AUTHOR=Coro Gianpaolo , Bove Pasquale , Armelloni Enrico Nicola , Masnadi Francesco , Scanu Martina , Scarcella Giuseppe TITLE=Filling Gaps in Trawl Surveys at Sea through Spatiotemporal and Environmental Modelling JOURNAL=Frontiers in Marine Science VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.919339 DOI=10.3389/fmars.2022.919339 ISSN=2296-7745 ABSTRACT=
International scientific fishery survey programmes systematically collect samples of target stocks’ biomass and abundance and use them as the basis to estimate stock status in the framework of stock assessment models. The research surveys can also inform decision makers about Essential Fish Habitat conservation and help define harvest control rules based on direct observation of biomass at the sea. However, missed survey locations over the survey years are common in long-term programme data. Currently, modelling approaches to filling gaps in spatiotemporal survey data range from quickly applicable solutions to complex modelling. Most models require setting prior statistical assumptions on spatial distributions, assuming short-term temporal dependency between the data, and scarcely considering the environmental aspects that might have influenced stock presence in the missed locations. This paper proposes a statistical and machine learning based model to fill spatiotemporal gaps in survey data and produce robust estimates for stock assessment experts, decision makers, and regional fisheries management organizations. We apply our model to the SoleMon survey data in North-Central Adriatic Sea (Mediterranean Sea) for 4 stocks: