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Impact of climate change on
long-term variations of small
yellow croaker (Larimichthys
polyactis) winter fishing grounds
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and Xinmei Xia1

1Laboratory of Fisheries Oceanography, Fishery College, Ocean University of China, Qingdao,
China, 2Jiangsu Marine Fisheries Research Institute, Nantong, China
Small yellow croaker (Larimichthys polyactis) is one of the key demersal species

with high economic values and wide distribution in the China Seas. In this study,

a Winter Fishing ground Abundance Index (WFAI) was developed by using

fisheries survey data in 1971–1982 and used as the response variable to

investigate the impacts of environmental variables, including surface current

velocity (SCV), sea surface salinity (SSS), sea surface temperature (SST), and

depth (DE). A total of 45 combinatorial generalized additive models (GAMs),

generalized linear models (GLMs), and random forest models (RFs) were used

to select the optimal WFAI prediction. The final WFAI distribution results

showed that the winter fishing ground hotspots of small yellow croaker were

mainly distributed between 11°C and 16°C isotherms and between 50-m and

100-m isobaths, and the area of winter fishing ground hotspots (WFHA)

significantly decreased and the hotspots tended to move northward over the

past 50 years. The shape of hotspots was strongly affected by temperature

fronts and salinity fronts. Analysis with the climate indices revealed that the

Atlantic Multidecadal Oscillation (AMO) might have a large influence on the

distribution of small yellow croaker by affecting SST and SSS in the China Seas

more than the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation

(NPGO), and Arctic Oscillation Index (AOI). The future prediction based on two

extreme scenarios (RCP2.6 and RCP8.5) indicated that the hotspots would

obviously move northward. These findings will serve effectively the fishery

resources monitoring, management, and evaluation of small yellow croaker in

the China Seas.
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Introduction

Growing evidence has demonstrated that changing climates

have shown a large effect on species distribution worldwide, and

many species have performed distribution shifts to higher

latitudes (Thomas, 2010; Vanderwal et al., 2013). The future

climate is expected to be unprecedentedly warmer due to

human influence (Masson-Delmotte et al., 2021), which may

threaten species to go extinct because of their limited ability to

adapt (Thomas et al., 2004). Many researchers have revealed the

impact of climate changes on fishery resources through climate

indices in recent years. For instance, the landings of small pelagic

fishes in the North Pacific performed as regime shifts strongly

associated with PDO in the mid-1970s (Chavez et al., 2003). A

negative effect was found between juvenile North Pacific albacore

distribution and the Pacific Decadal Oscillation (PDO) (Phillips

et al., 2014). The survival rates of both coho and chinook salmon

along western North America could be explained by the North

Pacific Gyre Oscillation (NPGO) (Kilduff et al., 2015). The long-

term catch fluctuations of abalone were closely related to the

Arctic Oscillation Index (AOI) in Japan (Van Vuuren et al., 2011).

A northward expansion of the species distributions was related to

the Atlantic Multidecadal Oscillation (AMO) (Drinkwater et al.,

2013). The effect of climate change especially long-term change on

species is poorly understood in the China Seas, which is a

productive system located in the northwest Pacific and probably

affected by climate change (Bao and Ren, 2014; Ma et al., 2018).

Small yellow croaker (Larimichthys polyactis) is one of the

most commercially important demersal fish species in the China

Seas and is mainly exploited by China, South Korea, and Japan

(Fishery Bureau of Ministry of Agriculture, 1987). Annual

landings of small yellow croaker in Chinese coastal waters,

between 1970 and 2019, have ranged from 3,300 tons to

400,000 tons (Bureau of fishery of Ministry of Agriculture of

China 1970-2019). The resources of small yellow croaker have

suffered three periods, a relatively high yield period before the

1960s (160,000 tons in 1957), a declining period during the

1960s to 1980s (16,000 tons in 1989), and a recovering period

after the 1990s (340,000 tons in 2010) (Shui, 2003; Jin et al.,

2005; Lin et al., 2008). The recovery could benefit from

protective measures such as the summer moratorium (Cheng

et al., 2004; Liu et al., 2018b). However, small yellow croaker

have shown a younger age structure and a shorter body length in

recent years (Lin and Cheng, 2004; Shan et al., 2017). Previous

studies of small yellow croaker have focused mostly on

resources, growth, diet composition, migration route, and

population identification (Xue et al., 2004; Lin et al., 2008; Xu

and Chen, 2009; Yan et al., 2014). Few comprehensive studies

have explored the distribution variability and environmental

conditions within the context of climate change. There is an

essential need to understand the changes in the spatial

distribution of small yellow croaker resulting from changed

population structure and life history characteristics. The
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species is described as moving to shallow waters to breed and

