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Skeletal muscles of teleost are mainly composed of slow-twitch muscles (SM) and fast-
twitch muscles (FM) differed in contractile properties, metabolic capacities, and
regeneration rate. The transcriptional regulatory mechanisms that control different
muscle types have been elucidated in teleost according to transcriptome between SM
and FM. However, the differences between SM and FM were affected not only by
genotype but also by complicated epigenetic effects, including DNA methylation, which
usually regulates genes in transcription level. To determine the essential role of DNA
methylation in the regulation of different muscle types, we analyzed whole-genome
methylation profiles of pelagic migratory fish Pseudocaranx dentex with abundant and
well-separated SM and integrated DNA methylation profiles with the previously obtained
transcriptome data. A total of 4,217 differentially methylated genes (DMGs) were identified,
of which 3,582 were located in the gene body and 635 in the promoter. These DMGs
mainly participated in muscle metabolite and cell junction. Enriched cell junction pathway
reflected different capillary distribution between SM and FM. Through comprehensive
analysis of methylome and transcriptome, 84 differentially expressed genes (DEGs)
showed significant methylation variation in promoters between SM and FM, indicating
that their expression was regulated by DNA methylation. Hypomethylated and highly
expressed oxygen storage protein Myoglobin (myg) in SM indicated demethylation ofmyg
promoter could upregulate its expression, thus increasing O2 supplying and meeting
oxygen demands of SM. Hypermethylated and lowly expressed tnn (Troponin) and rlc
(myosin regulatory light chain) in SM may be associated with low mobility of myosin cross
bridges, which lead to slower and less frequent muscle contraction in SM than in FM. In
addition, hypomethylated and highly expressed lbx1 (Ladybird homeobox protein
homolog 1) and epo (erythropoietin) may be related to increased satellite cell numbers,
and Semaphorin/Plexin genes may be related to higher rate of neuromuscular connection
reconstruction, which further promote high muscle regeneration efficiency in SM. Our
in.org June 2022 | Volume 9 | Article 9163731
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study elucidated the potential DNA methylation mechanisms that regulate physiological
characteristics differences between SM and FM, which could facilitate our understanding
of skeletal muscle adaptation in pelagic migratory fishes and further enrich the theoretical
basis for the study of physiological characteristics and adaptive evolution in teleost fishes.
Keywords: Pseudocaranx dentex, DNA methylation, slow-twitch muscles, fast-twitch muscles, satellite cells
1 INTRODUCTION

The skeletal muscles of fish are critical tissues involved in
swimming activity, which is of great significance for the
survival of fish, supporting various physiological activities such
as feeding, reproduction, clustering, migration, and escape from
enemies. In most teleost, skeletal muscles are mainly composed
of slow-twitch muscles (SM) and fast-twitch muscles (FM),
which are differed in contractile properties, metabolic
capacities, and regeneration efficiency (Bassaglia and Gautron,
1995; Jayaraman et al., 2013). SM contain higher level of
mitochondria, capillaries, and myoglobin than FM. The energy
metabolism of SM is aerobic supporting sustaining swimming,
whereas FM rely mainly on glycogen for anaerobic metabolism
for fast movements.

The proportion of SM and FM varies among different
locomotion type fishes. Fishes with a more active mode of life
have a higher proportion of SM (Greek-Walker and Pull, 1975;
Teulier et al., 2019), making them an excellent model system for
skeletal muscle difference study (Gibb, 2002). Oceanic migratory
fishes such as Trachurus trachurus and Sardina pilchardus, which
swim constantly in schools covering great distances have a higher
proportion of SM than benthopelagic fishes such as Sparus aurata
and Callionymus lyra (Greek-Walker and Pull, 1975; Gibb, 2002;
Teulier et al., 2019). Pseudocaranx dentex, as a pelagic migratory
fish with high nutritional value, is the candidate species for far-
reaching marine aquaculture in China. The aquaculture
conditions of P. dentex should meet their long-distance
swimming requirement, but the underlying regulation
mechanism is still unclear, which has become the limitation for
the large-scale aquaculture of P. dentex. To meet their high energy
requirement during oceanic migratory, P. dentex developed higher
proportion of SM with more mitochondria and capillaries, which
could provide energy and oxygen for sustaining swimming.
Understanding the molecular differences between different
muscle types could help us reveal the adaptation mechanism of
the high proportion SM of pelagic migratory fishes to the long-
distance swimming. The transcriptional regulatory mechanisms
that control the different muscle types have been elucidated
according to the transcriptome between SM and FM in several
species (Mareco et al., 2015; Gao et al., 2017) including P. dentex
(Wang et al., 2022).

