therefore, gelatin from Siberian sturgeon cartilages could
act as promising candidates when applied in health-promoting products against
ultraviolet-A injury.
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INTRODUCTION

Gelatin with a molecular weight (MW) of 80–250 kDa is
produced from partially hydrolyzed collagens from animal
bones, skins, and connective tissues (Yang et al., 2019; Uddin
et al., 2021; Cen et al., 2022). Taking into consideration its
diverse and excellent properties, gelatin serves as a
multifunctional ingredient applied in a variety of fields,
especially food, cosmetics, photography, and pharmaceutical
products (Sinthusamran et al., 2018; Al-Nimry et al., 2021;
Valcarcel et al., 2021). The global market volume of gelatin is
expected to exceed 650 kt, which is about US$ 4 billion, by 2024,
and about 80 and 15% of the edible gelatin generated from pig
skins and cattle hide splits in Europe (Gelatin Manufacturers of
Europe (GME), 2016; Grand View Research, 2016). Confronting
the issue is that gelatins generated from mammalian skins and
bones have drawn the wide concern of customers because of the
increasing infectious diseases and dietary restriction in Islam,
Judaism, and Hinduism (Qiu et al., 2019; Uddin et al., 2021; Cen
et al., 2022). Therefore, research interests are focused on
searching and identifying substitute gelatins from alternative
resources (Lv et al., 2019; Nurilmala et al., 2020).

According to the State of World Fisheries and Aquaculture
2020, marine capture fishery production was about 84.4 million
tons (FAO, 2020). However, only approximately 50% of these
catches are applied for human consumption, and vast aquatic
product processing by-products, including bone, swimming
bladder, viscera, head, frame, skin, and scales, were generated
in the manufacturing process of those commercial fish (Ali
et al., 2021; Coppola et al., 2021; Raju et al., 2021; Wang et al.,
2022). Those by-products create burdensome disposal
problems and will bring serious environmental pollution
problems if they are subjected to unreasonable treatment
(Ahmed et al., 2019; Yuan et al., 2021; Nisar et al., 2022;
Wang et al., 2022). Therefore, researchers persistently search
for active ingredients from these by-products, and several
ingredients, such as collagen/gelatin, bioactive peptides,
chitin/chitosan, chondroitin sulfate, and unsaturated fatty
acids, have establish prepared methods for producing high-
value marketable products (Zhao et al., 2018a; Zhao et al., 2018;
Zhang et al., 2019; Nag M et al., 2022). Among these active
ingredients, gelatin can serve as a substitute for mammalian
gelatin due to its high nutrition, excellent moisture retention,
and good biocompatibility properties (Al-Nimry et al., 2021;
Cen et al., 2022). Additionally, the application of fish gelatin
and its derivatives in medicine and cosmetics attracted great
interest (Lv et al., 2019; Qiu et al., 2019; Al-Nimry et al., 2021).
Gelatins and its hydrolysates from Pacific cod (Gadus
macrocephalus) showed a significantly protective effect on
ultraviolet-A (UVA) damaged cells and skins through
increasing the activity of antioxidases, including superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase
(GSH-Px) (Sun et al., 2013; Chen and Hou, 2016; Chen et al.,
2016b). Gelatins from tilapia scale showed a significantly
enhanced e fficacy on ce l l adhes ion , growth , and
wound healing and a protective function on H2O2-damaged
HaCaT cells (Huang et al., 2018). Therefore, fish gelatins have a
Frontiers in Marine Science | www.frontiersin.org 2
potent ia l appl icat ion value in wound heal ing and
skin photoaging.

Sturgeon, belonging to the family Acipenseridae, is
the common name for 27 cartilaginous fish, and its farmed
production in China was about 4.4 million tons, accounting for
approximately 80% of world production (Gui et al., 2015; Luo
et al., 2018). In the receiving process of sturgeon eggs, cartilage,
which accounts for 10% of sturgeon’s weight, becomes a by-
product. Therefore, active substances in sturgeon cartilage, such
as chondroitin sulfate (Gui et al., 2015; Wang et al., 2020; Wu
et al., 2022), collagen (Luo et al., 2018; Zhu et al., 2020; Lai et al.,
2020), and antioxidant peptides (Yuan et al., 2021), were studied
constantly for replacing shark cartilage used in health and
functional products. In addition, cartilage collagens have been
prepared from some cartilaginous fishes, such as Siberian
sturgeon (Luo et al., 2018), scalloped hammerhead, red
stingray, skate (Chi et al., 2013), silvertip shark (Jeevithan
et al., 2014a; Jeevithan et al., 2014b), brownbanded bamboo
shark, and blacktip shark (Kittiphattanabawon et al., 2010).
Those collagens have shown potential to replace collagens
from mammalian sources. Moreover, previous literatures
indicated that gelatins, collagen hydrolysates, and peptides
derived from cartilaginous fishes show significant biological
activities, such as antioxidant (Li et al., 2013; Pan et al., 2016;
Li et al., 2017; Tao et al., 2018), immunity enhancement (Bu
et al., 2017), and anti-tumor (Pan et al., 2016). However, no
report on the gelatin from sturgeon cartilage was found.
Therefore, gelatin from the cartilage of Siberian sturgeon
(Acipenser baerii) was prepared and characterized in this
experiment. Furthermore, the protective function of cartilage
gelatin on UVA-injured human skin fibroblasts (HSFBs)
was evaluated.
MATERIALS AND METHODS