spawn during the warm seasons and moving back to deeper

waters in cooler seasons (Xu and Chen, 2009). It is not that easy

to track them year-round for migration species while they are

relatively concentrated and stable in the overwintering period.

The wintering grounds play an important role in the life-history

of these long-distance migration species, where they can avoid

intolerable conditions and prepare for the following

reproduction period (Watanabe, 1970; Grubbs et al., 2007).

Understanding the variations in wintering grounds will

provide effective information on small yellow croaker stock

assessment and management.

Species distribution models (SDMs) have been used to explore

the relationship between species distribution and environmental

variables (Guisan and Thuiller, 2005; Elith and Leathwick, 2009).

Generalized linear models (GLMs) and generalized additive models

(GAMs) are traditionally used in earlier SDMs. GLMs are based on

a regression approach and can handle presence–absence data and

simple additive combinations of linear terms (Guisan et al., 2002).

GAMs are similar to GLMs but can handle the nonlinear

relationship between distribution and environmental variables by

using quadratic, cubic, and other non-linear parametric transforms

(Welch et al., 2011). With the advances in technology, machine

learning and data mining models have been developed such as

artificial neural networks (ANNs) (Katz et al., 1992), random forest

models (RFs), support vector machines (SVMs), and multivariate

adaptive regression splines (MARSs) (Friedman, 1991). For

example, reefs and subtidal rocky habitats were forecasted

through ANNs (Watts et al., 2011), and the spatial distribution of

the potential yield of Manila clam were predicted in Italy using RFs

(Vincenzi et al., 2011). Moreover, new advances in satellite remote

sensing and numerical simulation technology provide a wide range

and high time-efficiency information for SDMs, which contributes

to understanding the relationship between fishery resource

variations and marine phenomena (Klemas, 2012; Chiu et al.,

2017; Kroodsma et al., 2018). At the same time, Geographic

Information Systems (GIS) could provide an excellent

convenience in extracting the environmental ranges and mapping

the species distribution (Valavanis et al., 2008; Roberts et al., 2010).

For instance, the suitable habitat of short-finned squid was modeled

including abiotic and biotic parameters based on GIS in the eastern

Mediterranean Sea (Valavanis et al., 2004). The temporal and

spatial patterns of swordfish catch distribution were analyzed

based on GIS and remote sensed data in the central

Mediterranean Sea (Perzia et al., 2016). Deriving indices of

abundance that reflect the spatial distribution of a species and its

dynamics over time is widely used in fisheries stock assessment and

management to deal with the high complexity inherent in the

survey data in terms of spatial and temporal variation (Kidokoro

and Sakurai, 2008; Beale and Lennon, 2012; Smoliński and Radtke,

2016; Potts and Rose, 2018). The habitat suitability index (HSI) was

developed to reflect the habitat quality for a particular species or life

stage over a range of possible environmental conditions (Brown
frontiersin.org
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et al., 2000). Spawning ground indices were developed using remote

sensed data and GIS to analyze the variations in potential spawning

grounds of Japanese flying squid (Liu et al., 2021) and Pacific saury

(Liu et al., 2018a), and wintering ground indices were developed to

explore the impacts of wintering ground conditions on chub

mackerel abundance (Wang et al., 2021). Few SDM studies have

been conducted to investigate long-term variations of small yellow

croaker winter fishing grounds in the China Seas within the context

of climate change, which limits exploring the resource

variability mechanism.

