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Characterization of Kordiimonas
marina sp. nov. and Kordiimonas
laminariae sp. nov. and
Comparative Genomic Analysis
of the Genus Kordiimonas,
A Marine-Adapted Taxon
Yu-Qi Ye1, Zhi-Peng Hao1, Yu-Yan Yue1, Lu Ma1, Meng-Qi Ye1* and Zong-Jun Du1,2*

1 Marine College, Shandong University, Weihai, China, 2 State Key Laboratory of Microbial Technology, Shandong University,
Qingdao, China

Two novel rod-shaped and Gram-negative bacterial strains, designated A6E486T and
5E331T, were isolated from a coastal sediment sample taken from Xiaoshi Island, Weihai,
China, and a fresh kelp sample collected from a kelp culture area, Rongcheng, China,
respectively. Growth of strain A6E486T occurred at 20°C–43°C (optimum, 33°C–35°C) at
pH 5.5–7.5 (optimum, 6.5) and in the presence of 1.0%–5.5% (w/v) NaCl (optimum,
2.5%–3.0%). Strain 5E331T grew with 1.5%–5.0% (w/v) NaCl (optimum, 3.0%) at 15°C–
40°C (optimum, 33°) and pH 6.0–8.5 (optimum, 7.0). The similarity of 16S rRNA gene
sequence between the two strains was 95.2%. The phylogenetic analysis based on 16S
rRNA gene sequence showed that strains A6E486T and 5E331T belong to the genus
Kordiimonas, sharing the highest similarity to the genus Kordiimonas (94.6%–96.8%,
94.9%–96.1%, respectively). Strains A6E486T and 5E331T had percentage of conserved
protein (POCP) values of 56.0%–67.3% and average nucleotide identity (ANI) values of
68.8%–73.1% to members of the genus Kordiimonas. The major polar lipids detected in
the two strains were phosphatidylethanolamine (PE), phosphatidylglycerol (PG),
diphosphatidylglycerol (DPG), and unidentified glycolipids, aminolipids, and lipids. The
predominant respiratory quinone of the two strains was Q-10. Based upon the results
presented in this study, strains A6E486T and 5E331T represent two novel species of the
genus Kordiimonas, for which the names Kordiimonas marina and Kordiimonas laminariae
are proposed with the type strains A6E486T (= KCTC 82758T = MCCC 1H00470T) and
5E331T (= KCTC 92199T = MCCC 1H00515T), respectively. Comparative genomic
analysis showed that seven species of the genus Kordiimonas shared 1,258 core
genes and had differences in carbohydrate metabolism, energy metabolism, and
cofactor and vitamin metabolism. The pan-genome of the genus Kordiimonas was
open. The prediction of secondary metabolites showed that most strains of the genus
Kordiimonas had the ability to produce homoserine lactones, one of the most important
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signal molecules in the quorum-sensing system of Gram-negative bacteria. Additionally,
numerous genes involved in bacterial defense, motility and chemotaxis, cold adaptation,
and environment stress response were found in the genus Kordiimonas, indicating the
marine-adapted lifestyle of members of the genus Kordiimonas.
Keywords: Kordiimonas, polyphasic taxonomy, comparative genomic analysis, metabolic pathways, homoserine
lactone, marine-adapted lifestyle
1 INTRODUCTION

The genus Kordiimonas was firstly proposed as a member of the
order Kordiimonadales in the class Alphaproteobacteria by Kwon
et al. (2005), with Kordiimonas gwangyangensis being the type
species. At the time of writing, the genus Kordiimonas consists of
seven validly published species according to the List of
Prokaryotic names with Standing in Nomenclature1, including
K. gwangyangensis, Kordiimonas lacus, Kordiimonas aestuarii,
Kordiimonas aquimaris, Kordiimonas lipolytica, Kordiimonas
sediminis, and Kordiimonas pumila. All members of the genus
Kordiimonas are aerobic, oxidase- and catalase-positive, except
K. sediminis (facultatively anaerobic, oxidase- and catalase-
negative) (Zhang et al., 2016). All of the type strains of the
genus Kordiimonas are isolated from marine environments and
habitats, such as marine sediment (Kwon et al., 2005; Xu X. et al.,
2011; Math et al., 2012; Zhao et al., 2018), seawater (Yang et al.,
2013; Wu et al., 2016), and sea cucumber culture pond sediments
(Zhang et al., 2016), and have Q-10 as the predominant
respiratory quinone. In this study, we describe two bacterial
strains, A6E486T isolated from a coastal sediment sample and
5E331T isolated from a fresh kelp sample. Polyphasic
investigations showed that the two strains represent two novel
species affiliated with the genus Kordiimonas. Comparative
genomic analyses of these two strains and the related species
are contributed to understand the marine-adapted lifestyle of the
genus Kordiimonas.1
2 MATERIALS AND METHODS

