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The current coral reefs crisis is motivating a number of innovative projects attempting to 
leverage new mechanisms to avoid coral bleaching, reduce coral mortality and restore 
damaged reefs. Shading the reef, through seawater atomised fogging, is one tool in 
development to reduce levels of irradiance and temperature. To evaluate the potential 
viability of this concept, here we review 91 years (1930–2021) of published research 
looking at the effects of different levels of shade and light on coral reefs. We summarised 
the types of studies, places, coral species used, common responses variable measured, 
and types of shades used among studies. We discuss issues related to reef scale shading 
applicability, different methods used to measure light, standardisation methods and most 
importantly the positive and negative effects of shading corals.

Keywords: irradiance, ultraviolet radiation, visible light, shading, fogging, cloud brightening, reef restoration, 
climate change

INTRODUCTION

The effects of shade and light on corals have been studied for at least 91 years (Yonge and Nicholls, 
1930; Kawaguti, 1937; Wethey and Porter, 1976). Early on, this research was aimed at understanding 
coral biology and patterns of species distributions (Coles and Jokiel, 1978; Falkowski and Dubinsky, 
1981; Roth et al., 1982; Dinesen, 1983). Later, shading research was used to comprehend the effects 
of ultraviolet radiation (UVR) on corals due to ozone depletion (Shick et al., 1996; Lesser, 2000). 
Shading was also used to elucidate different effects of light on coral growth (Rinkevich and Loya, 
1984; Rocha et al., 2013b), which resulted in health improvements of corals grown for the aquarium 
trade (Rocha et al., 2013a). More recently, shading research has also been used to understand coral 
distribution patterns and physiology among mesophotic and shallow reefs (Tamir et al., 2019; Ben-
Zvi et al., 2021; Lesser et al., 2021), and to describe how low light environments may act as refugia 
for corals against climate change (Kellogg et al., 2020; Stewart et al., 2021).

After the severe mass bleaching of coral around the world in 1998, models predicted such events 
will increase in frequency and magnitude during the next 20 years (Hoegh-Guldberg, 1999). Those 
predictions were correct, with mass coral bleaching events being consecutively documented on the 
Great Barrier Reef during 2001–2002, 2005–2006, 2008–2011, 2016 and 2017 (Australian Institute 
of Marine Science, 2021) and in the Caribbean during 2005, 2010–2011, 2015 and 2017 (Muñiz-
Castillo et al., 2019). The 2016 episode is considered the worst ever recorded (Hughes et al., 2017) and 
it is confirmed that coral bleaching events are now more frequent, becoming stronger and producing 
cumulative effects (Grottoli et  al., 2014; Hughes et  al., 2017; Hughes et  al., 2018). Furthermore, 
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global sea surface temperatures are predicted to rise under all 
emissions scenarios (including the lowest plausible) until at least 
mid-century (IPCC, 2021), further increasing the frequency 
and intensity of coral bleaching events. Thus, new scientific 
approaches and technological solutions are needed to preserve 
the remaining coral reefs around the world (Hughes et al., 2010). 
Consequently, a diverse suite of interventions to pause coral reef 
decline is being evaluated and tested around the world (Bay 
et al., 2019; Harrison et al., 2019; Condie et al., 2021; Tollefson, 
2021).

Shading of corals is included among a list of unconventional 
conservation strategies to address temperature and carbon 
dioxide as global stressors of marine ecosystems (Rau et  al., 
2012). Besides heat stress, the severity of coral bleaching damage 
is also correlated with light intensity, thus shading corals from 
direct sunlight can reduce the bleaching effect of elevated ocean 
temperatures (Hoegh-Guldberg, 1999). Reduced coral bleaching 
at 10m depth is attributed to lower levels of light rather than 
lower temperatures (Baird et  al., 2018). Regardless of whether 
the source of shade is natural or artificial, shading reduces light 
availability on coral reefs (Coles and Jokiel, 1978; Anthony and 
Hoegh-Guldberg, 2003; Skirving et  al., 2017). Shaded corals 
subject to high temperature stress will, therefore, be less likely to 
bleach than unshaded corals under the same stress (Baker et al., 
2008). Recent research is finding positive effects of reduced 
light habitats (e.g., corals growing under mangrove shade) 
(Yates et al., 2014; Kellogg et al., 2020; Stewart et al., 2021) and 
other shading sources (e.g., also including turbidity, clouds and 
artificial shades). A number of authors suggest that such natural 
shading could help conserve corals under climate change 
scenarios (Cacciapaglia and van Woesik, 2016; Bellworthy and 
Fine, 2017; Coelho et al., 2017; Gonzalez-Espinosa and Donner, 
2021), but the percentage cover of such natural shading only 
impacts a tiny fraction of coral reefs around the world. However, 
some other research is investigating and reporting negative 
effects of reduced light (e.g., turbidity) in coral reefs (Juhi et al., 
2021; López-Londoño et al., 2021).  Furthermore, thermal coral 
bleaching in the absence of light and photosynthesis has been 
also been experimentally demonstrated indicating there are 
other possible unelucidated bleaching mechanisms (Tolleter 
et al., 2013).