However, studies over the last several decades have
demonstrated that not only genetic but also epigenetic events
especially DNA methylation might be involved in the skeletal
muscle development and differences (Fang et al., 2017; Fan et al.,
2020). DNAmethylation refers to modification in gene expression
without changing the DNA sequence itself and mediates
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numerous biological processes such as growth, development,
and genomic imprinting (Razin and Cedar, 1991; Jones and
Takai, 2001; Bird, 2007). In teleost, whole-genome DNA
methylation analysis has been widely applied for exploration of
physiological regulation mechanism. Several researchers have
revealed the epigenetic effects on sex differences in Takifugu
rubripes (Zhou et al., 2019), growth and gonad of large yellow
croaker (Larimichthys crocea) (Zhang et al., 2019b; Zhou et al.,
2019), and skin color in Crucian carp (Carassius carassius L.)
(Zhang et al., 2017). Whole-genome analysis of DNA methylation
has become an effective approach for researching physiological
regulation in teleost. To reveal the epigenetic regulation process of
physiological characteristics differences between SM and FM, we
generated the whole-genome single-base DNA methylation
profiles and integrated the methylome with the transcriptome
data obtained from the previous study between SM and FM of P.
dentex. We identified critical genes whose expression was
regulated by promoter methylation, which may be related to
phenotypic differences between SM and FM, and constructed an
overview of essential genes and related physiological function
regulated by DNA methylation between SM and FM of P.
dentex. The results will provide a new perspective for
understanding the long-distance swimming adaptability of
pelagic migratory fish skeletal muscle and further enrich the
theoretical basis for the study of physiological characteristics and
adaptive evolution in teleost fish.
2 MATERIAL AND METHODS

2.1 Sample Collection and Preparation
SM and FM from three adult P. dentex individuals (body length:
36.83 ± 0.67 cm; body weight: 1567.63 ± 147.05 g) collected in
2020 fromDalian Tianzheng Industrial Co., Ltd. (Dalian, Liaoning
province, China) were used for whole-genome bisulfite sequencing
(WGBS) with the Illumina HiSeq/NovaSeq platform (Illumina,
CA, USA). High-quality, double-stranded genomic DNA was
isolated from muscle tissues using a DNA extraction kit
(TIANGEN, Beijing, China), following the manufacturer’s
recommended instructions. Genomic DNA extraction quality
was validated by agarose gels and NanoPhotometer®

spectrophotometer (IMPLEN, CA, USA). DNA concentration
was quantified using the Qubit® DNA Assay Kit on a Qubit®

2.0 Fluorometer (Life Technologies, CA, USA).

2.2 Library Preparation and Quantification
A total amount of 100 ng of genomic DNA spiked with 0.5 ng of
lambda DNA was fragmented to 200–300 bp by sonication with
June 2022 | Volume 9 | Article 916373
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Covaris S220. Bisulfite treatment of these fragments was
performed using the EZ DNA Methylation-GoldTM Kit (Zymo
Research) followed with PCR amplification to generate sequencing
library. The libraries constructed by Novogene Corporation
(Beijing, China) were sequenced using the Illumina Novaseq
platform (Illumina, CA, USA). The quality of the libraries was
assessed on the Agilent Bioanalyzer 2100 system. After image
analysis and base calling performed with Illumina CASAVA
pipeline, 150-bp paired-end reads were generated.