2.1 Bacterial Isolation and Cultivation
Strain A6E486T was isolated from an intertidal sediment sample
collected from Xiaoshi Island (37°32’30”N, 122°6’20”E), one of
the largest continuous ecosystems in Weihai, China. The
sediment sample was treated with an enrichment culture
technique at 33°C for 30 days (Mu et al., 2018), and 100-ml
enrichment cultures were spread on marine agar 2216 (MA; BD)
entity; POCP, percentage of conserved
enes and Genomes; MCCC, Marine
n Collection for Type Cultures; JCM,
I, National Center for Biotechnology
e Annotation Pipeline; HPLC, high-
, neighbor-joining; ML, maximum-
am, Protein Families Database; GO,
using Subsystem Technology; BPGA,
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by using the standard 10-fold dilution plating technique. After
incubation at 33°C for 7 days, a beige colony designated A6E486T

was picked and pure cultures were obtained using purification
procedures. Strain 5E331T was obtained from fresh kelp samples,
which were taken from a kelp culture area (37°15’96”N, 122°
36’49”E) in Rongcheng, China. Here, 10 g of fresh kelps were cut
into small squares with sides of 1.5 cm under sterile conditions.
Then, treated samples were placed in a conical flask containing
glass beads and 100 ml seawater and shaken at 300 rpm for 1.5 h.
Subsequently, the kelp treatment fluid was serially diluted to 10−3

with sterile seawater, and 100 ml aliquot was spread on MA. The
incubation was performed at 28°C for 2 weeks. Strains A6E486T

and 5E331T were stored at –80°C in sterile 1% (w/v) saline
supplemented with 15% (v/v) glycerol. The type strains
K. gwangyangensis JCM 12864T and K. lipolytica JCM 30877T

obtained from the Japan Collection of Microorganisms were
used as experiment control strains and cultured under
optimum conditions.

2.2 Morphological, Physiological, and
Biochemical Characteristics
The morphological and physiological features of strains A6E486T

and 5E331T were examined after incubation at 33°C for 3 days on
MA medium. The Gram staining reaction was determined
according to the method described previously (Dong and Cai,
2001). Cell morphology and size were examined employing
optical microscopy (E600, Nikon), transmission electron
microscopy (JEM-1200, Jeol), and scanning electron
microscopy (model Nova NanoSEM450, FEI). Growth ranges
and optima of temperature were determined on MA at 0°C, 4°C,
15°C, 20°C, 25°C, 28°C, 30°C, 33°C, 35°C, 37°C, 40°C, 43°C,
45°C. The pH range for growth was tested in marine broth 2216
(MB; BD) by adding the appropriate buffers (20 mM), including
2-Morpholinoethanesulfonic acid (MES) (pH 5.5−6.0), 1,4-
Piperazinediethanesulfonic acid (PIPES) (pH 6.5−7.0), N-(2-
Hydroxyethyl) piperazine-N'-2-ethanesulfonic acid (HEPES)
(pH 7.5−8.0), Tricine (pH 8.5), and 3-(Cyclohexylamino)-2-
hydroxy-1-propanesulfonic acid (CAPSO) (pH 9.0−9.5). The
optimal condition with NaCl for growth was tested in the
following medium (0.1% yeast extract, 0.5% peptone), prepared
with artificial seawater (per liter: 3.2 g MgSO4, 2.2 g MgCl2, 1.2 g
CaCl2, 0.7 g KCl, 0.2 g NaHCO3) containing NaCl at
concentrations from 0% to 10% (w/v, in 0.5% intervals). The
strains were incubated at optimum temperature for 7 days.
Growth experiments with leucine as sole carbon source were
tested in the following liquid media, artificial seawater with
inorganic carbon (NaHCO3) removed was supplemented with
June 2022 | Volume 9 | Article 919253
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0.1% NH4Cl as a nitrogen source with or without leucine.
Leucine solution was sterilized with 0.22-mm filters. The final
concentration of leucine in the medium was 1 g/L. The strains
were incubated at optimum temperature for 11 days. Bacterial
growth was monitored using a spectrophotometer at 600 nm.

Catalase activity was tested by adding 3% (v/v) H2O2 solution
to the plate with fresh colonies. Oxidase activity was determined
using an oxidase test reagent (bioMérieux). Anaerobic growth
was determined by incubating strains on MA with or without
0.1% (w/v) KNO3 in an AnaeroPack for 14 days. Hydrolysis tests
of Tweens (20, 40, 60, and 80), alginate, casein, CM-cellulose,
DNA, and starch were carried out according to methods
described previously (Dong and Cai, 2001). The API 50CH
and API 20E kits (bioMérieux) were employed to investigate
acid production and additional biochemical characteristics,
respectively. Additional enzyme activities were checked using
API ZYM kit (bioMérieux), and carbon source oxidation was
tested employing BIOLOG GEN III MicroPlates. All of the API
and BIOLOG tests were carried out according to the
manufacturer’s instructions, except for the modification of
adjusting salinity to 3% (w/v). Antibiotic susceptibility was
determined on MA at 33°C for 7 days using the disc diffusion
method (Jorgensen and Turnidge, 2015).

2.3 Chemotaxonomic Properties
Strains A6E486T and 5E331T and experiment control strains
were cultured in MB under optimum conditions, and the cells at
the late stage of exponential growth phase were harvested and
freeze-dried in order to investigate chemotaxonomic
characterizations. Fatty acids were extracted from freeze-dried
cell biomasses (10 mg) and then analyzed using a gas
chromatograph (model 6890N, Agilent) and the Microbial
Identification System (MIDI database: TSBA40) (Sasser, 1990).
Isoprenoid quinones were obtained from freeze-dried cell
biomasses (300 mg) and identified by high-performance liquid
chromatography (HPLC), as described previously (Minnikin
et al., 1984). Total lipids were extracted with chloroform/
methanol/water system (2.5:5:2, v/v/v) and analyzed by two-
dimensional TLC according to the modified method described
previously (Komagata and Suzuki, 1987).