Climate change may have a profound influence on species

distribution range expansion or contraction (Thomas, 2010);

therefore, future distribution prediction can be important for

fishery resource conservation and sustainable exploitation. It has

been reported that among 36 target species in the North Sea,

nearly two-thirds of species showed responses to climate

warming with distribution shifts in mean latitude or depth or

both over 25 years (Perry et al., 2005). Many research studies

have forecasted the future distribution of species based on

different Representative Concentration Pathway scenarios

(RCPs). The RCPs are derived from estimated emissions

computed by a set of Integrated Assessment Models to define

a range of possible future atmospheric composition over the 21st

century (Masui et al., 2011; Riahi et al., 2011; Van Vuuren et al.,

2011). The RCPs include a high-emission scenario (RCP8.5),

two medium-emission scenarios (RCP4.5 and RCP6.0), and a

low-emission scenario (RCP2.6) based on different greenhouse

gas emissions (Collins et al., 2013; Nurdin et al., 2017; Silva et al.,

2018). It is reported that the habitats of 20 marine fishes will

move northward based on different RCPs up to the 2050s (Hu

et al., 2022). Common halfbeak and ballyhoo halfbeak were

predicted to benefit from climate change with potential increase

in their occurrence area in coastal regions of the Americas

(Guerra et al., 2021). Therefore, future prediction of small

yellow croaker winter fishing grounds distribution will serve

effectively in fishery resource management and exploration.

The objectives of this research are (1) to develop the optimal

model for predicting the abundance index of small yellow

croaker in winter fishing grounds, (2) to elucidate the key

factors that influence small yellow croaker distribution

variabilities in winter fishing grounds and analyze the

mechanism of regime shifts in the last 50 years, (3) to predict

future distribution of small yellow croaker in winter under

different climate scenarios (RCP2.6 and RCP8.0).
Materials and methods

Study area

The present study was conducted in the China Seas (26°N–

42°N and 118°E–128°E), which is located at the western edge of

the North Pacific Ocean. Small yellow croaker shows large-scale
Frontiers in Marine Science 03
migrations in the China Seas and off the west coast of Korea,

which is more concentrated in the northern East China Sea and

the southern Yellow Sea during the overwintering period

(Figure 1) (Zhu et al., 1963). This region is also considered to

be the mainly overwintering site for the South Yellow Sea and

the East China Sea stocks (Liu et al., 1990).
Fishery data

Monthly catch data are collected by trawling fishery statistics

for the period 1971–1982, which comprehensively reflect the

small yellow croaker resources in the Bohai Sea, Yellow Sea, and

East China sea (hereafter referred to as “the China Seas”). The

catch data were recorded by fishing areas with catch and

numbers of nets covering a total of 266 fishing areas. Each

fishing area consists of 0.5°×0.5° (latitude × longitude); the

location of the latitude and longitude of each fishing area was

described as the central point.

Winter data (January) were used to explore the distribution

of small yellow croaker during the overwintering period,

including 554 records in 140 fishing areas with distributions

ranging from 26°N–38°N to 120°E–128°E. A total of 505 records

in 139 fishing areas from 1971 to 1981 were used to construct the

model, and data in 1982 (49 records in 49 fishing areas) were

used for model validation.

Generally, CPUE is regarded as an indicator offish abundance

due to its positive correlation with the availability of fishery

resources in fishing grounds (Sakurai et al., 2000; Yu et al.,

2018; Liu et al., 2020), and in this study, the index associated

with CPUE was used to represent the abundance of small yellow

croaker. CPUE data for each fishing area was calculated by

dividing the total catch by the number of nets, in kg/net.
Environmental data

(1) Environmental variables

Monthly environmental data included surface current

velocity (SCV) derived from meridional velocity (V) and zonal

velocity (U), sea surface salinity (SSS), and sea surface

temperature (SST). SCV is derived from meridional velocity

(V) and zonal velocity (U), and the equation of SCV (1) is shown

below:

SCVij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
ij + U2

ij

q
(1)

where SCVij is the surface current velocity of grid j in year i; Vij is

the meridional velocity of grid j in year i; and Uij is the zonal

velocity of grid j in year i.