2.3 Quality Control and Mapping
Thereafter, reads constructed by the Illumina pipeline were
preprocessed through Trimmomatic software with the
following parameters: SLIDINGWINDOW, 4:15; LEADING, 3;
TRAILING, 3; mismatch: 2; ILLUMINACLIP: adapter. fa, 2:30:7.
Then, reads unpaired or shorter than 36 nt after trimming were
removed. Remaining reads passed all these filtering steps were
counted as clean reads and used to perform all subsequent
analysis. The quality of raw reads and clean reads were
assessed by FastQC (fastqc_v0.11.5). Q30 and GC content were
also calculated to evaluate data quality.

Bisulfite-treated reads were aligned to the P. dentex reference
genome (PRJNA731999) using Bismark software with following
parameters: (score_min L, 0, -0.2, -X 700). In brief, the P. dentex
reference genome and clean reads were transformed into bisulfite-
converted version (C-to-T and G-to-A converted), and clean reads
were aligned to reference genome in a directional manner.
Alignment strategy of Bismark was exhibited as a schematic
diagram (Supplementary Figure 1) and the methylation state of
all cytosine positions was inferred. The sequencing depth and
coverage were calculated using deduplicated reads, which were
reads that aligned to the same genome regions. The binomial
distribution test for each C site was used to confirm C-site
methylation by screening conditions for coverage ≥5× and FDR-
corrected p-value < 0.05. The percentage of cytosine sequenced at
cytosine reference positions in the lambda genome was also
evaluated as the bisulfite non-conversation rate.

2.4 Methylation Level Estimation and
Differentially Methylated Region Analysis
The methylation level of an individual C-sites was calculated
with the following formula: ML(C) = reads(mC)/[reads(mC) +
reads(umC)], where mC is the reads number of methylated C-
site counts, and umC is the unmethylated. The methylome data
had been deposited in the Sequence Read Archive database with
the accession number PRJNA796775.

Differentially methylated regions (DMRs) were identified by
DSS software with the following parameters: smoothing = TRUE,
smoothing.span = 200, delta = 0, p.threshold = 1e-05, minlen =
50, minCG = 3, dis.merge = 100, pct.sig = 0.5. By definition,
DMRs have at least three methylation sites in the region, Q-value ≤
0.01, and the absolute mean methylation difference greater than
50%. Subsequently, DMR-related genes (DMGs) were defined as
genes whose gene body region [from Transcriptional Start Site
(TSS) to Transcriptional End Site (TES)] or promoter region (2 kb
upstream from the TSS) have 1 bp overlap with the DMRs.
Frontiers in Marine Science | www.frontiersin.org 3
2.5 Enrichment Analysis of
DMR-Related Genes
GeneOntology (GO) is an international standardized gene function
classification system. We implemented GO enrichment analysis of
DMGs using the GOseq R package (Young et al., 2010) with gene
length bias correction. Significantly enriched signal transduction
pathways represented by DMGs were determined using pathway
enrichmentanalysis.KOBASsoftware (Maoet al., 2005)wasused to
test the statistical enrichment of DMR-related genes in
KEGG pathways.

2.6 Association Between DNA Methylation
and Gene Expression
Wematched thepromoter regionsofWGBSdatawith theRNA-seq
data produced by identical materials from present study which are
publicly available at the Sequence Read Archive database with the
accession number PRJNA733284 (Wang et al., 2022). By integrated
analysis of DMGs and differentially expressed genes (DEGs), we
obtained a set of genes related to muscle difference and performed
functional analysis of these genes. The STRING database was used
toprotein-protein analyze interactionnetworksof candidateDMGs
(http://string-db.org/) (Franceschini et al., 2013).
3 RESULTS

3.1 Global DNA Methylation Profiling
Genome-wide DNAmethylation analysis of the skeletal muscles in
P. dentex was performed by WGBS with >99.9% conversion
efficiency. In present study, 24.12-GB and 24.45-GB raw bases
were generated on average for SM and FM, respectively. After
quality control, approximately 80 million clean reads were
generated for each group, with the Q30 of clean, full-length reads
ranging from 92.76% to 93.58%. The mapped reads were used for
subsequent analysis, as the rates ranged from 83.57% to 84.71%
(Table 1). These results indicated a reliable sequencing outcome.