2.4 16S rRNA Gene Sequence and
Phylogenetic Analysis
The 16S rRNA gene was amplified employing PCR technology
with the primer pair 27F and 1492R (Lane, 1991) and was
sequenced by RuiBiotech (Qingdao, China). To obtain nearly
complete 16S rRNA genes, purified PCR products were ligated
into the pMD18-T vector (Takara), and ligation products were
transferred into Escherichia coliDH5a receptor cells according to
the manufacturer’s instructions. For comparative analysis, the
16S rRNA gene sequences of strains A6E486T and 5E331T were
submitted to the National Center for Biotechnology Information
(NCBI) database2 and the EzBioCloud server.3
2https://blast.ncbi.nlm.nih.gov/Blast.cgi
3http://www.ezbiocloud.net/
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The 16S rRNA gene sequences of strains A6E486T, 5E331T,
and relatives were aligned using MUSCLE (Edgar, 2004), and
then the trimmed sequences were used to reconstruct
phylogenetic trees employing the neighbor-joining (NJ) and
maximum-parsimony (MP) algorithm implemented in the
software MEGA X (Felsenstein, 1981; Saitou and Nei, 1987;
Kumar et al., 2018). The maximum-likelihood (ML) tree was
reconstructed using the best-fit substitution model GTR+G+I.
Bootstrap analysis was performed with 1,000 replications to
provide confidence estimates for tree topologies.

2.5 Genomic Analysis
Genomic DNA of strains A6E486T and 5E331T was extracted
using a bacteria genomic DNA kit (Takara), and the draft
genomes were determined by Beijing Novogene Bioinformatics
Technology Co. Ltd. (Beijing, China). Sequencing was performed
on the Illumina NovaSeq 6000 platform (Illumina Inc., San
Diego, CA, USA) using the paired-end 150-bp sequencing
protocol. Raw sequencing data were generated by Illumina
base-calling software CASAVA v1.8.24, and the sequenced
reads were assembled using SOAPdenovo software (Li et al.,
2009). Other relevant genomes in this study were obtained from
the NCBI Prokaryotic reference genome database.

The completeness values of the used genomes were estimated
based on the method of lineage-specific CheckM v1.1.3 (Parks
et al., 2015). Gene content was annotated using the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP). The
average nucleotide identity (ANI) was calculated using the
online ANI calculator5. The percentage of conserved protein
(POCP) value was calculated as described by Qin et al. (2014).6

The ribosomal protein phylogenetic tree was reconstructed by
FastTree (Price et al., 2009) using JTT+ CAT parameters and IQ-
TREE (Nguyen et al., 2015; Chernomor et al., 2016) using the LG
+F+I+G4 model. The 15 ribosomal proteins (L2, L3, L4, L5, L6,
L14, L15, L16, L22, L24, S3, S8, S10, S17, and S19) were obtained
and aligned using Python script6 with the methods described by
Wiegand et al. (2020). All genomes were predicted using
Prodigal Server for uniformity (Hyatt et al., 2010). The analysis
of core and unique genes was performed using the Bacterial Pan
Genome Analysis (BPGA) tool, an ultrafast pan-genome analysis
pipeline, with a threshold of 50% amino acid sequence identity
(Chaudhari et al., 2016). Metabolic pathways were analyzed in
detail by using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Kanehisa et al., 2016), and the presence of
gene clusters encoding secondary metabolites was predicted by
antiSMASH server7. Carbohydrate-active enzymes of the genus
Kordiimonas were annotated employing the online dbCAN28, a
meta server for automated carbohydrate-active enzyme
annotation (Zhang et al., 2018). The analysis of marine
adaptation metabolic features was performed by Rapid
Annotation using Subsystem Technology (RAST) version 2.0
(Aziz et al., 2008) and the KEGG database (Kanehisa et al., 2016).
4http://support.illumina.com/
6https://github.com/2015qyliang/BGAStudio
7https://antismash.secondarymetabolites.org/#!/start
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3 RESULTS AND DISCUSSION

3.1 Morphological, Physiological, and
Biochemical Characteristics
Morphological observations by transmission electron
microscopy and scanning electron microscopy showed that
cells of strains A6E486T (with widths of 0.5–0.7 mm and
lengths of 1.0–2.5 mm) and 5E331T (with widths of 0.2–0.5 mm
and lengths of 0.8–2.7 mm) were both short rod-shaped
(Supplementary Figure S1). For strain A6E486T, the
oxidations of the sole carbon source were positive for
D-maltose, D-trehalose, D-fructose, glycyl-L-proline, L-glutamic
acid, L-galactonic acid lactone, and D-glucuronic acid, which was
consistent with K. gwangyangensis JCM 12864T, while that of
strain 5E331T was negative as K. lipolytica JCM 30877T

(Supplementary Table S1). Strains A6E486T and 5E331T

exhibited some similarities to K. gwangyangensis and K.
lipolytica JCM 30877T, including their abilities to hydrolyze
Tweens (20, 40, and 60). The differential characteristics of
Frontiers in Marine Science | www.frontiersin.org 4
strains A6E486T and 5E331T and experiment control strains
were summarized in Table 1 and Supplementary Table S1. Both
strains A6E486T and 5E331T were susceptible to (mg per disc)
penicillin (10), chloramphenicol (30), norfloxacin (30),
cefotaxime sodium (30), gentamycin (10), ofloxacin (5),
clarithromycin (15), carbenicillin (100), and ceftriaxone (30)
but resistant to tetracycline (30) and kanamycin (30).