The data for 1971–1992 from Simple Ocean Data

Assimilation (SODA) v3.3.1 were downloaded from the APDRC

data at a spatial resolution of 0.5° ×0.5° (latitude × longitude), and
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1993–2020 data were obtained from the Copernicus Marine

Service at a spatial resolution of 0.25°×0.25° (latitude ×

longitude). Submarine elevation data were derived from the

ETOPO1 Global Relief Model at a resolution of 1/60° (Table 1).

All data were resampled into a 0.1° ×0.1° resolution (latitude ×

longitude) for consistent spatial resolution.

(2) Climate indices

The monthly mean climate indices are from online public

datasets and previous literature reports. According to previous

literature reports, winter is the most intense period of climate

activities, significantly affecting the regional environment. In this

study, the PDO, NPGO, AOI, and AMO were used to explore the

effects of climate change on fishing ground variations (Table 2).

(3) IPCC-RCP scenarios

The monthly mean environmental conditions in the future

(2040–2050 and 2090–2100) were downloaded from a public
Frontiers in Marine Science 04
dataset (https://www.bio-oracle.org). Max depth data from Bio-

ORACLE (ocean rasters for analysis of climate and

environment), including the temperature, salinity, and surface

current velocity of RCP 2.6, RCP4.5, RCP6.0, and RCP8.5, were

used to predict the distribution in the future (Lennert et al., 2012;

Assis et al., 2018). Rasters were assembled at a resolution of

0.083°×0.083° (latitude × longitude), and were resampled into a

0.1°×0.1° resolution (latitude × longitude) for consistent

spatial resolution.
Winter fishing ground indices

To describe the abundance of small yellow croaker under a

uniform standard and to observe the winter variation, a Winter

Fishing ground Abundance Index (WFAI) was developed to
TABLE 1 Environmental data used for research and model construction.

Time Variable (unit) Data sources Spatiotemporal resolution

1971–1992 SSS SODA
(http://apdrc.soest.hawaii.edu/)

0.5°×0.5°
monthlySST (°C)

U (m/s)

V (m/s)

1993–2020 SSS Copernicus Marine Service
(http://marine.copernicus.eu/)

0.25°×0.25°
monthlySST (°C)

U (m/s)

V (m/s)

1971–2020 Depth (m) ETOPO1 Global Relief Model
(https://www.ngdc.noaa.gov/)

1/60°
FIGURE 1

Study area of small yellow croaker. The slash-shaded area indicates the location of potential winter fishing grounds for small yellow croaker.
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represent the abundance of small yellow croaker qualitatively.

The catch and the number of nets in each fishing area were used

to calculate the abundance index, and the equation of WFAI (2)

is shown below:

g WFAIij
� �

= ln CPUEij + 1
� �

(2)

The region with WFAI higher than 5 is regarded as winter

fishing ground hotspots and could be considered to have a

higher occurrence probability of small yellow croaker in

winter. The area of winter fishing ground hotspots (WFHA)

was calculated as an index to measure the variation of annual

dynamic fishing ground in winter. The calculation formula of

WFHA (3) is as follows:

WFHAi =oNi
j=1Sj (3)

where Ni is the grid number of WFAI > 5 in the winter fishing

ground in year i; Sj is the size of grid j at 0.1° × 0.1° (latitude ×

longitude) resolution.

The location of potential winter fishing ground was

delineated based on the predicted WFAI distribution. The

annual mean values of SST, SSS, and SCV in potential winter

fishing ground were calculated separately to represent the

environmental condition fluctuations. WFHA and the mean

value of WFAI in potential winter fishing ground are used to

describe the annual variation of small yellow croaker.

The hotspots center is the center of gravity of hotspots,

which is used to indicate the location of winter fishing ground

hotspots. In this study, the center of hotspots is obtained by the

Mean Center Tool of ArcGIS 10.7.
Develop prediction models for WFAI

A total of 45 combinatorial GLMs, GAMs, and RFs were

simulated by incrementally adding variables. The model was

constructed with the Marine Geospatial Ecology Tool (MGET)

of ArcGIS 10.7, an additional program that applies advanced

analytical methods (Roberts et al., 2010). Environmental data

[SSS, SST, SCV, and depth (DE)] were used as predictive

variables to predict the WFAI distribution of small yellow

croaker, and environmental variables were gradually added to

the models. The variable inflation factors (VIFs) were examined
Frontiers in Marine Science 05
to determine whether these environmental variables have multi-

collinearity, the results show that no variable has a VIF value

greater than 5, and the VIF of SSS, SST, SCV, and DE were 2.40,

2.06, 1.80, and 1.80, respectively.