Approximately 2.5 billion methylated cytosines (mCs) were
detected throughout the whole genome, accounting for 6.5% of C
sites inmuscle samples ofP. dentex. DNAmethylation occurs at three
different sequence sites, the cytosine-phosphate-guanosine (CG)
dinucleotides, CHG and CHH sites (where H is A, C, or T). The
classification of mCs showed a similar proportion in SM and FM
genome. In theSM,98.28%of themCsweremCGtype,whereas about
0.37%and1.35%weremCHGandmCHHtypes (Figure 1A), and, in
FM, the proportion of mCG, mCHG and, mCHH were 97.56%,
0.44%, and2.00%(Figure1B), respectively (SupplementaryTable1).
Methylation in CGmotifs was further analyzed in subsequent results.
Furthermore, we investigated the DNA methylation on a
chromosomal level. The highest mCG was on chromosome 1 with
77% and the lowest mCG was on chromosome 21 with 70% in both
SM and FM (Figure 1C and Supplementary Table 2).

To further compare the genome-wide distribution and the
methylation levels of various functional genomic elements
between SM and FM, we analyzed the methylation level of CGs in
five genomic elements including promoters, 5′UTR (un-translated
region), exons, introns, and 3′UTRs (Figure 1D). The highest level
June 2022 | Volume 9 | Article 916373
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of mCGmethylation was detected in the 3′UTR region, which was
approximately 80% followed by the exon regions, which was about
75% (Supplementary Table 3). The lowest methylation level was
detected around TSS. However, mCHG and mCHH methylation
level were highest in the exon and intron, respectively
(Supplementary Table 3).

3.2 Characterization of Differentially
Methylated Regions
We identified 50,070 differentially methylated CG regions, 541
differentially methylated CHH regions and 47 differentially
methylated CHG regions. Among the DMRs, 29,779 (CG:
29,696 + CHH: 67 + CHG: 16) were hypermethylated and 20,879
Frontiers in Marine Science | www.frontiersin.org 4
(CG: 20,374 + CHH: 474 + CHG: 31) were hypomethylated
(Figure 2A). In present study, methylation in CG motifs that
were the most abundant methylated DMGs was further analyzed
in subsequent results. The DMRs inCGmotifs weremostly located
at introns. More detailed information was listed in Figure 2B. We
noticed that most DMRs in CG motifs were about length 250 bp,
and the length follows a normally distributed model (Figure 2C).
3.3 Functional Characterization of
Differentially Methylated Genes
To explore the methylation changes of genes in different muscles
of P. dentex, the GO and KEGG databases were used to annotate
TABLE 1 | Summary of whole-genome bisulfite sequencing (WGBS) sequencing data in P. dentex skeletal muscles.

Groups Samples Clean
Reads

Mapped
Reads

Clean
bases (G)

GC Content
(%)

Q30
(%)

Mapping
Rate (%)

BS Conversion
Rate (%)

Total
mC (%)

Slow-twitch
muscle

Slow-twitch muscle1 72,738,189 60,925,507 19.95 22.46 93.58 83.76 99.912 6.41

Slow-twitch muscle2 88,283,089 73,778,177 24.22 22.47 93.5 22.47 99.898 6.84
Slow-twitch muscle3 76,793,655 64,491,311 21.07 22.39 93.33 83.98 99.903 6.62

Fast-twitch muscle Fast-twitch muscle1 77,396,475 65,562,553 21.25 22.28 93.55 84.71 99.914 6.23
Fast-twitch muscle2 80,381,558 67,729,500 22.06 22.27 92.98 84.26 99.907 6.55
Fast-twitch muscle3 83,042,128 69,697,258 22.72 22.34 92.76 83.93 99.901 6.81
June 2022
 | Volume 9 | Article
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FIGURE 1 | The DNA methylation characteristics of slow-twitch muscles and fast-twitch muscles in P. dentex. The average ratio of DNA methylation types in slow-
(A) and fast-twitch muscles (B). The green, purple, and orange colors represent methylated CG, CHG, and CHH, respectively. (C) Representative image of
methylation level distribution on each chromosome in P. dentex. The methylation level data of mCG/mCHH/mCHG on each chromosome in slow- and fast-twitch
muscles could be got in Supplementary Table 2. (D) DNA methylation levels in functional regions of the genome.
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4,217 DMGs detected in the DMRs which contained 3,582
DMGs in gene body and 635 in promoter. We further
performed functional characterization of DMGs in CG motifs.
On the basis of the GO database, only DNA binding term was
significantly enriched for DMGs between SM and FM in
P. dentex (Supplementary Figure 2). According to the KEGG
pathway analysis, DMGs of gene body were significantly
Frontiers in Marine Science | www.frontiersin.org 5
enriched in focal adhesion, adherens junction, tight junction,
MAPK, TGF-b, Notch, Wnt, and calcium signaling pathway.
Thirty pathways were significantly enriched (P-value < 0.05)
between SM and FM, the top 20 of which were shown
in Figures 2D, F. In addition, DMGs of promoter were
significantly enriched in “ focal adhesion” pathway
(Figures 2E, G).
A B