3.2 Chemotaxonomic Properties
The major cellular fatty acids (>10%) of strain A6E486T

consisted of iso-C15:0, iso-C17:0, iso-C17:1 w9c, and summed
feature 3 (comprising C16:1 w6c and/or C16:1 w7c) while those
of strain 5E331T were iso-C15:0, iso-C17:1 w9c, and summed
feature 3 (Table 2). The fatty acid compositions of the two
strains were similar to experiment control strains but with
differences in the proportions of some fatty acids. For example,
iso-C17:0 was one of the major fatty acids in strains A6E486T and
K. gwangyangensis JCM 12864T but not in strains 5E331T and K.
lipolytica JCM 30877T. Strains A6E486T and 5E331T had Q-10 as
TABLE 1 | Differential characteristics between strains A6E486T and 5E331T and experiment control strains.

Characteristic 1 2 3 4

Colony color Beige Beige and brown Cream–white Beige
Temperature range (°C ) 20–43 15–40 17–44 a 15–45 b

NaCl range (%, w/v) 1.0–5.5 1.5–5.0 0.5–4.0 a 0.5–10 b

pH range 5.5–7.5 6.0–8.5 6.0–8.5 a 5.5–9.5 b

Voges–Proskauer reaction + + + −

Enzyme activity:
Catalase w + + +
Gelatinase − + − +
Lipase (C14) w + − −

ɑ-chymotrypsin w − + +
Hydrolysis of:
Tween 80 w + + ++
Starch − + + −

Casein + + + −

Acid production from:
Glycerol − − w +
L-xylose + w − −

D-glucose + − + +
D-fructose + + − +
D-mannose − − + +
Inositol w − + −

N-acetyl glucosamine − − + +
D-maltose w − + +
D-trehalose + − + −

L-rhamnose − − − +
Oxidation of:
D-cellobiose − − + −

Sucrose + − + −

Glycerol − − + −

D-fructose-6-PO4 + w − −

Gelatin + − + −

L-histidine + w + −

ɑ-keto-glutaric acid + + + −

Sodium butyrate w + − −
June 2022 | Volume 9 | Artic
Strains: 1, A6E486T; 2, 5E331T; 3, K. gwangyangensis JCM 12864T; 4, K. lipolytica JCM 30877T. All data were from this study unless indicated otherwise. +, Positive; −, negative; w,
weakly positive. All strains were positive for the following characteristics: alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-
phosphohydrolase, esculin ferric citrate, and potassium 5-ketogluconate.
Data from: a, Kwon et al. (2005); b, Wu et al. (2016).
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the predominant respiratory quinone, which was consistent with
the quinone type of the genus Kordiimonas. The major polar
lipids detected in the two strains were phosphatidylethanolamine
(PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG),
and unidentified glycolipids, aminolipids, and lipids. PE, PG,
DPG, and unidentified glycolipids were detected in all tested
Kordiimonas species (Supplementary Figure S2).

3.3 16S rRNA Gene Sequence and
Phylogenetic Analysis
Nearly complete 16S rRNA gene sequences of strains A6E486T

(1,461 bp; GenBank accession number: MZ901372) and 5E331T

(1,462 bp; GenBank accession number: OM663707) were
obtained according to the methods described in the Materials
and Methods section. Comparative analysis results using
EzBioCloud databases showed that strains A6E486T and
5E331T shared the highest 16S rRNA gene sequence similarity
values of 96.8% and 96.1%, respectively, with K. lipolytica JCM
30877T. NJ phylogenetic tree based on 16S rRNA gene indicated
that strains A6E486T and 5E331T were affiliated with the genus
Kordiimonas (Figure 1). Similar tree topologies were also
obtained with the ML and MP algorithms.

3.4 Comparative Genomic Analysis of the
Genus Kordiimonas
3.4.1 Comparison of Genomic Properties and
Genetic Relatedness
The genome lengths of the seven species of the genus
Kordiimonas (strains A6E486T, 5E331T, K. gwangyangensis
JCM 30877T, K. lipolytica JCM 12864T, K. lacus CGMCC
1.9109T, K. pumila N18T, and K. sediminis KCTC 42590T)
were 3,243,597–4,557,767 bp with a mean size of 3,894,463 bp.
Frontiers in Marine Science | www.frontiersin.org 5
The completeness values of these genomes were 99.6%–100.0%.
Among them, strain 5E331T had the minimum DNA G+C
content (46.2%), while strain A6E486T possessed the
maximum content (59.9%). The NCBI PGAP results showed
that a total of 3,436 genes were predicted for strain A6E486T,
including 3,381 protein-coding genes and 53 RNA genes (46
tRNA genes, 3 rRNA genes, and 4 ncRNA genes), while strain
5E331T had 3,505 predicted genes. The detailed PGAP results of
the seven species were shown in Table 3.