While there are challenges associated with the scale of 
coral reefs, the effects of shading on corals are currently being 
assessed as a tool to mitigate bleaching events. Currently, the 
shading of coral reefs over large spatial scales seems far-fetched 
and are yet to be tested (Condie et al., 2021). Recent advances 
in cloud brightening and artificial fogging technololgy, however, 
could make shading entire reefs a reality (Harrison et al., 2019). 
More recently, field trials testing the concepts of fogging, cloud 
and sky brightening technologies to cool and shade the reef 
were tested in Australia (Tollefson, 2021). Some promising 
preliminary results of those trials showed that prototypes using 
different nozzle technologies (effervescent and impact pin 
nozzles) can produce sufficient numbers of sub-micron droplets 
of seawater per second to create a seawater aerosol fog plume 
with the right light scattering properties to potentially shade 

sites on coral reefs in low wind conditions (Harrison et al., 2019; 
Baker et al., 2021). 

To help assess the feasibility of large-scale shading 
endeavours to reduce the risk of coral bleaching, we reviewed 
empirical studies looking at the influence of shade and light 
variation on corals. Specifically, we evaluated the question – what 
is the minimum amount of shade required to protect coral reefs 
against bleaching events? Additionally, we reviewed commonly 
measured variable responses that should be considered to 
demonstrate the effects of shade on corals under climate change 
scenarios. Overall, this review summarises the available literature 
to gather evidence to test if shading coral reefs may effectively 
help reduce coral mortality during mass bleaching events.

METHODS

Using the following publication search engines: Google Scholar, 
ResearchGate, Scopus, and Science Direct, we used different 
combinations of keywords to find available literature related to 
the effects of shade and/or different types of irradiance levels 
(from natural or artificial light) on corals. These keywords 
included: shade + shading + light + corals + bleaching + 
climate change + thermal effects + UV radiation + irradiance + 
visible light + clouds + fogging, etc. We searched and extracted 
information for around three months and stopped searching on 
the 18th October 2021. Although our search was comprehensive, 
we acknowledge that we still may have missed some published 
works in journals not indexed by the publication search engines 
as well as information contained in grey literature. 

The targeted information extracted from the publications 
included: type of shade, irradiance spectrum, irradiance levels, 
irradiance measurement tool, reported irradiance units, type of 
light (natural or artificial), studied species, place of study (in situ, 
ex situ), response variables measured, standardisation method, 
consideration of clouds, country, year published, duration of 
the study, recovery period and result highlights. Studies looking 
at the effects of light/shade only on the zooxanthellae or other 
coral reef organisms (e.g. sea anemones, crustose coralline 
algae) were not included in our analyses. Studies that included 
more than one experiment with clear separated results were 
treated as independent studies in the analyses (e.g. Toller et al., 
2001, Coelho et  al., 2017; Rosic et  al., 2020). For studies that 
reported very detailed irradiance levels, such as hourly levels 
among several spectrum ranges (UV, UVB and PAR) and along 
a depth gradient (e.g. Lesser, 2000), only the maximum value 
per depth and spectrum was considered in the comparative 
analysis. Studies with length duration in hours (<1 day, e.g. 6 h, 
12 h) were counted as one-day duration.

Overall Description of Studies
In total, we reviewed 143 independent studies/experiments 
extracted from 124 peer-reviewed articles, one scientific report, 
one PhD, Master and honour thesis respectively, and two 
conference proceedings. More than half of the experiments were 
conducted using coral species from two families, 
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Pocilloporidae (32%) and Acroporidae (26%). Specifically, most 
of the experiments used Stylophora pistillata (32%), Pocillopora 
damicornis (26%), Acropora millepora (11%) and Acropora 
muricata (8%) (Figure 1). A recent review looking at coral heat-
stress experiments found similar results, most coral knowledge 

is based on the study of three main families (Acroporidae, 
Pocilloporidae and Poritidae) (McLachlan et al., 2020). Duration 
of studies varied from less than a day to up to 960 days (median 
± SD = 65.5 ± 127 d). Only four studies provided information 
related to recovery period after bleaching.