D

E

F

G

C

FIGURE 2 | The characteristics of DMRs and function analysis of DMGs. (A) The number of differentially methylated regions among different methylation types.
(B) The distribution numbers of hyper/hypo DMRs in different genomic elements. (C) DMR length distribution density of mCGs contexts. (D, E) Scatterplot of Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways enriched by the DMGs in gene body (D) and promoter region (E) between slow- and fast-twitch muscles.
The vertical axis represents the name of the pathway, and the horizontal axis shows the enrichment factor. The size of the plot denotes the number of DMGs, and
the color corresponds to the Qvalue. A deeper color represents a smaller Qvalue and indicates more significant enrichment of the pathway. (F, G) The top 20
pathways enriched by DMGs in gene body (F) and promoter region (G) between slow- and fast-twitch muscles.
June 2022 | Volume 9 | Article 916373

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Li et al. Teleost Skeletal Muscle DNA Methylation
3.4 Correlation Between DNA Methylation
Status and Gene Expression Levels
DNAmethylation in promoter regions can inhibit gene expression
(Wagner et al., 2014), whereas the association between DNA
methylation within the gene body and gene expression is still
poorly understood (Jones, 2012). To further identify the key
differential genes involved in the regulation of skeletal muscle
differences in teleost, we integrated the RNA-seq data that were
obtained in previous study (Wang et al., 2022) and WGBS data of
promoter regions to revealmethylated candidate genes between SM
and FM in P. dentex. Our results showed that there were 84 DEGs
with statistically significant methylation variation in promoter
region, including 31 hypermethylated and downregulated genes,
and 53 hypomethylated and upregulated genes in SM (Figures 3A,
B). Functional characterization indicated that these genes were
Frontiers in Marine Science | www.frontiersin.org 6
involved in process of neuron guidance and cell junction
(Supplementary Table 4). Muscle-related genes also showed both
methylation and expression difference between SMandFM, such as
Myoglobin (myg), Troponin (tnn), and Myosin regulatory light
chain (rlc) (Figure 3C). The promoter ofmygwas hypomethylated
and its expressionwas enhanced in SM.The promoter of tnn and rlc
were hypomethylated, which induced their mRNA expression in
FM. Asmuscle is a majormetabolic tissue and two types of skeletal
muscles have different metabolic properties, it was not unexpected
that metabolic genes, including ADP/ATP translocase (adt3),
glyceraldehyde-3-phosphate dehydrogenase (gapdh), and insulin-
like growth factor-binding protein (igfbp7) showed both
methylation and expression difference (Supplementary Table 5).
Satellite cells related transcription factor lbx1 (ladybird homeobox
protein homolog 1) and epo (erythropoietin) genes were
A B