GAMs and GLMs were constructed using the “mgcv”

package and “glm” package, respectively. (Wood, 2006). The

equations for GAM(4) and GLM(5) are as follows:

g Yð Þ = a +on
i=1Fi Xið Þ + ϵ (4)

g Yð Þ = a +on
i=1b Xið Þ + ϵ (5)

where g is the link function that constructs the relationship

between the response variable and predictor variables, Y is the

response variable (WFAI), Xi is the predictor variable (SSS, SST,

SCV, and DE), n is the number of variables, Fi is the smoothing

function for predictor Xi, a is the intercept, b is the model

constant, and ϵ is the random error (Guisan et al., 2002;

Wood, 2006).

RF is an ensemble learning method that uses multiple

decision trees; usually, a number of trees are trained from the

original decision tree (Breiman, 2001). The random forest

algorithm is as follows (Liaw and Wiener, 2002): firstly, draw

ntree bootstrap samples from the original data; secondly, for each

of the bootstrap samples, grow an unpruned classification or

regression tree, with the following modification: at each node,

rather than choosing the best split among all predictors,

randomly sample mtry of the predictors and choose the best

split from among those variables; thirdly, aggregate these trees’

information to predict new data. In this study, ntreewas set to 500

and a “random forest” software package was used to build

RF models.

The GLM, GAM, and RF models were developed using

monthly raster data from 1971 to 1981 and then predicted the

WFAI in 1982; the model performance was evaluated by

comparing the predicted and actual values. Increasing

variables incrementally caused changes in the explanatory rate

and the Akaike information criterion (AIC) in the GAMs and

GLMs, and deviance was explained in RFs. Therefore, the

highest deviance explained and the lowest AIC (Johnson and

Omland, 2004) were used to seek out the best GAM and GLM,

and choose RF with the highest deviance explained.
TABLE 2 Climate index used for subsequent analysis.

Climate index Data sources Temporal resolution

Pacific Decadal Oscillation (PDO) https://www.ngdc.noaa.gov/ Monthly

North Pacific Gyre Oscillation (NPGO) http://o3d.org/ Monthly

Arctic Oscillation Index (AOI) https://www.ncdc.noaa.gov/ Monthly

Atlantic Multidecadal Oscillation (AMO) https://psl.noaa.gov/ Monthly
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Detection method for regime shift

The Sequential t-test Analysis of Regime Shift (STARS) was

applied to detect trends and step changes within the time series

data, including WFAI, WFHA, SST, SSS, SCV, and climate

indices (Rodionov, 2004). STARS results are determined by

significance level (P), cutoff length (L), and the Huber’s weight

parameter (H), which controls the magnitude and scale of the

regimes and the weights assigned to the outliers. In this study,

the STARS cutoff length was set to 10, the Huber’s weight

parameter to 2, and the significance level to 0.1, consistently.

In addition, the Cumulative sum (CuSum) of the anomalies was

used to denote the trend of all exponential time series (Beamish

et al., 1999).
Results

Optimal prediction model for WFAI

The best-performing GAM, GLM, and RF models are shown

in Table 3. In GAM, the best-performing model has three

significant predictor variables (SCV and SST with p < 0.001

and DE with p < 0.01) with the lowest AIC (2010.26) and the

highest deviance explained (34.7%). For GLM, the final selected

model with three significant predictors (SCV and SST with p <

0.001 and DE with p < 0.01) had the lowest AIC (2,116.40) and a

high explained variance (15.80%). In RF, the predictive model

containing four variables was selected, with deviance explained

at 37.7%. Compared with the three models, the RF model has the

highest explanation.