A B

FIGURE 1 |   Main coral families (A) and species (B) used on studies looking at the effects of shade and light on corals. Figure below: The dimensions of the 
coral picture is proportional to the number of studies per species. Species are enumerated from most to least studied respectively. 1: Stylophora pistillata, 
picture: J. Maragos; 2: Pocillopora damicornis, pic: R. Kelley; 3: Acropora millepora, pic: J. Veron; 4: Acropora muricata*, pic: J. Veron; 5: Montipora digitata, 
pic: J. Veron; 6: Orbicella faveolata*, pic: E. Weil; 7: Galaxea fascicularis, pic: J. Veron; 8: Orbicella annularis*, pic: E. Weil; 9: Acropora cervicornis, pic: J. Veron; 
10: Dipsastrea favus*, pic: J. Veron; 11: Coelastrea aspera*, pic: G Paulay; 12: Monstastraea cavernosa, pic: J. Veron; 13: Porites cylindrica, pic: E. Lovell; 
14: Acropora hyacinthus, pic: E Turak; 15: Porites compressa, pic: C. Hunter; 16: Seriatopora hystrix, pic: J. Veron; 17: Turbinaria reniformis, pic: J. Veron; 18: 
Agaricia agaricites*, pic: J. Veron; 19: Acropora tenuis, pic: J. Veron; 20: Pseudodiploria strigosa*, pic: J. Veron; 21: Plerogyra sinuososa, pic: J. Veron; 22: Porites 
astreoides, pic: J. Veron; 23: Pavona cactus*, pic: J. Veron; 24: Acropora intermedia, pic: E Turak; 25: Acropora pulchra, pic: J. Veron; 26: Agaricia tenuifolia, pic: 
J. Veron; 27: Agaricia humilis*, pic: J. Veron; 28: Colpophyllia natans, pic: J. Veron; 29: Fimbriaphyllia paradivisa*, pic: J. Veron; 30: Montipora monasteriata, pic: 
J Veron; 31: Platygira sinensis, pic: G Allen; 32: Pocillopora verrucosa, pic: J. Veron; 33: Goniastrea pectinata, pic; E. Lovell; 34: Porites furcata, pic: J. Veron; 35: 
Turbinaria mesenterina, pic: J. Veron; 36: Montipora capitata, pic: J. Veron; 38: Pocillopora acuta*, pic: J. Veron. All pictures were downloaded and slightly modified 
from Corals of the World Veron et al., 2021. *updated species name based on World Register of Marine Species it might differ with analised studies. Species 
representing <0.5% of studies were not included.
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Most studies were carried out in the field (in situ, 36%), followed 
by ex situ (laboratory, aquaria and mesocosm) experiments under 
sunlight (33%), with artificial light (25%), with sun and artificial 
light (2.5%), with non-specified type of light (2.8%) and a mix of 
in situ/ex situ (0.7%). More than half of the studies (53%) were 
undertaken in Australia, Israel, Hawaii and Monaco (Figure 2). 
Studies ranged from 1930 until 2021, with an overall increasing 
tendency and at least one study every year since 2000. There were 
peaks in the number of studies following years with major coral 
bleaching events (except in 2008 and 2018) (Figure 2).

Irradiance Spectrum and Irradiance Levels 
Across Studies
This review revealed a large variety of factors that directly 
affect irradiance measurements and may jeopardise accurate 
normalisation for comparison amongst studies. However, we 
recognise that some of the differences might be attributed 
to disparities with funding, access to different technologies 
among regions and detailed project scope. For example, at least 
20 different apparatus were used to measure irradiance, with 
different principles of operation, calibration, and measurement 
interval (i.e. every 5, 10, 15, 30 or 60 min respectively, once a week, 
only at noon, during 12h, 24h or during the whole experimental 
period). Similarly, we identified 33 different wavelength ranges 
selected from the irradiance spectrum; wide variety of shade 
materials (e.g. polyvinyl chloride, polyethylene, acrylic, cotton 

fabric, plastic), filter characteristics (e.g. 8%, 20%, 40%, 65%, 98% 
UV or PAR blockage), artificial lights (e.g. metal halide, LED, 
fluorescent lamps), natural light (sunlight, caves, under corals, 
under mangroves, under other natural shades), depth (above and 
below surface, and from the surface to 50m), as well as more than 
20 different units used to report the level of irradiance (e.g. μmol 
photons m-2 s-1, μmol m-2 s-1, μmol quanta m-2 s-1, W m-2, E m-2 
h-1, g cal cm-2, kJm-2d-1, lux, Js-1m-2nm-1, micro Einstein m-2s-1) 
(Table 1). This situation has been previously reported in a global 
meta-analysis of calcification on coral reefs, in which light/PAR 
data was excluded due to the variety of measurement methods 
and reporting units (Davis et  al., 2021). A similar example 
can be found in horticultural science, where quantum flux is 
recommended as the most appropriate means to report radiation, 
but differences among instrument calibration, reporting units, 
growers recommendations and engineering specification are 
an issue when comparing among studies (Thimijan and Heins, 
1983; Sipos et al., 2020). 

The level of detail when reporting irradiance varied 
substantially among publications. While some studies provided 
very detailed irradiance levels at several depths (e.g. Gleason 
and Wellington, 1995; Lesser, 2000; Anthony et al., 2004), others 
did not provide any sort of irradiance information, simply 
using categories such as high light versus low light, sunlight vs 
shade, shallow vs deep (e.g. Morse et al., 1988; Titlyanov et al., 
2001; Fabricius et  al., 2004). Most studies (41%) measured the 
irradiance levels on the visible light spectrum (PAR, 400–700 

TABLE 1 | Different irradiance units observed among reviewed studies, with a calculated conversion factor to transform all units to preferred watts m-2.

Unit group Unit Studies (%) Energy Area Time Convert to Conv factor Observation

mol μmol photons 
m-2 s-1

29 umol m-2 s-1 watts m-2 0.217391304

mol μmol m−2 s−1 21 umol m-2 s-1 watts m-2 0.217391304
mol μmol quanta m−2 

s−1

19 umol m-2 s-1 watts m-2 0.217391304

watts W m−2 9 watts m-2 watts m-2 1
mol mol quanta m−2 d−13 mol m-2 d-1 watts m-2 0.217391304
watts mW cm−2 3 watts m-2 watts m-2 10000000
micro eins microeinsteins 

m-2 s-1 
2 umol m-2 s-1 watts m-2 0.217391304

lux lux 2 lux m-2 watts m-2 0.008196721
joule J s-1 m-2 nm-1 1 j m-2 s-1 watts m-2 nm-1 1 for a spectral 