C

FIGURE 3 | Integrated analysis of the genome-wide DNA methylation and gene expression profiles between slow- and fast-twitch muscles. (A) Venn diagram of
overlapped hypo DMGs in promoters and upregulated DEGs in SM. (B) Venn diagram of overlapped hyper DMGs in promoters and downregulated DEGs in SM.
(C). Integrated analysis of DNA methylation levels and gene expression levels. The vertical axis represents the DNA methylation level, and the horizontal axis shows
the gene expression. FCs (fold changes) indicates the DNA methylation or gene expression of SM relative to that of FM.
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https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Li et al. Teleost Skeletal Muscle DNA Methylation
hypomethylated and upregulated in SM (Figure 3C and
Supplementary Table 5). Semaphorin and Plexin that are axon
guidance molecules were highly expressed and hypomethylated in
SMcomparedwithFM(Figure3C). Furthermore,weperformedan
association analysis and constructed the interaction networks of 84
DEGswithmethylation variation in promoter regions (Figure 4A).
These results illustrated that DMGs related to muscle contraction
including myg, tnn, and rlc (Figure 4B) and axon guidance
(Figure 4C) including Semaphorin and Plexin were highly
correlated with each other.

4 DISCUSSION

Epigenetic effects were defined as processes that can modify gene
expressionwithout anyDNAsequencechange andwereheritable to
subsequent generations. DNA methylation was the most relevant
epigenetic event in vertebrates (Varriale, 2014) that can regulate
gene expression (Zhang et al., 2019a). Increased DNAmethylation
were usually associated with gene repression, whereas reduced
DNA methylation could induce gene activation (Siegfried and
Simon, 2010). In present study, we investigated the essential role
of DNAmethylation in the regulation of the different muscle types
according to the analysis ofwhole-genomemethylationprofiles and
Frontiers in Marine Science | www.frontiersin.org 7
integrated analysis of DNAmethylation profiles and RNA-seq data
between SM and FM of P. dentex. Pathways regulated skeletal
muscle physiological characteristics and cell junctions were
enriched according to the DMGs. Furthermore, combing
methylome data with transcriptome data, we identified critical
genes whose expression were regulated by promoter methylation,
which may be related to phenotypic differences between SM and
FM, and constructed an overview of essential genes and related
physiological function regulated by DNAmethylation between SM
and FM of P. dentex.

4.1 Pathways Related to Skeletal
Muscle Physiological Characteristics
Enriched by DMGs
4.1.1 Enriched Muscle-Related Pathway According
to the DMGs
Skeletal muscle development, also termed as myogenesis, was a
complex-multistep process requiring a very precise, space- and
time-controlled regulation that occurs both during embryonic
development as well as regeneration process of the muscle (Lehka
and Redowicz, 2020). In present study, KEGG analysis showed that
the MAPK, TGF-b, Notch, Wnt, Calcium, and focal adhesion
signaling pathways involved in myogenesis and skeletal muscle
A B

C

FIGURE 4 | Co-regulation network of DEGs and DMGs between slow- and fast-twitch muscles of P. dentex (A). Enriched muscle contraction (B) and axon
guidance (C) networks. The network nodes indicate proteins, and lines represent there are predicted associations between these two proteins.
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regeneration of teleost (Pan et al., 2021; Wang et al., 2021) were
enriched according to DMGs between SM and FM of P. dentex.
MAPK signaling pathwaywas reported negatively regulates skeletal
muscle differentiation (Xie et al., 2018). TGF-bwas reported able to
inhibit myoblasts proliferation and specific inhibition of TGF-b
signaling pathway could significantly improve capability of muscle
regeneration (Delaney et al., 2017). Inhibition of Notch signaling
that is a key player in skeletalmuscle development and regeneration
was shown to impair muscle regeneration, whereas enhancing
Notch activation facilitated the repair process (Conboy et al.,
2003; Buas and Kadesch, 2010). Wnt signaling played a role in
fiber type determination during development but have not been
precisely linked to adultmyofiber typingmaintenance in adulthood
(Girardi and Le Grand, 2018). AlthoughWnt signaling was poorly
activated in mature skeletal muscles (Kuroda et al., 2013), it was
reported that timely regulation of Wnt signaling is essential for
muscle regeneration (Rudolf et al., 2016). Focal adhesion was the
signaling center of numerous intracellular pathways that regulate
cell growth and differentiation, which played an important role in
the development of skeletal muscles (Sastry and Burridge, 2000; Li
et al., 2019). The calcium signaling pathway was the key pathway
exerting allosteric regulation on many proteins, including through
ion channel activationor by acting as a secondarymessenger, which
could directly affect skeletal muscle metabolism (Fang et al., 2017).
Therefore, we speculated that MAPK, TGF-b, Notch, Wnt, and
calcium signaling pathway played important role in epigenetic
regulation of various skeletal muscle types differences.