Figure 2 shows the comparison of actual WFAI and RF,

GAM, and GLMmodel prediction results in 1982. The predicted

hotspot distributions of RF, GAM, and GLM are consistent with
Frontiers in Marine Science 06
the actual values, indicating that the prediction performance was

reasonable. However, GAM predictions show high values in

nearshore waters that are not consistent with reality. Among the

validation data, 30.61% were underestimated and 12.24% were

overestimated in GLM predictions. Figure 3 shows that RF was

the best model by comparing the relationships between the

predicted and actual WFAI for each selected model. The RF-

based model showed the highest correlation (R2 = 0.54, p < 0.01),

which was greater than those from GAM (R2 = 0.47, p < 0.01)

and GLM (R2 = 0.29, p < 0.01). Therefore, the RF model was

selected as the most suitable model for subsequent prediction.
Spatial distribution of WFAI

The final predicted WFAI of small yellow croaker from 1971

to 2020 (Figure 4) was produced by using the RF model; spatial

variation showed that in the past 50 years, WFHA has gradually

decreased, and the WFHA in 2020 is significantly lower than in

1971. It was shown that winter fishing ground hotspots mainly

concentrated in 30°N–35°N, 123°E–127°E with annual

variations; these regions may become a potential winter fishing

ground for small yellow croaker. In the Yellow Sea, the range of

hotspots gradually decreased, with the most extensive

distribution in the 1970s. The smallest range of hotspots

occurred in 1985, followed by 1992. After the 1990s, the

northern boundary of the hotspots barely exceeded 35°N. In

the East China Sea, the hotspot range was also widely distributed

in the 1970s, decreasing from the 1980s to the 1990s and

increasing after the 2000s. While the smallest area appeared in

1972, the largest area appeared in 1989. In addition, the hotspots

in the Yellow Sea and the East China Sea were contiguous in the

1970s and 1980s, and from the 1990s, the winter fishing ground

tended to divide into two parts. There are also only a few years
TABLE 3 GAM, GLM, and RF models included predictor variables, AIC, p-value, IncMSE, and deviance explained.

Model Predictor variable AIC p-value IncMSE Deviance explained

GAM SSS 2010.26 0.1421 - 34.70%

SST 2 × 10−16 *** -

SCV 2 × 10−16 *** -

Depth 0.00203 ** -

GLM SSS 2116.40 0.72393 - 15.80%

SST 1.24 × 10−5 *** -

SCV 6.21 × 10−12 *** -

Depth 0.00284 ** -

RF SSS - - 1.07 37.70%

SST - 1.71

SCV - 1.06

Depth - 0.84
**p ′ 0.01, ***p ′ 0.001.
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with hotspots distributed in the eastern part of Jeju island, which

are 1971–1975, 1981, and 1991.
Temporal variations in winter fishing
grounds

Winter fishing grounds of small yellow croaker were defined

as shown in Figure 1, which are distributed in the offshore area

between 29°N and 35°N according to the average distribution of

WFAI from 1971 to 2020.

The mean values of WFAI, WFHA, SSS, SST, and SCV of

winter fishing grounds were calculated annually. WFAI and

WFHA displayed a decreasing trend in fluctuation, while SSS,

SST, and SCV had a dynamic increase (Figures 5, 6). The

dynamic trends of WFAI and WFHA are almost identical,

with a sudden drop in 1985 and then rise again, followed by

another dip in 1992 and then fluctuating changes. Maximum

and minimum values occurred in 1973 (5.39 for WFAI; 123,328

km2 for WFHA) and 1985 (4.24 for WFAI; 50,896 km2 for

WFHA), respectively (Figures 5A, B).