channel
joule kJ m-2 day-1 1 kj m-2 d-1 watts m-2 1.15741E-05
joule J m-2 d-1 x10^4 1 j m-2 d-1 watts m-2 1.15741E-05
joule imp g cal cm-2 1 4.18674 J cm-2 ? watts m-2 41867.4 s-1 assumed
micro eins microEinsteins 1 umol m-2 s-1 watts m-2 0.217391304
micro eins uE 1 umol m-2 s-1 watts m-2 0.217391304
micro eins E m-2 h-1 1 mol m-2 h-1 watts m-2 6.03865E-05
mol mol m-2 s-1 1 mol m-2 s-1 watts m-2 0.217391304
mol mol photons m-2 

d-1

1 mol m-2 d-1 watts m-2 2.5161E-06

mol mol m-2 d-1 1 mol m-2 d-1 watts m-2 2.5161E-06
watts uW m-2 (nm-1) 1 watts m-2 watts m-2 nm-1 1000000 for a spectral 

channel
watts μW cm−2 1 watts m-2 watts m-2 10000000000
watts W m-2 (s-1) 1 watts m-2   watts m-2 1  
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nm). However, a quarter of the analysed studies failed to report 
irradiance spectrum, yet half of those studies stated some sort 
of irradiance levels (PAR spectrum was assumed in those cases) 
(Figure 3). Furthermore, 8% of the studies report light or shade 
levels as a percentage of the ambient irradiance but did not report 
that ambient irradiance level.

As early as 60 years ago scientists recognised that cloud 
cover affects coral reefs (Odum and Odum, 1955). Cloud cover 
significantly reduces the availability of light, making light 
measurements non comparable between sunny and cloudy 
days (Brakel, 1979). To illustrate the strong effects of clouds 
and their relevance when measuring light levels, Roth et  al. 
(1982) suggested that when determining light intensity, cloud 
cover was more important than water depth. The best example 
available to demonstrate the effect of clouds on corals reefs is the 
cloudy weather during the summer of 1998, which significantly 
reduced the amount of sun hours, UVR and visible light over the 
reefs of the Society Islands (French Polynesia), which perhaps 
contributed to avoidance of a predicted massive bleaching 
event (based on SST modelling) (Mumby et al., 2001). Despite 
the importance of cloud cover, the current review revealed that 
only 38% of 102 studies that utilised natural light considered the 
presence of cloud cover when measuring the irradiance levels.

Ultraviolet Radiation Blockage
The effects of UVR on corals reefs has been previously reviewed 
(Shick et  al., 1996; Banaszak and Lesser, 2009). Following this 
work, however, the publication rate of studies investigating UVR 
effects on coral reefs has decreased because of the stratospheric 
ozone restoration during the last decade (Courtial et  al., 
2017). Most studies indicate that UVR produced a variety of 
negative effects on corals reefs, such as reduction of respiration, 
photosynthesis, coral/zooxanthellae growth/calcification, DNA 
damage, mortality, oxidative stress, and adverse effects on larvae 
settlement and reproductive functions (Jokiel, 1980; Lesser, 1996; 
Shick et  al., 1996; Banaszak and Lesser, 2009). A few studies 
have shown positive effects of UVR in coral reefs organisms 
(e.g. protection against bleaching caused by Vibrio in the 
Mediterranean and a larger number of planula larvae released by 
Pocillopora damicornis) (Jokiel and York, 1982; Fine et al., 2002). 
Blanckaert et al. (2021) found that low levels of UVR increases 
antioxidant capacity under elevated temperatures and high 
levels  of nitrates.

In general, the high light intensities that are associated with 
widespread bleaching are also coupled with high temperatures 
(Brown, 1997; Berkelmans, 2002). UVR and high temperatures 
worsen the stress effects on corals (Courtial et  al., 2017). For 

FIGURE 2 | Left: Studies per country, referring to the place (reef or laboratory) and source of light used (natural or artificial). Right: Number of studies and cumulative 
number of studies looking at the effects of shade or light on corals, red arrows highlight years where massive bleaching events occurred.

A B C

FIGURE 3 | Irradiance spectrum and irradiance levels reported among analysed studies. (A) Proportion of different irradiance spectrum reported by range (nm); 
(B) Irradiance levels (μmol m-2s-1) specifically for visible light (PAR, 400–700) and (C) Irradiance levels (W m-2) on the ultraviolet radiation spectrum. Note that X axis 
on graphs b and c are arbitrary for illustration purpose, since most studies report one value along the spectrum range (e.g., PAR: 400–700; UVB: 290–320; UVA: 
320–400; UVR: 290–400; UVC: 190–280).
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instance, in Tahiti, the indicated mean daily UV-B threshold for 
corals to start bleaching is between 8–10 J cm¯² with temperatures 
between 29.0–29.5°C, and for a severe bleaching event the mean 
daily UV-B values may surpass >12 J cm¯² with temperatures 
above 30°C (Drollet et al., 1996). UV inhibition seems to occur 
both at low and high light intensities with a high component of 
short-wave radiation, and with maximum inhibitory effects with 
<380nm wavelengths (Roth et al., 1982). This must be considered 
specially for shallow water areas (0–5m), where direct ultraviolet 
irradiance is significantly higher compared to other parts of the 
reef (Veal et al., 2009).