Materials and Chemical Reagents
Cartilages of Siberian sturgeon (A. baerii) were kindly provided
by Thousand Island Lake Sturgeon Technology Co., Ltd.
(Hangzhou, China). Glutathione (GSH), Dulbecco’s modified
Eagle’s medium (DMEM), pigskin gelatin (PSG), and high-MW
protein markers were purchased from Shanghai Source Poly
Biological Technology Co., Ltd. (China). HSFBs were
purchased from Shanghai Cell Bank of Chinese Academy of
Sciences. The cartilage collagen of Siberian sturgeon was
prepared in our lab according to the reported method (Luo
et al., 2018).

Preparation of Gelatin of Siberian
Sturgeon Cartilage
Pretreatment of Cartilages
Cartilages of Siberian sturgeon were pretreated according to the
reported process (Chi et al., 2013; Luo et al., 2018). Briefly, the
cartilages were unfrozen, homogenized, treated with NaOH
solution (0.1 M) to remove noncollagenous proteins, and
decalcified using EDTA-2Na solution (0.5 M, pH 7.5).
June 2022 | Volume 9 | Article 925407

https://en.wikipedia.org/wiki/Acipenseridae
https://en.wikipedia.org/wiki/Common_name
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Zhang et al. Gelatin From Siberian Sturgeon Cartilage
Gelatin Extraction From Pretreated Cartilages
The pretreated cartilages were soaked in acetic acid solution
(0.2 M) with a cartilage/solvent ratio of 1:10 (w/v) and have
undergone limited hydrolysis with commercial pepsin at a
dose of 2.0% (w/w) for 12 h at 4°C. Then, the resulting
cartilages were cleaned using tap water, put in distilled water
with continuous stirring, and extracted according to the
designed conditions.

The extraction conditions of gelatin were firstly optimized by
a single-factor experiment. Extraction time (2, 4, 6, 8, and 10 h),
pH (6, 7, 8, 9, and 10), material-to-liquid ratio (1:2, 1:4, 1:6, 1:8,
and 1:10, w/v), and temperature (30, 35, 40, 45, and 50°C) were
chosen for the extraction of cartilage gelatin. According to the
results, an orthogonal experiment [L9(3

4)] was designed to
optimize the conditions of extraction time (5, 6, and 7 h), pH
(7, 8, and 9), material-to-liquid ratio (1:5, 1:6, and 1:7), and
temperature (40, 45, and 50°C) (Table 1).

After the above-mentioned extraction process, the mixture
solution was filtered using two layers of cheesecloth, and the
resultingfiltrate was centrifuged at 4,000 g for 20 min at 4°C to
wipe off unsolvable cartilage matter. The supernatant was
collected and freeze-dried, and the gelatin prepared under
optimal conditions was named as TCG. The yields of TCG
were calculated based on the following equation: yield (%) =
(weight of dried TCG/dry weight of used cartilages) × 100.

Characterization of TCG
Proximate Analysis
The moisture and ash contents of TCG and PSG were measured
by the methods of AOAC (2003), using the method numbers
950.46B and 920.153 (AOAC. Official Methods of Analysis of
AOAC International and Gaithersburg, 2003).
Frontiers in Marine Science | www.frontiersin.org 3
Determination of Amino Acid Composition
The amino acid composition of TCG and PSG was analyzed
using the method reported by Qiu et al. (Qiu et al., 2019). The
samples were hydrolyzed in 6 M HCl (110°C) for 24 h. The
product was concentrated, and the residue was dissolved in 25 ml
of citric acid buffer. The amino acid composition was analyzed
using an automated amino acid analyzer of HITACHI 835-50
(Hitachi High-Technologies Corporation, Tokyo, Japan).

Sodium Dodecyl Sulfate–Polyacrylamide Gel
Electrophoresis Pattern
The electrophoretic pattern of TCG was measured according to a
previous method using 4% stacking gel and 7.5% separating gel
(Yu et al., 2014; Li et al., 2018). The MWs of the TCG
components were estimated using high-MW protein markers.
PSG and collagen of Siberian sturgeon cartilage were used
as standards.

Ultraviolet Absorption and Fourier Transform
Infrared Spectra
The UV absorption spectra of TCG and PSG (0.5 mg/ml) from
190 to 400 nm were measured us ing a UV-1800
spectrophotometer (Mapada Instruments Co., Ltd., Shanghai,
China). The FTIR spectra of TCG and PSG with wavenumber of
450–4,000 cm-1 were recorded in KBr disks with a Nicolet 6700
spectrophotometer (Thermo Fisher Scientific Inc., USA). TCG
and PSG were separately mixed with KBr at a ratio of 1:100 (w/
w) and squeezed into a transparent disk for further analysis.

Isoelectric Point Determination
The zeta potential was measured using a previous method
(Kaewdang et al., 2014). Briefly, TCG samples (0.5 mg/ml)
TABLE 1 | Orthogonal array design matrix L9 (3
4) and experimental results for optimizing gelatin extraction conditions from Siberian sturgeon cartilage.

Number Factors Protein content (%)

Time (h) pH Material-to-liquid ratio (g/ml) Temperature (°C)

1 5 7 1:5 40 41.38
2 6 7 1:6 45 47.46
3 7 7 1:7 50 57.94
4 7 8 1:5 40 53.67
5 5 8 1:7 45 50.87
6 6 8 1:6 50 49.39
7 6 9 1:7 40 50.26
8 7 9 1:5 45 64.15
9 5 9 1:6 50 50.05
K1 142.3 146.78 159.2 145.31
K2 147.11 153.93 146.9 162.48
K3 175.76 164.46 159.07 157.38
k1 47.43 48.93 53.07 48.44
k2 49.04 51.31 48.97 54.16
k3 58.59 54.82 53.02 52.46
Ra 11.16 5.89 4.1 5.72
Best level A3 B3 C1 D2
R order A > B > D > C
Optimal conditions A3B3C1D2
June 2022 | Volum
All data are expressed as mean ± SD (n = 3).
aR referred to the result of extreme analysis.
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with pH ranging from 3 to 9 were stirred for 6 h, and the zeta
potential of each gelatin sample was determined by a Zeta PALS
analyzer (Brookhaven Instruments Co., Holtsville, NY, USA).
The isoelectric point (pI) was calculated from a pH rendering a
zeta potential of zero.

The percent transmittance of each TCG sample (1.0 mg/ml,
pH 3–9) at 620 nm was measured using a UV-1800
spectrophotometer. The graph was made according to the
relationship between pH and percent transmittance, in which
the pH value corresponding to the lowest transmittance was the
pI of gelatin.

Determination of Gel Strength
The gel strength of TCG and PSG was determined using the
method of the British Standards Institution and was expressed as
the maximum force (in grams) required for the plunger to press
the gel by 4-mm depression at a rate of 0.5 mm/s (BSI (British
Standards Institution), 1975).

Determination of Functional Properties
The emulsion activity index (EAI), foam capability (FC), foam
stability (FS), and emulsion stability index (ESI) of TCG and PSG
were determined according to the methods of Jellouli et al.
(Jellouli et al., 2011). The fat-binding capacity (FBC) and
water-holding capacity (WHC) of TCG and PSG were
determined as per the reported procedures of Shyni et al.
(Shyni et al., 2014).

Protective Function of TCG on UVA-
Injured HSFBs
Cell Culture and Viability Determination
The HSFBs were cultured according to the method reported by
Gęgotek et al. (Gęgotek et al., 2018) and Lin et al. (Lin et al.,
2020). In brief, HSFBs (1.0 × 105 cells/well) were seeded into a
96-well plate containing 100 ml of culture media. After
incubation for 24 h, 20 ml of TCG solution dissolved in the
DMEM medium was added in the sample group, and this
reached the final concentrations of 50, 100, 200, and 400 mg/
ml, respectively. In addition, TCG was substituted by phosphate-
buffered solution (PBS, pH 7.2) in the blank control group. After
incubation for 24 h, 20 ml of MTT was added into the plate and
OD490 nm was measured after 4 h. The cell viability was
calculated by the formula:

Cell viability (%) = (ODsample/ODcontrol) × 100.

Protection of TCG on UVA-Injured HSFBs
HSFBs (1.0 × 105 cells/well) were seeded into a 96-well plate
containing 100 ml of culture media. When the monolith of cells
was covered with a 96-well plate, the culture media was
discarded, and the HSFBs were washed three times with PBS
buffer. Then, the resulting HSFBs were covered in PBS buffer and
irradiated at a distance of 15 cm with 5, 10, 15, and 20 J/cm2 of
UVA, respectively. After radiation, the HSFBs were washed three
times with PBS buffer and cultured in a new culture medium for
24 h. The dose of UVA resulted in the HSFB viability of
approximate 50% was chosen to establish the cell model (Lone
et al., 2020).
Frontiers in Marine Science | www.frontiersin.org 4
The irradiated HSFBs were cultured in new culture media for
24 h. After aspirating the supernatant, 20 µl of TCG (with final
concentrations of 50, 100, and 200 mg/ml, respectively) was
loaded into the sample groups, respectively. After incubating
for 24 h, the cell viability was determined. The blank and model
groups used 20 ml PBS instead of TCG solution.