4.1.2 Enriched Cell Junction Pathway Based
on DMGs Reflected Different Capillary
Distribution Between SM and FM
According to our results, cell junctionpathway suchas tight junction
and adherens junction showed significant methylation difference
between two types of fibers in P. dentex, which is consist with the
results in Siniperca chuatsi that DEGs between SM and FM were
enriched in adherens junction and tight junction (Pan et al., 2021).
Skeletal muscle, however, was rarely reported to have any cell–cell
junctions. However, SM generally had higher capillary volume than
mostly FM in meeting the demand for oxygen during sustained
swimming (Sjogaard, 1982; Murakami et al., 2010; Buckley and
Bossen, 2013). One of themain cellular constituents of capillary was
endothelial cells, which express both adherens and tight junctions
(Dejana, 2004) contribute to maintain vascular integrity (Le Guelte
and Gavard, 2011). Multiple enriched cell junction pathways
according to DMGs between SM and FM in P. dentexmay explain
the capillary distribution difference of these two types of muscles.

4.2 Key Genes Related to Phenotypic
Differences Between SM and FM
Identified by Integration of Methylome
and Transcriptome
4.2.1 DNAMethylation Regulate SM and FMDifferences
by Regulatingmyg, tnn, and rlc Expression, Thus
Affecting Oxygen Supplying andMuscle Contraction
According to the integrated analysis of WGBS and RNA-seq data,
we identified three critical genes (myg, tnn, and rlc) played
Frontiers in Marine Science | www.frontiersin.org 8
important role in skeletal muscle differences and their gene
expression was regulated by DNA methylation (Figures 5A, B).
The promoter of myg was hypomethylated; thus, their expression
was enhanced in SM. The promoter of tnn and rlc were
hypermethylated, which reduced their mRNA expression in SM.

Myg is a cytoplasmic hemoprotein and functions as an oxygen
storage protein in muscles (Ordway and Garry, 2004). It can bind
one molecule of O2 per molecule of protein (Feher, 2017). At onset
of muscle contraction, myoglobin immediately releases its bound
O2 to the mitochondria (Takakura et al., 2015). SM contain higher
levels of mitochondria than FM. Correspondingly, SM generate
energy by oxidative metabolism of mitochondria for continuous
contractions with less fatigue, whereas FM rely on anaerobic
respiration to produce ATP for bursts of movement (Bassel-
Duby and Olson, 2006). Moreover, it was reported that fishes
with a more active mode of life have a higher proportion of SM
(Webb, 1984; Dwyer et al., 2014; Teulier et al., 2019). Elevated
myoglobin expression regulated by methylation in SM of P. dentex
enables oxygen storage for aerobic metabolism maintenance
during endurance swimming of migratory (Figure 5A).

It was reported that rlc in skeletal muscles modulates
Ca2+-dependent tnn regulation of contraction (Kamm and Stull,
2011). Tnn binding with Ca2+ induced allosteric changes in the
thin filament allowing the myosin head to form a strong myosin
cross-bridge with F-actin to activate myosin ATPase (Leavis and
Gergely, 1984). Rlc phosphorylation increased the mobility of
myosin cross bridges such that they move away from the thick
filament surface toward actin thin filaments in skeletal muscles
(Stull et al., 2011). Therefore, Rlc phosphorylation and Ca2+-
binding Tnn played an important modulatory role in striated
muscle contraction (Szczesna, 2003). Hypermethylation and
lower expression of tnn and rlc in SM may be associated with
low mobility of myosin cross bridges, resulting in slower and less
frequent muscle contraction compared with FM (Figure 5B). In
conclusion, DNA methylation could regulate myg, tnn, and rlc
expression variation, thus affecting oxygen supply and muscle
contraction, which result in differences between SM and FM.