Surface current velocity shows the opposite trend, which was

extremely high in 1985 and 1992 and decreased in the middle

years (Figure 6A). A correlation analysis revealed that WFAI
Frontiers in Marine Science 07
(r = 0.61, p < 0.01) and WFHA (r = 0.62, p < 0.01) were

negatively correlated with SCV. SST and SSS remained low

during this period, with a minimum value in 1985

(Figures 6B, C).
Climate-induced variations in WFAI

STARS analysis results show that the mean values of WFAI

highlighted regime shifts with significant decreasing trends

during 1981/1982 and 1991/1992, so was WFHA, which

displayed the same regime shift trends in 1981/1982 and 1991/

1992 (Figures 7A, B). SSS shows regime shifts with increasing

trends in 1992/1993 and SCV in 1984/1985 separately

(Figures 7C, E). SST highlighted that regime shifts decreased

in 1980/1981 and increased in 1992/1993 (Figure 7D). The

climatic indices showed evident decadal variability from 1971

to 2020 with regime shifts in 1976/1977 and 1988/1989 for PDO

(Figure 7F), increasing shift in 1997/1998 and decreasing in

2013/2014 for NPGO (Figure 7G), and only one increased
FIGURE 2

Comparison of the predicted distribution and the actual WFAI
values in 1982. Distribution map in (A) is the prediction result of
the generalized additive model (GAM), (B) is the prediction result
of the generalized linear model (GLM), and (C) is the prediction
result of the random forest model (RF).
FIGURE 3

Validation of predicted and actual WFAI values of GAM (A), GLM
(B), and RF (C) in 1982.
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regime shift in 1988/1989 for AOI, and 1994/1995 for AMO

(Figures 7H, I).
Future prediction of WFAI

Based on different greenhouse gas emissions in 2040–2050

and 2090–2100, WFAI distribution of small yellow croaker in

the mid- and late 21st century under the RCP2.6 and RCP8.5

scenarios with the highest and lowest gas emissions is shown

in Figure 8.

The RCP2.6 scenario prediction (Figures 8B, C) shows that

the hotspot area shifted significantly northward in the mid-to-

late 21st century compared to 2020 (Figure 8A), with the

southern boundary moving from 30°N to 33°N, the western

edge moving from 123°E to 121°E, the hotspot region moving

from the East China Sea to the Yellow Sea, and the WFHA

increasing significantly from 2020. At the end of the 21st

century, the northern boundary of hotspots shifts southward

and becomes more concentrated than in the middle of

the century.

In the RCP8.5 scenario predictions (Figures 8D, E), the

hotspots of winter fishing grounds also shifted northward in

the mid-to-late 21st century. The dynamics in the 2050s are

similar to RCP2.6, with the hotspots in the East China Sea
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moving to the Yellow Sea, and with the southern boundary near

35°N. At the end of the 21st century, hotspots became smaller

and more concentrated, mainly between 122°E–124°E and 34°

N–36°N in the Yellow Sea, with fewer hotspots appearing at 125°

E–126°E.
Discussion

Model performance

In this research, a series of SDMs (GLMs, GAMs, and RFs)

were simulated based on WFAI and environmental variables.

The RF model was selected to be the optimal prediction model

for small yellow croaker in the overwintering period with the

highest deviance explained at 37.70%. GAMs were suboptimal

compared with GLMs, which had the lowest deviance explained

at 15.80%. We also compared the prediction performance of

three model types. The results showed that the RF model had the

highest correlation between predicted and actual WFAI, slightly

higher than GAM and nearly two times higher than GLM.

Moreover, GAM predictions showed unexpectedly high values

in nearshore waters where there were overestimated and GLM

predictions underestimated approximately 30% of the whole

area of hotspots compared with RF. GLMs are based on linear
A B

FIGURE 4

The annual WFAI distribution map of small yellow croaker in the China Seas during 1971–1995 (A) and 1996–2020 (B).
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multiple regression and can deal with presence–absence data.

GAMs are similar to GLMs and can handle nonlinear responses

using quadratic, cubic, or other smoothers. Generally, the

relationship between species distribution and environmental

variables could be nonlinear. Our results also indicated that

GAMs had better performance than GLMs. Several studies have

demonstrated that machine learning approaches (e.g., RFs,

SVMs, and ANNs) could outperform traditional regression

approaches (e.g., GLMs and GAMs) (De Clercq et al., 2015;