Most bleaching events are directly attributed to rising 
ocean temperatures (Hughes et  al., 2017; Hughes et  al., 2018), 
although cold water coral bleaching is also possible (Hoegh-
Guldberg and Fine, 2004; González-Espinosa and Donner, 
2020). Nonetheless, some bleaching events can occur irrespective 
of water temperatures (Atwood et  al., 1992; Gleason and 
Wellington, 1993). For instance, doldrum conditions leads to 
increased water clarity which allows UVR to reach all depths 
within the photic zone and produce bleaching effects at normal 
temperatures (Gleason and Wellington, 1993). UVR has been 
predicted to increase 10% per decade in summer months in 
the tropics, associated with depletion of ozone and cloud cover 
decrease (Udelhofen et  al., 1999). After an extensive review of 
the effects of UVR on coral reefs organisms, Banaszak and Lesser 
(2009) concluded that UVR will only have significant effects in 
shallow reef environments. For those reason, any potential UVR 
reduction through artificial shading technologies may be worth 
pursuing.

Natural and Artificial Shading Effects
Natural Shading
The positive effects of natural shade on light and temperature-
stressed corals are well known. Shade-adapted corals have 
higher chlorophyll and zooxanthellae symbiont densities to 
capture more light energy compared to corals adapted to high 
light environments (Falkowski and Dubinsky, 1981; Anthony 
and Hoegh-Guldberg, 2003), with shaded corals containing 
up to 7.4 times more chlorophyll than those adapted to high 
light intensities (Falkowski and Dubinsky, 1981). Shaded 
microhabitats cause corals to acclimate and photo-adapt 
to maximise light interception per unit of biomass and per 
unit mass of photosynthetic pigments (Anthony and Hoegh-
Guldberg, 2003). 

Natural shaded microhabitats (e.g. crevices, shade produced 
by the reef matrix or other colonies) provide refuge to corals 
and reduce bleaching severity during thermal stress episodes 
(Hoogenboom et al., 2017). Using data from 2,398 Florida reef 
sites (2005-2015), van Woesik and McCaffrey (2017) concluded 
that corals under shaded habitat (no light levels provided) and 
coral genotypes adapted to shaded environments with high 
productivity and turbidity were less likely to suffer thermal 
stress during the nearly annual occurrence of bleaching events. 
Another large study looking at the bleaching susceptibility 
of 191 species in the Maldives, found a wide range of species 
in shaded microhabitats with reduced bleaching effect, and 

therefore, unshaded microhabitats (3 to 5  m depth) are 1.3 
times more likely to bleach than corals in shaded microhabitats 
(Muir et al., 2017). In the warm waters of Palau, no significant 
bleaching has been observed on reefs naturally shaded by steep 
natural walls (Fabricius et al., 2004).

Although protection against multiple stressors and long-
term buffering are considered essential to properly define 
a coral refugia (Kavousi and Keppel, 2018), an increasing 
number of shaded and low light habitats, previously considered 
non-optimal for coral growth, are becoming progressively 
recognised as valuable coral refugium under climate change 
scenarios (Camp et  al., 2018). For instance, in the US Virgin 
Islands, over 30 coral species are thriving in low light (70% PAR 
attenuation) conditions due to mangrove shading (Yates et al., 
2014). Even turbid waters (able to reduce irradiance <250 μmol 
m-2s-1), that previously were considered inhospitable for corals, 
are now being considered as potential refuge under current 
ocean warming predictions (Cacciapaglia and van Woesik, 
2016; Teixeira et  al., 2019). That is the case of South Atlantic 
coral reefs, where corals which have high tolerance to turbidity, 
nutrients and deeper bathymetric distribution, are currently 
being included among future coral refugia habitats (Mies et al., 
2020). In Australia, nearshore turbid areas at the central GBR 
proved to be a refugia during elevated temperature episodes 
during a 2016 bleaching event (Morgan et  al., 2017). Places 
with decreased light and temperature are being considered as 
future refugia for coral reefs (West and Salm, 2003; Kavousi 
and Keppel, 2018). However, there is substantial evidence that 
reduced water clarity caused by terrestrial water run-off can 
cause negative effects on coral reefs (De’ath and Fabricius, 2010; 
Fabricius et al., 2014; López-Londoño et al., 2021). The effects 
of terrestrial runoff on coral reefs has been extensively studied 
and reviewed (Fabricius, 2005; Macdonald et  al., 2013; Jones 
et al., 2020; O’Leary et al., 2021). Overall, it has been estimated 
that turbidity by suspended solids in the water column has 
been estimated to account for up to 74–79% of the total annual 
variation in irradiance, whereas clouds contribute 14–17% and 
tides 7–10% (Anthony et al., 2004).