4.2.2 Muscle Regeneration Efficiency Difference
Between SM and FM Maybe Related to Satellite
Cell Number and Neuromuscular Connection
Reconstruction Speed
Skeletal muscles were reported retain a tremendous regenerative
capacity, which was attributed to the presence of satellite cells
(Dumont et al., 2015). Satellite cells were identified as
multipotent stem cells of the skeletal muscle tissue and played
a central role in the growth, maintenance, and repair of the
muscles. Adult satellite cells were quiescent under resting
conditions but can quickly re-enter the cell cycle following
stimuli such as physical trauma or growth signals. Activated
satellite cells will migrate extensively, proliferate, differentiate,
and fuse to form regenerating myofibers (Schmalbruch, 1976;
Verdijk et al., 2014). During muscle regeneration process, lbx1
(Ladybird homeobox protein homolog 1) was strongly expressed
in satellite cells (Watanabe et al., 2007) and epo (erythropoietin)
contributed to increasing satellite cell number, which were all
June 2022 | Volume 9 | Article 916373
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critical in differentiation and maintenance of satellite cells (Jia
et al., 2012).

The regeneration efficiency of SM and FM differs. SM were
reported contain more satellite cells than FM (Collins et al., 2005;
Ono et al., 2010) and the initial activation of satellite cells occurs
more rapidly which resulted in high regeneration efficiency in SM
(Rosenblatt et al., 1995; Lagord et al., 1998; Ono et al., 2010) to
satisfy the regeneration demand of these highly active postural
muscles. In present study,we found that theDNAmethylation level
of satellite cells related lbx1 and epo genes were downregulated in
SMcomparedwith FM,whichwas the opposite of that observed for
their expression levels. Because lbx1 and epo genes play important
roles in satellite cells maintenance as mentioned above, we
hypothesized that methylation of lbx1 and epo genes may be the
key functional regulators of high muscle regeneration efficiency in
SM (Figure 5C).

In addition to the satellite cell numbers, successful neuromuscular
connections were also critical for restoring skeletal muscle function
andphysiological properties duringmuscle regenerationprocess (Do
et al., 2011; Anderson et al., 2017). Semaphorin/Plexin were axon
guidancemolecules identified as specific ligands and receptors in the
neuromuscular connection system (Tanaka et al., 2007). Several
Frontiers in Marine Science | www.frontiersin.org 9
species of experimental evidence supported the idea that
dysregulation of Semaphorin/Plexin might trigger the denervation
of neuromuscular junctions (Van Battum et al., 2015; Grice et al.,
2018). Semaphorin and Plexin genes were hypomethylated and
highly expressed in SM compared with FM, which indicated that
higher regeneration efficiency in SM maybe related to the
neuromuscular connection reconstruction speed (Figure 5D).
CONCLUSION

In conclusion, our study supplied DNA methylation atlas and
identified methylation differences between SM and FM of P.
dentex. According to the integrative analysis of methylome and
transcriptome, we identified critical DNA methylation genes and
pathways controlled phenotypic differences between SM and FM.
Our results provide valuable data of genome epigenetic
mechanism in skeletal muscle differences, which could provide
new perspective for understanding the long-distance swimming
adaptability of pelagic migratory fish skeletal muscle and further
enrich the theoretical basis for the study of physiological
characteristics and adaptive evolution in teleost fishes.
A

B

D

C

FIGURE 5 | Critical methylated genes associated with phenotypic differences between slow- and fast-twitch muscles of P. dentex. (A) Hypomethylated and highly
expressed myg in SM (red letter) indicated demethylation of the myg promoter could upregulate its expression, thus increasing O2 supplying and meeting the oxygen
demands of SM. (B) Hypermethylated and lowly expressed tnn and rlc (green letter) in SM may be associated with low mobility of myosin cross bridges, which lead
to slower and less frequent muscle contraction in SM than in FM. (C) Hypomethylated and highly expressed lbx1 and epo genes (red letter) may be related to
increased satellite cell numbers, and Semaphorin/Plexin genes (red letter) (D) may be related to higher rate of neuromuscular connection reconstruction, which
further promote high muscle regeneration efficiency in SM. The schematic diagram of gene physiological function mainly referred to Jahan (Jahan) and Szczesna
(Szczesna, 2003) and was slightly modified.
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