Determination of Reactive Oxide Species,
Malondialdehyde, and Antioxidases
The levels of ROS in each group were measured by the previous
method and presented as percent of blank control (Cai et al.,
2019). The activity of antioxidases (SOD, GSH-Px, and CAT)
and the content of MDA were measured using assay kits
accord ing to the protoco l s o f Nanj ing J iancheng
Bioengineering Institute Co., Ltd. (China), and the activity of
antioxidases was indicated as U/mg prot.

Statistical Analysis
The data are expressed as mean ± standard deviation (SD, n = 3).
An ANOVA test was used to analyze the differences between
means of each group using SPSS 19.0 (Statistical Program for
Social Sciences, SPSS Corporation, Chicago, IL, USA). Tukey or
Duncan’ test was used to determine the significance between
different groups (P < 0.05, P < 0.01, or P < 0.001).
RESULTS AND DISCUSSION

Preparation of Gelatin From Siberian
Sturgeon Cartilage
Optimization of Gelatin Extraction Conditions Using
a Single-Factor Experiment
The extraction conditions play a key role in influencing the yield
and physicochemical properties of gelatins (Pan et al., 2018; Kim
et al., 2020; Fawale et al., 2021). Then, the effects of the extraction
conditions, including time, pH, material-to-liquid ratio, and
temperature, on the protein contents of the gelatin extract
solution of Siberian sturgeon cartilage were optimized by a
single-factor experiment (Figure 1). Figure 1A indicates that
the protein content (52.10 ± 0.19%) of the gelatin extract solution
prepared for 6 h reached the maximum, but it was not
significantly higher than those of the gelatin extract solution
prepared for 8 and 10 h (P < 0.05). Figure 1B illustrates that
the protein content of the gelatin extract solution increased
gradually when the pH value increased from 6 to 9 and
approached the peak level (53.05 ± 0.27%) at pH 9. In
addition, no significant difference in the protein content of the
gelatin extract solution was observed at pH 7, 8, and 9 (P > 0.05).
Figure 1C demonstrates that the protein content of the gelatin
extract solution prepared at a material-to-liquid ratio of 1:6 was
57.71 ± 0.51%, which was significantly higher than those of the
gelatin extract solution prepared at other material-to-liquid
ratios (P < 0.05). Figure 1D indicates that the protein content
of the gelatin extract solution was significantly influenced by the
extraction temperature, and the protein content (59.22 ± 0.72%)
of the gelatin extract solution prepared at 45°C was prominently
June 2022 | Volume 9 | Article 925407
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higher than those of the gelatin extract solution prepared at other
extraction temperatures (P < 0.05). Therefore, the range of
extraction conditions of cartilage gelatin from the Siberian
sturgeon was narrowed to 5–7 h, 7–9, 1:5–1:7, and 40–50°C for
extract ion t ime, pH, mater ia l- to- l iquid rat io , and
temperature, respectively.

Optimization of Gelatin Extraction Conditions Using
Orthogonal Experiment
The results of the orthogonal experiment were analyzed and are
shown in Table 1. Based on the K, k, and R values, the extraction
conditions which affected the gelatin yield are shown in a
descending order as follows: A > B > D > C. Therefore, time
was proven to be the most key condition affecting the protein
Frontiers in Marine Science | www.frontiersin.org 5
contents of the gelatin extract solution of Siberian sturgeon
cartilage. According to the results of the orthogonal test, the
optimum extraction conditions of gelatin from Siberian sturgeon
cartilage were A3B3C1D2, that is to say, the optimal conditions
were extraction time 7 h, pH 9, solid–liquid ratio (g/ml) 1:5, and
temperature 45°C, respectively. Finally, the protein content of
the gelatin extract solution reached 61.57 ± 1.11% under the
optimized conditions by the confirmatory test.

Characterization of TCG
Basic Properties of TCG
As shown in Table 2, the yield of TCG was 28.8 ± 1.53% on dry
weight basis. In our previous report, the yield of cartilage
collagens (including acid-soluble and pepsin-soluble collagens)
TABLE 2 | Basic properties of cartilage gelatin (TCG) from Siberian sturgeon (TCG).

TCG PSG National standard of China (GB 6783-2013)a

Yield (%, w/w) 28.8 ± 0.15 – –

Water content (%, w/w) 6.13 ± 0.58b 7.37 ± 0.28a ≤14.0
Ash content (%, w/w) 0.76 ± 0.05b 0.63 ± 0.09a ≤2.0
Transmittance (450 nm) 90.13 ± 1.76b 47.64 ± 0.51a ≥30
Transmittance (620 nm) 85.76 ± 1.27b 61.93 ± 0.27a ≥50
The gel strength (6.67%)
(Bloom g)

206.1 ± 4.70b 398.0 ± 5.20a –
All data are expressed as mean ± SD (n = 3). Different letters in the same row indicate significant differences (P < 0.05).
aNational Food Industry Standardization Technical Committee of China. Food additive—gelatin (GB6783-2013) (2013).
A B

C D

FIGURE 1 | Effects of time (A), pH (B), material-to-liquid ratio (C), and temperature (D) on the protein contents of the gelatin extract solution of Siberian sturgeon
cartilage. All data are expressed as mean ± SD (n = 3). Values with the same letters indicate no significant difference (P > 0.05).
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of Siberian sturgeon was 41.82% on dry weight basis (Luo et al.,
2018), which indicated that part of the gelatin still remained in
the raw material under the extraction process of this experiment.