The POCP and ANI values were calculated to identify the
genomic similarities of strains A6E486T and 5E331T with some
members of the genus Kordiimonas (Figure 2). The POCP and
ANI values between strain A6E486T (strain 5E331T) and some
species of the genus Kordiimonas were 56.3%–67.3% (56.0%–
61.5%) and 68.6%–73.1% (68.8%–69.9%), respectively. The
POCP values were higher than the genus delineation threshold
(50%) (Qin et al., 2014a), and the ANI values were lower than the
species delineation threshold (95%) (Yoon et al., 2017), which
indicated that strains A6E486T and 5E331T represented two
novel species of the genus Kordiimonas. The ribosomal protein
phylogenetic tree showed the evolutionary relationships of some
members of genus Kordiimonas (Figure 2).

3.4.2 Pan-Genome Analysis of the Genus
Kordiimonas
Pan-genome analysis using BPGA was performed to identify
orthologous groups among strains A6E486T, 5E331T,
K. gwangyangensis JCM 30877T, K. lipolytica JCM 12864T,
K. lacus CGMCC 1.9109T, K. pumila N18T, and K. sediminis
KCTC 42590T. Comparative analysis based on orthologous
groups of proteins revealed that 1,258 core genes were shared
by the seven species (Figure 3A). The percentages of core genes
TABLE 2 | Cellular fatty acid composition (%) of strains A6E486T and 5E331T and experiment control strains.

Fatty acid 1 2 3 4

Saturated
C12:0 TR TR 2.0 1.0
C16:0 6.4 4.1 5.3 3.2
C17:0 1.9 TR 1.2 TR
Unsaturated
C15:18c 1.7 1.4 − 1.8
C15:1 ѡ6c TR TR − 1.0
C17:1 ѡ8c 3.7 3.1 1.4 4.5
C17:1 ѡ6c 6.5 4.5 1.2 6.8
Branched
iso-C15:1 F 1.2 2.1 TR 1.6
iso-C15:0 16.8 27.0 15.1 17.8
iso-C16:0 TR 1.5 TR 2.3
iso-C17:0 10.3 2.5 19.2 3.2
iso-C17:0 3–OH 1.5 TR 1.02 TR
iso-C17:1 ѡ9c 22.9 27.7 34.4 23.8
Summed Feature
3a 16.2 17.3 7.3 23.2
8a 3.9 1.5 5.1 TR
June 2022 | Volume 9 | Article 91
Strains: 1, A6E486T; 2, 5E331T; 3, K. gwangyangensis JCM 12864T; 4, K. lipolytica JCM 30877T. All data listed in the table are from this study. TR, trace (<1.0%); −, Not detected; Fatty
acids present at >10% are indicated in bold.
aSummed features are groups of two or three fatty acids that cannot be separated by GLC using the MIDI system. Summed feature 3 comprises C16:1 w6c and/or C16:1 w7c, and summed
feature 8 comprises C18:1 w6c and/or C18:1 w7c.
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in each genome ranged from 34.3% to 44.1% (Figure 3B), and
compared with unique genes and accessory genes, core genes
contributed more to energy metabolism, nucleotide metabolism,
replication and repair, and translation (Supplementary Figure
S3). The proportion of accessory genes and unique genes in the
seven genomes varied greatly (Figure 3B). Accessory genes and
unique genes were more distributed than core genes in amino
acid metabolism, carbohydrate metabolism, signal transduction,
and xenobiotic biodegradation and metabolism (Supplementary
Figure S3), which indicated that these genes conferred metabolic
diversity and marine environment adaptability to the members
of the genus Kordiimonas (Innamorati et al., 2020). Results of the
core pan-genome prediction model showed that the pan-genome
increased with the addition of new strains and was far from
saturation (Supplementary Figure S4), which indicated that the
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pan-genome of the genus Kordiimonas was open. Compared
with a previous study (Geng et al., 2022), the complement of
strains A6E486T and 5E331T in this study reduced the number of
shared core genes of the genus Kordiimonas, showing that core
genes decreased with the increase of species (Supplementary
Figure S4).

3.4.3 Metabolic Pathway Analysis
Metabolic pathways were analyzed using KEGG’s BlastKOALA
service. The results showed that the seven species of the genus
Kordiimonas had the most genes in gene information processing,
followed by signaling and cellular processes and carbohydrate
metabolism (Supplementary Figure S5). In addition, the
metabolic pathways of the seven species were compared and
analyzed, including carbohydrate metabolism, energy
FIGURE 1 | Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences of strains A6E486T and 5E331T and other closely related species. Filled circles
indicate branches that were recovered with all three methods (neighbor-joining, maximum-likelihood, and maximum-parsimony). Percentage bootstrap values above
50% (1,000 replicates) are shown at branch nodes. Escherichia coli ATCC 11775T was used as the out-group. Bar, 0.02 substitutions per nucleotide position.
TABLE 3 | Genome statistics of strains A6E486T and 5E331T and five members of the genus Kordiimonas.