Corals consume more food in shaded/turbid environments 
(Anthony and Fabricius, 2000), which could help explain 
why shaded corals can avoid coral bleaching. It is well known 
that energy reserves (lipids) are depleted during bleaching 
(Rodrigues et al., 2008; Grottoli and Rodrigues, 2011). Corals 
that are able to increase heterotrophy and maintain their energy 
reserves, are more likely to survive high temperature events 
(Grottoli et al., 2006; Rodrigues and Grottoli, 2007; Tagliafico 
et  al., 2017). For this reason, energy status (lipid stores) is 
considered a key predictor variable of coral survivorship over 
time (Anthony et  al., 2007). Similarly, the effects of reduced 
light have also been studied on mesophotic reefs (deeper than 
30  m), this work demonstrates that corals transitioning to 
heterotrophy (e.g., capturing plankton) due to light limitations 
deeper than 45 m and zooxanthellae are well adapted to low light 
conditions (Lesser et al., 2010). In addition, coral features such 
as: morphology, skeletal scattering of light, tissue thickness and 
symbiont species can play important role in coral population 
dynamics on mesophotic reefs (Lesser et al., 2021).
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Even though shaded locations have been identified as potential 
refuges under high temperatures and irradiance scenarios, some 
very low light conditions have been associated with negative 
effects on corals. For instance, low light levels can significantly 
impact growth (Comeau et  al., 2014) and some studies found 
low survival and low recruitment of corals underneath large 
Acropora hyacinthus shade (Baird and Hughes, 2000). Although 
at the other end of the range, high levels of light (with high 
temperatures) may also significantly reduce coral growth (Bahr 
et al., 2017). Corals may be more susceptible to bleaching under 
extreme light levels when also subjected to ocean acidification 
(Suggett et al., 2013).

Artificial Shading
The first experiment using artificial shading to study the effects 
of temperature and light on corals was carried out in 1978, when 
Coles and Jokiel (1978) used layers of neutral density screening 
to achieve 75% and 45% reduction of the full natural light. They 
demonstrated that high light intensities can aggravate the damage 
on corals sustained at high temperatures and that the environmental 
stress history may determine subsequent stress survival of corals. 
Since then, there has been a growing recognition that shading coral 
reefs represents a viable option to prevent bleaching, although the 
issue of how to sufficiently scale-up shading has yet to be resolved.

The recognised potential for shading to mitigate coral bleaching 
has boosted the number of projects (scientific and community 
projects) using and testing different types of shades to protect corals 
(Figure 4). For instance, awnings or umbrella-like devices attached 
to buoys have been considered to shade and protect corals located 
on high value reefs (Simpson et al., 2008), and a modification of 
that idea is currently being used in the Maldives on a community 

restoration project. Moreover, a study using shade cloth under 
natural light to achieve two levels of lights (low: 30 and high: 500 
μmol photons m-2 s-1), demonstrated that low-light-acclimatised 
corals presented higher levels of chlorophyll, symbiont density 
and photosystem II protein than corals in high-light treatments 
(Jeans et al., 2013). Another project comparing the effectiveness 
of different engineering technologies to produce shade, concluded 
that shade cloth was superior at reducing irradiance and seawater 
temperatures when compared to aeration, airlift and sprinklers 
(Kramer et  al., 2017). Positive effects of artificial shade under 
laboratory conditions have also demonstrated that non-shaded 
corals grow slower and show less colour than shaded corals 
(Coelho et al., 2017). A study using no shade, 28%, 65% and 87% 
shade respectively, found the largest reduction of zooxanthellae 
density at the extremes: no shade and 87% shade (Piggot et  al., 
2009). Overall, most studies used shade levels higher than 50%, 
highlighting a need to develop more research using lower levels of 
shade, which will be more feasible for larger scale shading attempts.

Coral bleaching and mortality caused by instances of extreme 
low tide combined with high solar radiation are common events 
(Loya, 1976; Anthony and Kerswell, 2007; Raymundo et al., 2019). 
A survey of more than 13,000 corals at 14 reefs sites showed 
significant bleaching at reefs without waves (up to 75%) whereas 
wave-exposed reefs had < 1% bleaching (Anthony and Kerswell, 
2007). Corals as deep as nine metres were bleached due to the 
increased light stress. Authors concluded that extreme low tidal 
events can be as damaging as high temperature episodes and that 
wave exposed sites prevented coral desiccation due to the periodic 
washing of waves. Thus, shading the reef through seawater fogging 
could be considered an intervention for reef tidal zone areas for 
protecting corals during these predictable natural disturbances 

FIGURE 4 | Different types of shade used in diverse coral reefs shading experiments. (A) Diagram showing a 20 m2 black plastic shade deployed for five weeks to 
investigate the effects of extreme turbidity on coral reefs structure (Rogers, 1979); (B) 13 x 8 cm wire mesh shades deployed for 11 days to investigate the effects of 
surface temperature and decreasing irradiance on cellular response (Piggot et al., 2009); (C) proof of concept fog cannon (with 100 impact pin nozzle) being tested 
(October, 2021) for the fogging development, as part of the Reef Restoration and Adaptation Program (Baker et al., 2021, picture: Joel Alroe); (D) smoked plastic on 
a polyvinyl chloride reducing 20% UVR and 65% PAR to effectively reduce white-plague disease in the Caribbean (Muller and van Woesik, 2009); (E) double layer 
40% sun-block shade cloth deployed for 3 months in Panama, looking at the effects of low light environments (i.e. mangroves) as coral refugia (Stewart et al., 2021); 
(F) Outdoor experiment showing some tanks exposed to sunlight and other tanks covered with knitted black polyethylene fabric shade that reduced 75 and 50% 
respectively; (G) square-shaped shade sails of 4m2 and 9m2 and >98% UV-blockage certified deployed for 48 days to reduce macroalgal growth on degraded coral 
reefs; (H) Cotton lined fine white fabric deployed over a year to reduce the progression of coral-killing sponge in Palk Bay, India (Thinesh et al., 2017); (I) shading device 
utilised in the Maldives to protect bleached corals on a coral propagation project at Maldives (Marine Saver – Reefscapers); (J) cloud and sky brightening field trials at 
the Great Barrier Reef (March, 2021) testing the V22 cannon with 320 nozzles, as part of the Reef Restoration and Adaptation Program (picture: Brendan Kelaher).
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reported by Anthony and Kerswell (2007). The seawater fog 
shading may protect the corals against high solar irradiation and 
the fog plume droplet moisture will reduce desiccation.