The basic properties of TCG and PSG are shown in Table 2.
The indexes of moisture, ash, and transparency of TCG were
significantly better than those of the national standard of China
(GB 6783-2013) Standardization Administration of China,
(2013), which indicated that the TCG could be used as a
substitute of PSG in food and medical industries. In addition,
the water content of TCG was 6.13 ± 0.58%, which was
significantly lower than that of PSG (P < 0.05). The finding
indicated that TCG should have a longer storage life. The ash
content of TCG (0.76 ± 0.05%) was significantly higher than that
of PSG (P < 0.05), which might be that small amounts of
minerals remained in the cartilage under the current process of
EDTA-2Na.

The gel strength of TCG was 206.1 ± 4.7 g, which was same to
that (206 g) of the gelatin skins of dog shark (Shyni et al., 2014),
and significantly weaker than that of PSG (398.0 ± 5.2g) (P <
0.05). The finding was in line with the previous literatures that
the gel strength of aquatic gelatin was weaker than those of
mammalian gelatins (Boran and Regenstein, 2010; Fawale et al.,
2021). In addition, the gel strength of gelatin is closely related to
the content of imino acids, and the present finding suggested that
the content of imino acids in TCG could be lower than that
in PSG.

Amino Acid Composition of TCG
Amino acid composition was one of the most important factors
that affect the properties of gelatins from marine resources (Yang
et al., 2019; Qiu et al., 2019). As shown in Table 3, the amino acid
composition patterns of TCG and PSG were similar. Firstly, Gly
was the amino acid of TCG with a content of 307 residues/1,000
residues, which was because approximately 50-60% of a-chains
Frontiers in Marine Science | www.frontiersin.org 6
were made up of a typical tripeptide repetition of Gly-X-Y (Chi
et al., 2014; Tkaczewska et al., 2018). Secondly, TCG was rich in
Pro, Glu, and Hyp in a descending order, and the data were in
line with the previous literatures that those amino acids were the
main compositions of gelatins (Regenstein and Zhou, 2007;
Ahmad et al., 2018).

The triple-stranded collagen helix can be stabilized by the
number of hydrogen bonds, which are formed through the
hydroxyl group of Hyp (Chi et al., 2014; Tkaczewska et al.,
2018). A high content of imino acids (Pro and Hyp) is helpful
to intensify the thermostability of the triple helical structure of
collagen/gelatin because their pyrrolidine rings can hold back the
changes of the secondary configuration of polypeptide chains (Li
et al., 2013a; Wang et al., 2013; Zhao et al., 2018a). Table 3
presents that the ratio of imino acids in TCG was 214 residues/
1,000 residues, which was significantly less than that of PSG (227
residues/1,000 residues). Therefore, the helical structure of TCG
could be easily destroyed than that of PSG due to the lower ratio of
imino acids. In addition, the lower content of imino acids in TCG
meant that its gel strength was weaker than that of PSG (Table 2).

SDS-PAGE Pattern of TCG
Molecular weight pattern additionally impacts the properties of
collagen/gelatin (Jellouli et al., 2011; Kaewdang et al., 2014; Luo
et al., 2018). Sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) patterns of TCG, sturgeon
cartilage collagen, and PSG were depicted in Figure 2. Two a
chains (a1 and a2 chains) and one b chain were observed in the
SDS-PAGE patterns of TCG, sturgeon cartilage collagen, and
PSG, which proved that TCG and PSG kept the structure of type
I collagen (Li et al., 2013a; Shyni et al., 2014; Yang et al., 2019).
However, the lowest contents of a and b chains were found in
TCG compared with those of sturgeon cartilage collagen and
PSG. In addition, more molecular fragments below 100 kDa were
found in TCG. This finding was mainly caused by two factors:
firstly, cartilages of Siberian sturgeon were pretreated using
pepsin at a dose of 2.0% (w/w) for 12 h, which induced the
partial peptide bonds to be broken. Moreover, TCG contained
less imino acids than PSG, so its structural stability was weaker
than that of PSG and was easier to degrade.

In addition, the results indicated that the present extraction
method of TCG could significantly degrade the large molecules
of a and b chains into small molecular peptides, which further
reduce the strength of TCG (Bkhairia et al., 2016). The finding
was agreement with the result in Table 1 that the gel strength of
TCG was weaker than that of PSG.

UV and FTIR Spectra of TCG
The UV absorption spectra of TCG and PSG are shown in
Figure 3. The results illustrated that the UV typical absorption
peaks of TCG was approximately 229.0 nm, which was due to the
existence of C=O, COOH, and CONH2 groups in gelatins (Qiu
et al., 2019). In addition, the maximum wavelength of TCG was
close to that (219 nm) of PSG (Figure 3B).