1 2 3 4 5 6 7

Genome size (bp) 3,684,098 3,651,059 4,082,245 4,557,767 4,000,817 4,041,658 3,243,597
Completeness (%) 99.9 100.0 100.0 100.0 99.6 100.0 100.0
Contigs 25 27 13 36 12 1 12
N50 length (bp) 603,855 474,336 686,379 229,908 482,103 4,041,658 1,727,258
G+C content (mol %) 59.9 46.2 57.5 56.3 57.2 47.4 49.6
Genes 3,436 3,505 3,727 4,286 3,688 3,608 2,908
Protein-coding genes 3,381 3,434 3,667 4,169 3,623 3,517 2,842
tRNA genes 46 47 43 51 42 42 43
rRNA genes 3 3 5 9 5 6 5
ncRNA genes 4 3 4 4 3 4 4
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Strains: 1, A6E486T; 2, 5E331T; 3, K. gwangyangensis JCM 30877T; 4, K. lipolytica JCM 12864T; 5, K. lacus CGMCC 1.9109T; 6, K. pumila N18T; 7, K. sediminis KCTC 42590T.
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metabolism, lipid metabolism, amino acid metabolism, and
metabolism of cofactors and vitamins. Among the seven
Kordiimonas species, all strains have complete pathways of
gluconeogenesis (M00003), pyruvate oxidation (M00307),
citrate cycle (M00009), pentose phosphate pathway (M00007),
and glyoxylate cycle (M00012), whereas only strains A6E486T

and K. lipolytica JCM 30877T possess a complete glycolysis
pathway (M00001) (Figure 4). The seven species also have
similarities and differences in other metabolic pathways. For
example, a complete PE biosynthesis pathway (M00093) was
found in all strains, which was consistent with the polar lipid
results of the genus Kordiimonas. The initiation pathways of fatty
acid synthesis (M00082) and cobalamin biosynthesis (M00122)
are complete only in strain 5E331T, while the cytochrome o
ubiquinol oxidase (M00417) and betaine biosynthesis (M00555)
pathways are complete only in strain A6E486T (Figure 4).
Considering that the incomplete glycolysis pathway in most
Kordiimonas strains leads to pyruvate deficiency and thus to
the decrease of acetyl-CoA from the pyruvate oxidation pathway,
the leucine degradation pathway is important due to the
production of acetyl-CoA (Figure 5A). It was proven that
strains A6E486T, 5E331T, K. gwangyangensis JCM 30877T, and
K. lipolytica JCM 12864T could grow slowly in the medium with
leucine as the solo carbon source (Supplementary Figure S6). In
addition, dTDP-L-rhamnose biosynthesis pathway (M00793)
was completely annotated in the genomes of the seven
Kordiimonas species (Figure 5B).

3.4.4 Prediction of Secondary Metabolites
AntiSMASH server was used to predict the secondary
metabolites of the seven species. Results showed that all of the
seven species contained gene clusters encoding RiPP-like (Other
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unspecified ribosomally synthesized and posttranslationally
modified peptide product). Except for K. gwangyangensis JCM
12864T and K. pumila N18T, the genomes of the remaining five
strains contained terpene gene clusters. The gene clusters
encoding hserlactone (homoserine lactone) were found in
genomes of the six strains except K. pumila N18T, which had
b-lactone (b-lactone containing protease inhibitor) gene clusters
(Supplementary Table S2). Homoserine lactones, as one of the
most important signal molecules in the quorum-sensing system
of Gram-negative bacteria, regulate the expression of many
physiological characteristics (Parsek and Greenberg, 2000; Qin
et al., 2020). Cluster Pfam (Protein Families Database) analysis
and Pfam-based GO (Gene Ontology) term annotation results
showed that the core biosynthetic genes in all of the hserlactone
gene clusters encoded autoinducer synthase, and there were
additional biosynthetic genes encoding luxR family regulatory
proteins upstream and downstream of the core genes
(Supplementary Figure S7). The luxR regulators are
important components of the quorum-sensing system, which
are distributed to sense and respond to N-acyl homoserine
lactone by autoinducer-binding domain (Subramoni and
Venturi, 2009; Santos et al., 2012).

3.4.5 Comparative Analysis of
Carbohydrate-Active Enzymes
Considering that the strains had differences in acid production
and oxidation with different carbohydrates as substrates
(Table 1; Supplementary Table S1), carbohydrate-active
enzymes of the genus Kordiimonas were annotated and
analyzed. The results showed that K. sediminis KCTC 42590T

had the least carbohydrate-active enzymes (86), while
K. gwangyangensis JCM 30877T had the most (137). Among
A B

FIGURE 2 | Heat maps showing POCP and ANI values among A6E486T, 5E331T, and members of the family Temperatibacteraceae. (A) Heat map based on POCP
values. (B) Heat map based on ANI values. IQ-TREE based on ribosomal protein sequences shows the phylogenetic relationships among these strains. Percentage
bootstrap values (1,000 replicates) are shown at branch nodes. Emcibacter nanhaiensis MCCC 1A06723T was used as the out-group. Bar, 0.05 substitutions per
nucleotide position. Same tree topology was also obtained using FastTree. ANI, average nucleotide identity; POCP, percentage of conserved proteins.
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these carbohydrate-active enzymes, most enzymes in the
genomes of the seven species were assigned to the
glycosyltransferase (GT) family and glycoside hydrolase (GH)
family, which was consistent with a previous study (Geng et al.,
2022); however, polysaccharide lyases (PLs) were found in parts
of the Kordiimonas species (Figure 6). Strain A6E486T had 53
GTs and 50 GHs, which were more than those in strain 5E331T,
K. lipolytica JCM 12864T, K. lacus CGMCC 1.9109T, K. pumila
N18T, and K. sediminis KCTC 42590T. Strain 5E331T harbored
107 carbohydrate-active enzymes, including 42 GTs, 36 GHs, 16
carbohydrate esterases (CEs), 6 carbohydrate-binding modules
(CBMs), and 7 auxiliary activities (AAs). Detailed comparison
results were shown in Figure 6.