Besides artificial shading as a tool to prevent coral bleaching, 
other indirect positive effects have been documented. For 
instance, shade material that reduces >98% UV has been 
successfully used to reduce macroalgal overgrowth on degraded 
coral reefs (Dajka et  al., 2021). Cottonlined white fabric shade 
(selected among wool and silk for effectively reducing up to 
30% irradiance, biodegradable nature and least absorbance of 
heat energy), was useful in reducing the spread of a coral-killing 
sponge (Thinesh et al., 2017). Furthermore, shade made out of 
smoke plastic, has been used as a tool to reduce the progression 
rate of white-plague disease (Muller and Van Woesik, 2009). 
Similar shading experiments (using polyethylene plastic 
sheeting) were attempted to reduce black-band disease in corals 
without success (Muller and Van Woesik, 2011).  We note these 
previous studies were tested in small scale areas (<9m2) only and 
scalability and practicality of using shade cloth techniques across 
larger reef areas is still unproven.

Regardless of the shade source (natural or artificial), the 
reviewed literature demonstrates that different coral species 
may respond differently (i.e., interspecific, intraspecific and 
even intracolonial variations) to variable levels of light and 
stressors (Tilstra et al., 2017; Mizerek et al., 2018; Wangpraseurt 
et al., 2019; Kuanui et al., 2020; Dobson et al., 2021). Muir et al. 
(2017) found species identity explained 33.2% of the variation in 
observed bleaching and identified species lineages of either high 
or low relative extinction risk. Tilstra et al. (2017) demonstrated 
intra-individual variability in physiological responses of the 
scleratinian coral Stylophora pistillata, which may be attributed 
to differences amongst the spatially distinct clades for this coral 

species. Overall some genera are considered highly susceptible 
to bleaching stress, also shown among species variation (Muir 
et al., 2017).

Even though shading technologies are proposed to be used 
during peak summer (Feb-March, outside of spawning season for 
the GBR), concerns related to their effects on coral reproduction 
and recruitment might be raised. If shading technology is 
considered for use during spawning season, potential impacts 
on the spawning and recruitment process would need to be 
considered. Encouragingly, Wallace (1985) observed that that 
corals recruit successfully under the shade of well-structured 
reefs, and the overwhelming majority of recruits settle in shaded 
spots hiding from direct exposure to light (Morse et al., 1988). 
Laboratory and survey field experiments observed a tendency of 
coral larvae to settle near shaded margins or edges rather than 
near to absolute low levels of light (Morse et  al., 1988). Thus, 
shading corals may not threaten reproduction and recruitment 
processes.

Common Response Variables
Our review identified at least 30 different response variables 
measured to assess the effects of shade and light on corals. Four 
of them (symbiont density, skeletal growth, fluorometry normally 
measured with PAM and chlorophyll levels) were each used in at 
least 50 studies. Figure 5 shows 23 of those response variables 
identified. As previously reported by McLachlan et  al. (2020), 
one of the principal challenges in comparing coral studies is the 
variety of standardisation methods used. Here, we observed at 
least nine different methods used to standardise coral response 
variables (Figure 6). Most studies standardise data with respect 
to surface area (89%), however surface area has been quantified 
by at least five different methods (i.e., dipping wax, aluminium 

FIGURE 5 | Different response variables investigated on studies looking at the effects of shade/light on coral. *stress proxies include reactive oxygen species (ROS), 
catalase activity (CAT), lipid peroxidation (LPO), superoxide dismutase (SOD), mycosporine-like amino acids (MAA), Non-enzymatic total antioxidant capacity (TAC), 
Protein tyrosine nitration (PTN), enzyme linked immunosorbent assays (ELISAs), ascorbate peroxidase (APX). Isolated response variables (<1) were not included (e.g. 
communication damage, coral surface warming, behaviour, phosphorous excretion, etc.).
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foil, morphometrics of a cylinder or a circle/core, planimetry of 
pictures, and 3D modelled area). Further standardisation methods 
for corals included the use of buoyant weight, dry weight, number 
of polyps and number of larvae. The wide variety of methods are 
not directly comparable and create uncertainty when comparing 
among studies. Encouraging the uniform adoption of preferred 
standardization methods would be worthwhile.