The FTIR spectrum of gelatin has five main regions: amide A
(~3,300 cm-1), amide B (~3,100 cm-1), amide I (~1,660 cm-1),
amide II (~1,570 cm-1), and amide III (~1,300 cm-1)
TABLE 3 | Amino acid composition of cartilage gelatin (TCG) from Siberian
sturgeon and pigskin gelatin (PSG) (residues/1,000 residues).

Amino acid TCG PSG

Lysine (Lys) 16 20
Phenylalanine (Phe) 10 14
Methionine (Met) 14 16
Threonine (Thr) 24 22
Isoleucine (Ile) 11 13
Leucine (Leu) 16 17
Valine (Val) 15 18
Histidine (His) 9 6
Glycine (Gly) 307 314
Alanine (Ala) 100 104
Tyrosine (Tyr) 6 4
Aspartic acid (Asp) 58 53
Glutamic acid (Glu) 109 97
Serine (Ser) 46 39
Cysteine (Cys) ND ND
Proline (Pro) 109 114
Arginine (Arg) 45 36
Hydroxyproline (Hyp) 105 113
Total 1,000 1,000
Imino acid (Pro + Hyp) 214 227
ND, not detected.
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(Sinthusamran et al., 2018; Ali et al., 2021). Figure 4 shows that
the FTIR spectra of TCG and PSG were relatively similar and
presented the characteristic vibration mode of gelatin, but the
wavenumber position of the peak,was slightly different,
indicating that their secondary structures were somewhat
different (Cao et al., 2020). The amide A band is connected
with the stretching vibration of the NH group. The stretching
vibration height of the NH group is set at 3,400–3440 cm-1, but
when the NH group joined in the hydrogen bond formation, the
absorption peak of the stretching vibration shifts to a lower
wavenumber. The amide A bands of TCG and PSG were 3,340
and 3,311 cm-1, respectively, proving that more NH groups
joined in the formation of hydrogen bonds. It has been
reported that amide A in gelatin appears at a shorter
frequency, and less intramolecular hydrogen bond is broken
(Zheng et al., 2017; Cao et al., 2020). Therefore, PSG retained
more hydrogen bonds in molecules, while more hydrogen bonds
were damaged in TCG. The amide B bands of TCG and PSG are
2,926 and 2,934 cm-1, respectively. The amide B band of TCG
appeared at a lower wavenumber, which manifested the more
interaction of NH3 groups among gelatin molecules (Yang et al.,
2019). The amide I band is mainly related to the stretching
vibration of the carbonyl group C=O (Stani et al., 2020). It
reflects the secondary structure of peptides and proteins. Amide
II is connected with NH bending and CN stretching vibrations.
The wavenumb,ers of amide I and amide II of TCG (1,639 and
1,406 cm-1) were less than those of PSG (1,652 and 1,450 cm-1),
Frontiers in Marine Science | www.frontiersin.org 7
which might be related to the decrease in molecular number.
Amide III is involved in the tertiary helix structure of proteins.
The amide III band of TCG (1,125 cm-1) was less than that of
PSG (1,165 cm-1), indicating that the triple helix structure of
TCG was partially destroyed in the preparation of gelatin.

Zeta Potential and Transparency of TCG
The zeta potential of TCG at different pH values is presented in
Figure 5. At the acidic pH range (Sinthusamran et al., 2018; Yang
et al., 2019; Cen et al., 2022), TCG had a positive charge, but it
changed to the negative charge when the solution pH ranged
from 5 to 9. According to the curve in Figure 5A, the net charge
of TCG changed to zero at pH 4.53, which was regarded as the
isoelectric point (pI) of TCG. The pI of TCG at an acidic pH was
due to its high contents of Glu and Asp (101 and 60 residues/
1,000 residues, respectively) (Table 3). In addition, the result that
the transmittance was the lowest when the pH values of the
gelatine solution was near 4.5 was confirmed (Figure 5B).

Emulsifying Property, Foam Capacity, and Foam
Stability of TCG
The EAI of TCG was 45.39 ± 1.67 m2/g, which was lower than
that (32.26 ± 1.58 m2/g) of PSG (P < 0.05) at 1.0 g/100 ml
(Table 4). In the dispersing phase, proteins with high solubility
can significantly improve their emulsifying efficiency because
protein molecules can move rapidly to the surface of the fat
droplets (Jellouli et al., 2011). The ESI of TCG was lower than
FIGURE 2 | SDS-PAGE gel electrophoresis of cartilage gelatin from Siberian sturgeon and pigskin gelatin. Lane 1, sturgeon cartilage gelatin; lane 2, sturgeon
cartilage collagen; lane 3, pigskin gelatin; 4, protein marker.
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that of PSG (P < 0.05), indicating that emulsions containing PSG
were more stable than that of the TCG. The results agreed with
the report that larger gelatin (MW = 120 kDa) could stabilize oil-
in-water emulsions more effectively than low-molecular-weight
gelatin (MW = 50 kDa) (Jellouli et al., 2011).