3.4.6 Analysis of Marine Environment Adaptability
Considering that members of the genus Kordiimonas were all
isolated from marine environments and habitats, metabolic
features related to functional categories were analyzed to
investigate the marine-adapted lifestyle of the genus
Frontiers in Marine Science | www.frontiersin.org 8
Kordiimonas (Table 4). In the first place, 26–51 genes
associated with “Virulence, Disease and Defense” were found
in the genomes of members of the genus Kordiimonas, which
may be crucial for bacteria to resist marine environment
pollutants including heavy-metal ions, antibiotics, and other
toxic compounds. Secondly, flagellar motility and bacterial
chemotaxis genes were found, and there were differences in the
number of the related genes. Most of the marine environments
are oligotrophic; flagellar motility and bacterial chemotaxis
genes, which assist marine bacteria in the acquisition of
nutrients, may play an important role in the marine sediment-
adapted lifestyle (Qin et al., 2011). Thirdly, there were different
numbers of genes related to capsular and extracellular
polysaccharides and polysaccharide export proteins in the
genomes. Exopolysaccharides (EPSs) are essential for the
survival of bacteria in marine environments, as EPSs assist
them to endure extremes of temperature, salinity, and nutrient
availability (Nichols et al., 2005). The existence of genes related
to EPS synthesis and export suggested that members of the genus
A

B

FIGURE 3 | Comparisons of Kordiimonas orthologous protein groups in the seven Kordiimonas genomes. (A) Venn diagram displaying the numbers of core gene
families and unique genes for each of the seven Kordiimonas strains. (B) Percentage of core, accessory, and unique genes in each of the seven genomes.
June 2022 | Volume 9 | Article 919253
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Kordiimonas may be able to resist low temperature through EPS
secretion. Additionally, cold-shock proteins and tRNA-
dihydrouridine synthase play roles in the cold-adapted lifestyle
of marine bacteria by helping protein folding and increasing
tRNA flexibility at low temperatures, respectively (Qin et al.,
2014b). Fourthly, all members of the genus Kordiimonas had
numerous genes involved in the “stress response,” which may
give these species the ability to cope with pressures such as
oxygen and temperature in marine environments.

Considering the high osmotic pressure of marine environments
and the protective effect of compatible solutes on microorganisms
Frontiers in Marine Science | www.frontiersin.org 9
under high osmotic condition (Da et al., 1998; Wood et al., 2001),
compatible solute synthesis and transport of the genus
Kordiimonas were analyzed using the KEGG database. The
results showed that only strain A4E486T had a complete betaine
synthesis pathway (M00555) among the seven species of the genus
Kordiimonas (Figure 4). Strains 5E331T, K. gwangyangensis JCM
30877T, K. lipolytica JCM 12864T, K. lacus CGMCC 1.9109T, K.
pumila N18T, and K. sediminis KCTC 42590T encode choline
dehydrogenase (CHDH), which converts choline to betaine
aldehyde (Zou et al., 2016). The genes encoding glycine betaine
transporter were found only in the genome of strain A4E486T. In
FIGURE 4 | Heat maps of complete and incomplete metabolic pathways in the genomes of strains A6E486T, 5E331T, K. gwangyangensis JCM 30877T, K. lipolytica
JCM 12864T, K. lacus CGMCC 1.9109T, K. pumila N18T, and K. sediminis KCTC 42590T.
June 2022 | Volume 9 | Article 919253
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the hypertonic environment, the accumulation of amino acids in
cells, such as proline (Hoffmann et al., 2012) and arginine (Xu S.
et al., 2011), also plays a positive role in the anti-osmotic ability of
microorganisms (Da et al., 1998; Roesser and Muller, 2001). The
seven genomes had the proline biosynthesis pathway (M00015)
and arginine biosynthesis pathway (M00844) identified by the
KEGG database (Figure 4). Numerous complete amino acid
synthesis pathways in members of the genus Kordiimonas may
help to resist cell damage caused by high osmotic pressure in
marine environments. Finally, the antioxidant systems used to
scavenge free radicals were analyzed. The antioxidant system
mainly includes superoxide dismutase, catalase, glutathione, and
cytochrome oxidase (Pomposiello and Demple, 2002). The analysis
showed that all seven species of the genus Kordiimonas encoded
superoxide dismutase (Fe-Mn family) and catalase-peroxidase.
Strains 5E331T and K. pumila N18T had genes that encoded
catalase. The genes encoding cytochrome c peroxidase were
found in strains 5E331T, K. gwangyangensis JCM 30877T, K.
Frontiers in Marine Science | www.frontiersin.org 10
lipolytica JCM 12864T, K. lacus CGMCC 1.9109T, and K.
sediminis KCTC 42590T. Additionally, all seven members of the
genus Kordiimonas had a complete glutathione synthesis pathway
(M00118) (Figure 4).

The analysis of metabolic features and related genes revealed
the genetic basis of the genus Kordiimonas to adapt to the
marine environment.
4 DESCRIPTION OF KORDIIMONAS
MARINA SP. NOV.

Kordiimonas marina (ma.ri’na. L. fem. adj. marina, pertaining to
the isolation of the type strain from the marine environment).