Coral stress proxies as response variables proliferated following 
the publication of results based on Mycosporine-like amino 
acids (MAA) to detect UV sensitivity (Gleason and Wellington, 
1995; Jokiel et  al., 1997). After that, coral stress proxies have 
been commonly adopted among studies. Specially the enzymatic 
antioxidants superoxide dismutase (SOD) and catalase (CAT), 
regarded as the first line of defense responsible for removing 
accumulations of potentially toxic reactive oxygen species (ROS) 
before significant oxidative damage (Baird et  al., 2009), are 
commonly used as indicators of bleaching stress. Among other 
stress proxies for corals, we identified direct measurements of 
ROS, non-enzymatic total antioxidant capacity (TAC), protein 
tyrosine nitration (PTN), enzyme linked immunosorbent assays 
(ELISAs) and ascorbate peroxidase (APX). Stress proxies and the 
variety of methods used to measure them (e.g., ROS methods 
includes intracellular and extracellular), are a topic deserving 
detailed independent review.

Shade and Recovery Processes of Corals
Implementing coral bleaching interventions following high 
temperature episodes could be critical to allow corals to reach full 
recovery (Berg et  al., 2020). The coral recovery process consists 
of newly divided cells forming from the remaining live coral cells 
subjected to a less stressful environment (Brown et al., 2000), which 
is considered paramount to the corals’ capacity to survive thermal 
stress episodes (Rodríguez-Román et al., 2006). Yet, the required 
time to double the symbiont density of a coral (i.e., Goniastrea 
aspera) can be around one week (Zamani, 1995). Another study 
demonstrated that corals can take 3 weeks to recover from 1 week 

of high temperatures (Berg et  al., 2020). Experiments rotating 
corals that bleached from the side facing the sun (PAR > 1500 
μmol m-2 s-1) to the shaded side (PAR < 394 μmol m-2 s-1), showed 
that bleached corals can quickly recover if they are shaded from 
direct solar radiation (Brown et al., 2000).

Shading can largely mitigate the negative effects suffered 
during a high temperature episode (Berg et  al., 2020). After 
bleaching, corals can recover especially if shaded from the sun 
(Brown et  al., 2000). Although just a few studies incorporated 
recovery period, the evidence shows that reducing irradiance by 
50% during the recovery period can decrease coral mortality by 
17% (Coles et al., 2018). However, it may be difficult to implement 
shading technologies on a scale comparable to the geographical 
footprint of many reefs. A suitable strategy to maximise shading 
benefits may consider protecting one area (aiming to prevent 
bleaching completely) and later, move shading infrastructure 
to a different reef section to assist recovery and reduce coral 
mortality. Alternating this strategy across reefs and years, may 
help to increase resilient reefs. It is well understood, that coral 
thermal stress history is a critical driver of future thermal stress 
survivorship (Coles and Jokiel, 1978; Grottoli et al., 2014; Hughes 
et al., 2019). Corals from the year 1970 would suffer mortality after 
three days at 31°C, but in 2017, comparable corals can survive at 
least 13 days at that temperature (Coles et al., 2018). Reef systems 
that experience thermally variable episodes gain more coral-algal 
resilience than that provided by only heat-resistant symbionts 
(Oliver and Palumbi, 2011). Thus, some degree of bleaching is 
tolerable, or even desirable given the trajectory of climate change, 
so long as most corals survive and recover.

CONCLUSIONS

Bleaching events are becoming more severe, more frequent, and 
more widespread as a result of anthropogenic climate change. 
Motivated by proposals to use artificial shading as a means of 
intervention to reduce coral mortality from such events we have 

FIGURE 6 | Proportion of standardisation methods used among studies measuring symbiont density and chlorophyll as a response variable.
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reviewed the current state of knowledge with respect to the 
effects of different levels of shade and light on coral reefs during 
bleaching stress. Although there are some promising results in 
the literature, larger scale practical evidence still needs to be 
verified.

(1) There was a large variability of irradiance units reported in the 
literature. The most common units were μmol photons m-2s-1 
for studies looking at visible light. We suggest watts m-2 as a 
suitable unit for studies that measure both UVR and visible 
light, since watts m-2 applies at all frequencies and allows 
consideration of heat as well as light. We provided conversion 
factors per available units to facilitate comparisons among 
studies

(2) Any level of shading from peak sunlight exposure should help 
to alleviate the effects of light and thermal stress for at least a 
subset of coral species.

(3) Specifying a shading level that will protect all coral species 
during a predicted bleaching event cannot be done at present 
with the current state of knowledge. In particular, different 
coral species and symbionts appear to respond differently to 
varying levels of light and stressors.

(4) Reducing the levels of light in the whole spectrum (visible + 
UVR), but specially achieving a reduction of UVR in shallow 
waters, would be beneficial to corals during high temperature 
episodes.

(5) The use of fogging to shade during high irradiance events 
such as sub-aerial exposure during extreme low tides outside 
of thermal stress season, such as those described by Anthony 
and Kerswell (2007), could be particularly effective to protect 
coral reefs because fog seawater droplets can provide shade 
and may reduce desiccation at the same time. 

(6) As well as during a bleaching event, applying any sort of 
shading on stressed corals after a coral bleaching event is 
likely to accelerate recovery and reduce mortality. Although 
more studies that include recovery period as part of the 
experiment are required. 

(7) Since some studies have shown very low light levels can be 
deleterious to corals, shading interventions should ideally be 
tailored to provide appropriate levels of shade only when it is 
required, during the period of elevated stress and recovery.
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