Gelatin is generated by the incomplete degradation of collagen,
and the solubility of collagen hydrolysates was positively correlated
with their molecular weights (Li et al., 2013; Chi et al., 2016).
Therefore, SDS-PAGE patterns indicated that more molecular
fragments below 100 kDa and lower contents of a and b chains
were found in TCG compared with PSG (Figure 2), which caused
the high EAI and low ESI of TCG.

As shown in Table 4, the FC of TCG (75.37 ± 3.52%) was
significantly lower than that of PSG (93.82 ± 3.19%) (P < 0.05). The
foaming characteristics of gelatins are positively correlated with
the hydrophobicity of the unfolded proteins, which form the
hydrophobic regions for the adsorption at the air–water interface
(Mutilangi et al., 1996; Jellouli et al., 2011). The difference in FC
between TCG and PSG should be due to the lower content (275
Frontiers in Marine Science | www.frontiersin.org 8
residues/1,000 residues) of hydrophobic amino acid (Ala, Val, Iso,
Leu, Pro, Met, and Phe) of TCG than that (296 residues/1,000
residues) of PSG.

Similarly, the FS of TCG was lower than that of PSG at 30 and
60 min at the same concentration. The FS of the gelatin solution is
generally positively related to the MWs of polypeptides (van der
Ven et al., 2002). The molecular weight of TCG was lower than that
of PSG, causing the films formed using TCG to have a weaker and
smaller elasticity, thus inducing their unstable foam properties.

FBC is dependent on the content of the exposured
hydrophobic residues inside the gelatin. Table 4 shows that the
FBC of TCG was 205.97 ± 6.32%, which was lower than that
(436.19 ± 10.52) of PSG. This result is due to the hydrophobic
amino acid content of TCG (275 residues/1,000 residues) which
was less than that of PSG (296 residues/1,000 residues) (Table 3).
Conversely, the WHC of TCG (371.36 ± 11.59) was higher than
that (258.42 ± 7.34) of PSG, which should be influenced by the
content of hydrophilic amino acids between TCG (725 residues/
1,000 residues) and PSG (704 residues/1,000 residues).
A B

FIGURE 3 | Ultraviolet absorption spectra of cartilage gelatin (A) from Siberian sturgeon and pigskin gelatin (B).
A B

FIGURE 4 | FTIR spectra of cartilage gelatin (A) from Siberian sturgeon and pigskin gelatin (B).
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Protective Effect of TCG on
UVA-Injured HSFBs
Effects of UVA Radiation and TCG Doses on the
Viability of HSFBs
HSFBs were irradiated with different doses of UVA (5, 10, 15, 20,
and 25 J/cm2) to establish the UVA-injured cell model. As shown
Frontiers in Marine Science | www.frontiersin.org 9
in Figure 6A, the viability of HSFBs presented a significantly
downward trend as the UVA doses increased from 5 to 25 J/cm2

and dropped to 50.93 ± 3.47% at the dose of 15 J/cm2. Lone et al.
reported that the corresponding UVA radiation dose is the
optimal choice for establishing a UVA-injured cell model when
it induced the cell viability at about 50% (Lone et al., 2020).
A B

FIGURE 5 | Zeta potential (A) and transparency (B) of cartilage gelatin from Siberian sturgeon. All data are expressed as mean ± SD (n = 3).
A B

FIGURE 6 | Effects of ultraviolet-A radiation (A) and cartilage gelatin (B) doses on the viability of human skin fibroblasts. All data are presented as the mean ± SD
(n = 3). Values with the same letters indicate no significant difference (P > 0.05).
TABLE 4 | Emulsion activity index (EAI), emulsion stability index (ESI), foam capacity (FC), foam stability (FS), fat-binding capacity (FBC), and water-holding capacity
(WHC) of cartilage gelatin (TCG) and pigskin gelatin (PSG).

TCG PSG

EAI (m2/g) 45.39 ± 1.67b 32.26 ± 1.58a

ESI (min) 9.69 ± 0.86b 12.93 ± 0.95a

FC (%) 75.37 ± 3.52b 93.82 ± 3.19a

FS30 (%) 89.65 ± 3.26b 98.46 ± 3.51a

FS60 (%) 76.32 ± 2.06b 86.33 ± 4.22a

WHC (%) 205.97 ± 6.32b 436.19 ± 10.52a

FBC (%) 371.36 ± 11.59b 258.42 ± 7.34a
June 2022 | Volume 9
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Therefore, the radiation dose of 15 J/cm2 was chosen to establish
the UVA-injured HSFB model.

The effects of TCG doses (50, 100, 200, and 400 mg/ml) on the
viability of HSFBs were studied by the MTT method, and the
data are presented in Figure 6B. No significant difference was
found between the blank control and TCG groups when the
tested dose was not more than 200 mg/ml. Therefore, the TCG
concentrations of 50, 100, and 200 mg/ml were selected for the
cell protective experiment.

Effect of TCG on the Cell Viability, ROS Level, and
MDA Content of UVA-Injured HSFBs
The protective effect of TCG on UVA-injured HSFBs was
investigated, and the data are shown in Figure 7. The HSFB
viability of the TCG groups was 58.63 ± 3.66, 64.79 ± 2.98, and
67.76 ± 3.49% at 50, 100, and 200 mg/ml, respectively, and the
viability was significantly higher than that (50.93 ± 3.47%) of the
model group (P < 0.05) and lower than that (84.34 ± 5.32%) of
the positive control (P < 0.001) (Figure 7A). The ROS levels of the
TCG groups were significantly decreased from 339.76 ± 23.67 to
293.82 ± 21.98, 259.76 ± 16.58, and 236.39 ± 10.55% of the blank
control at 50, 100, and 200 mmol/L, respectively (P < 0.001)
(Figure 7B). Similarly, TCG could significantly reduce the MDA
contents of the UVA-injured HSFB model. Compared with the
model group (6.57 ± 0.35 nmol/mg prot), the MDA contents of
TCG were gradually reduced to 5.95 ± 0.31, 5.63 ± 0.28, and 5.38 ±
0.32 nmol/mg protein at 50, 100, and 200 mmol/L, respectively
(P < 0.01) (Figure 7C). Furthermore, significant dose–effect
Frontiers in Marine Science | www.frontiersin.org 10
relationships between TCG concentrations and cell viability,
ROS level, andMDA content were observed, as shown in Figure 7.

Effects of TCG on the SOD, GSH-Px, and CAT
Activity in UVA-Injured HSFBs
As shown in Figure 8, the activity of antioxidases (SOD, GSH-
Px, and CAT) of UVA-injured HSFBs incubated with TCG was
concentration-dependently increased when the TCG
concentrations were increased from 50 to 200 mg/ml. At 200
mg/ml, the SOD, GSH-Px, and CAT activity in the TCG groups
was 162.29 ± 10.92, 34.17 ± 2.65, and 27.11 ± 1.83 U/mg protein,
respectively, which was significantly higher than the activity of
SOD (122.36 ± 7.45 U/mg prot), GSH-Px (23.19 ± 1.63 U/mg
prot), and CAT (15.78 ± 1.46 U/mg prot) in the model group
(P < 0.001). However, the activity of antioxidases in the TCG
groups was significantly lower than that of the positive control
(P < 0.01).

Excess ROS generated from UVA exposure is linked to
oxidative stress and damage to the skin, including loss of
structural proteins, skin photoaging, DNA mutations, and
even skin cancer (Ohba et al., 2016; Kuo et al., 2020).
Therefore, excess ROS must be effectively eliminated by
endogenous antioxidant defense systems, including
antioxidants and antioxidant enzymes, to reduce the oxidative
damage (Sila and Bougatef, 2016; Cai et al., 2019; Xiao et al.,
2020; Wang et al., 2021). Presently, some bioactive natural
products, such as crocetin (Ohba et al., 2016), caffeamide (Kuo
et al., 2020), baicalin (Zhou et al., 2012), thymoquinone (Liang
A B

C

FIGURE 7 | Effects of cartilage gelatin on cell viability (A), reactive oxygen species level (B), and malondialdehyde content (C) of UVA-injured human skin fibroblast
model. Glutathione was used as the positive control. All data are presented as mean ± SD (n = 3). ***P < 0.001 and **P < 0.01 vs. blank group; ###P < 0.001, ##P <
0.01, and #P < 0.05 vs. model group; +++P < 0.001 and ++P < 0.01 vs. UVA + GSH group.
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et al., 2021), and quercetin (Inal and Kahraman, 2000), show
significant protective effects on cells and tissues by alleviating
the oxidative and inflammatory responses induced by UVA. In
addition, collagens, gelatins, and their derived peptides showed
great potential in ameliorating skin photoaging induced by
UVA (Pan et al., 2019; Zhang et al., 2020; Karnjanapratum and
Benjakul, 2020; Li et al., 2022). The present results indicated
that TCG could protect HSFBs against UVA injury by
increasing the activity of antioxidant enzymes to scavenge
excess ROS.
CONCLUSION

In the experiment, cartilage gelatin of Siberian sturgeon was
prepared using the hot water method under optimized
conditions using single-factor and orthogonal experiments.
The TCG showed the main characteristics of gelatins, but its
structure stability was lower than that of PSG because of the low
content of imino acids. The TCG exhibited lower water content,
gel strength, ESI, FC, FS, and WHC but higher ash content,
transmittance, EAI, and FBC. More importantly, the TCG could
significantly protect HSFBs against UVA injury by increasing the
activity of antioxidant enzymes to scavenge excess ROS and
decrease the content of MDA. The present results suggested that
sturgeon by-products could be used to produce high-value-
added functional products, and the prepared cartilage gelatin
Frontiers in Marine Science | www.frontiersin.org 11
(TCG) might act as active ingredients applied in health-
promoting products against UVA injury.
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