Cells are Gram-negative and facultatively anaerobic with rod
shape. Growth is observed at pH 5.5–7.5 (optimum, 6.5) and
temperatures of 20°C–43°C (optimum, 33°C–35°C) and with
1.0%–5.5% (w/v, optimum, 2.5%–3.0%) NaCl. Growth occurs
A

B

FIGURE 5 | Amino acid metabolism and polyketide sugar unit biosynthesis of Kordiimonas strains. (A) Leucine degradation. (B) dTDP-L-rhamnose biosynthesis.
The metabolic pathway maps are based on the KEGG analysis. Other reactants and products have been omitted.
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under anaerobic conditions, and nitrate is reduced to nitrite. The
activities of trypsin and oxidase are positive, and the activities of
ɑ-chymotrypsin, ɑ-galactosidase, ɑ-glucosidase, ɑ-mannosidase,
and ɑ-fucosidase are weakly positive. Acids are produced from D-
arabinose, D-ribose, D-xylose, L-sorbose, D-tagatose, and
potassium 5-ketogluconate. The major cellular fatty acids
(>10%) are iso-C15:0, iso-C17:0, iso-C17:1 w9c, and summed
feature 3 (comprising C16:1 w6c and/or C16:1 w7c). The
predominant respiratory quinone is Q-10. The major polar
lipids consist of PE, PG, DPG, and unidentified glycolipids,
aminolipids, and lipids. The DNA G+C content of type strain
is 59.9 mol%.
Frontiers in Marine Science | www.frontiersin.org 11
The type strain is A6E486T (= KCTC 82758T = MCCC
1H00470T), which was isolated from coastal sediments
collected off the coast of Weihai, China.
5 DESCRIPTION OF KORDIIMONAS
LAMINARIAE SP. NOV.

Kordiimonas laminariae (la.mi.na’ri.ae. N.L. gen. fem. n.
laminariae, pertaining to the kelp Laminaria, from which the
type strain was isolated).
TABLE 4 | Metabolic features and selected genes related to the adaptation to marine environments.

Categories Metabolic features Gene Count

1 2 3 4 5 6 7

Virulence, Mycobacterium virulence operon 18 16 15 15 15 13 14
disease, and Copper resistance 9 9 8 12 9 9 7
defense Cobalt-zinc-cadmium resistance 4 10 4 11 7 8 2

Fluoroquinolones resistance 2 2 2 2 2 2 2
b-lactamase 1 2 1 2 2 1 1

Motility and Flagellar motility 65 33 70 84 72 47 24
chemotaxis Bacterial chemotaxis 17 22 26 30 19 21 15
Cold adaptation Capsular and extracellular polysaccharides 14 17 28 18 20 27 11

Polysaccharide export proteins 4 5 2 5 5 2 3
Cold-shock proteins 4 3 3 4 1 3 1
tRNA-dihydrouridine synthase 1 1 1 1 1 1 1

Stress Osmotic stress 4 0 1 2 2 2 1
response Oxidative stress 33 36 43 41 38 30 29

Detoxification 9 7 8 7 6 6 7
Phage shock protein operons 4 5 4 8 4 4 4
Heat-shock proteins 7 5 6 5 7 5 2
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Strains: 1, A6E486T; 2, 5E331T; 3, K. gwangyangensis JCM 30877T; 4, K. lipolytica JCM 12864T; 5, K. lacus CGMCC 1.9109T; 6, K. pumila N18T; 7, K. sediminis KCTC 42590T.
FIGURE 6 | Histogram of predicted carbohydrate-active enzymes in strains A6E486T, 5E331T, K. gwangyangensis JCM 30877T, K. lipolytica JCM 12864T, K. lacus
CGMCC 1.9109T, K. pumila N18T, and K. sediminis KCTC 42590T. Numbers of each enzyme detected in the genomes were shown in the map. GT,
glycosyltransferase; GH, glycoside hydrolase; CE, carbohydrate esterase; CBM, carbohydrate-binding module; AA, auxiliary activity; PL, polysaccharide lyase.
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Cells are Gram-negative and aerobic with rod shape. Growth
is observed at pH 6.0–8.5 (optimum,7.0) and temperatures of 15°
C–40°C (optimum, 33°C) and with 1.5%–5.0% (w/v, optimum,
3.0%) NaCl. Growth does not occur under anaerobic condition,
and nitrate is not reduced to nitrite. The activities of trypsin
and oxidase are positive, but the activities of ɑ-chymotrypsin,
ɑ-galactosidase, ɑ-glucosidase, ɑ-mannosidase, and ɑ-fucosidase
are negative. Acids are produced from D-ribose, L-sorbose, D-
turanose, D-lyxose, D-tagatose, and potassium 5-ketogluconate.
The major cellular fatty acids (>10%) are iso-C15:0, iso-C17:1 w9c,
and summed feature 3 (comprising C16:1 w6c and/or C16:1 w7c).
The predominant respiratory quinone is Q-10. The major polar
lipids consist of PE, PG, DPG, and unidentified glycolipids,
aminolipids, and lipids. The DNA G+C content of type strain
is 46.2 mol%.

The type strain is 5E331T (= KCTC 92199T = MCCC
1H00515T), which was isolated from fresh kelps collected from
a kelp culture area, Rongcheng, China.
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