Luan et al., 2018; Catucci and Scardi, 2020). Among the six

candidate methods (GLMs, GAMs, RTs, RFs, ANNs, and SVMs)

applied to Japanese Spanish mackerel, the higher predictive

quality of four machine learning models (RTs, ANNs, RFs,

and SVMs) has also been expressed over GLMs and GAMs (Li

et al., 2015). Machine learning models have advantages in

handling non-linear relationships and could avoid overfitting

the training data (Luan et al., 2020). Machine learning

approaches can provide well-controlled variable selection and

coefficient estimation; hence, their prediction performance may

exceed conventional regression models. It would see machine

learning approaches becoming more and more popular in SDMs

because of their advantages in prediction.
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Impact of environmental variables on the
WFAI of small yellow croaker

The 50-year average distribution map of small yellow

croaker in winter was generated combined with an isoline map

of SST and DE (Figure 9). The results showed that the hotspots

of small yellow croaker winter fishing grounds were mainly

distributed between 11°C and 16°C isotherms and between 50-m

and 100-m isobaths, similar to previous studies which described

a suitable temperature range between 8°C and 18°C and a depth

between 50 m and 80 m (Lin, 1987; Liu et al., 2020b). It has been

reported that small yellow croaker had a higher occurrence

probability of between 11.5°C and 16.2°C and a higher

abundance of between 15.1°C and 16.7°C in winter (Liu and

Cheng, 2018). These indicated that small yellow croaker could
FIGURE 5

Annual variations (solid lines) of WFAI (A) and WFHA (B) from
1971 to 2020. The black dashed lines represent linear trends.
FIGURE 6

Annual variations (solid lines) of SCV (A), SST (B), and SSS (C) in
winter fishing grounds from 1971 to 2020. The black dashed
lines represent linear trends.
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FIGURE 7

The gray bars represent annual anomalies of WHAI (A), WFHA (B), SSS (C), SST (D), SCV (E), PDO (F), NPGO (G), AOI (H), AMO (I), and the solid
and dashed lines represent the cumulative sum of SRSD-detected anomalies and regime shifts (CuSum).
FIGURE 8

Present and two scenarios based on future predicted WFAI of small yellow croaker. (A) Present distribution in 2020, (B) future distribution in
RCP2.6 (2050s), (C) future distribution in RCP2.6 (2100s), (D) future distribution in RCP8.5 (2050s), and (E) future distribution in RCP8.5 (2100s).
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tolerate lower temperatures under 11°C, but more concentrated

on suitable winter fishing grounds. The suitable depth range in

our study was between 50 m and 100 m, a little larger than

previous studies. This may be related to the benefit from remote

sensed data that provide a broader range of environmental data.

The decadal distribution map emphasized the impact of

environmental variables on winter fishing grounds. It has shown

that temperature and salinity front jointly determine the

boundary of hotspots of WFAI (Figure 10). The potential

winter fishing grounds of small yellow croaker are affected by

the Yellow Sea Warm Current (YSWC) and the coastal currents.

The YSWC is believed to be the only mean flow that brings

warm and saline water into the interior of the Yellow Sea and

forms warm and saline tongue structures in winter (Ma et al.,

2006). Furthermore, freshwater discharge from the Yangtze

River also affects the salinity of the East China Sea (Delcroix

and Murtugudde, 2002). This complex current system generated

temperature and salinity fronts, which limited the boundary of

winter fishing ground of small yellow croaker. The distribution

of WFAI showed a strong relationship with fronts, with a clear

boundary that was hardly north than 35°N. The shape of the

small yellow croaker winter fishing ground hotspots is also

strongly associated with temperature fronts and salinity fronts.

The long-term change of mean WFAI showed a decreasing

trend in the last 50 years, similar to the WFHA (Figure 6).
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Similar results were described in the work of Han et al. (2020),

which found that the biomass of small yellow croaker in the

winter period showed a marked decline, but the study was only

conducted between 2001 and 2017, while the long-term changes

of environmental variables showed an increasing trend

(Figure 6), indicating that the environmental changes may

have a negative effect on the WFAI and the WFHA of small

yellow croaker. The STARS analyses for mean values of WFAI

and WFHA in winter fishing grounds suggested that regime

shifts took place in 1981/1982 and 1991/1992. SST showed

regime shifts in 1980/1981 and 1992/1993, while SSS showed

regime shifts in 1992/1993 and SCV in 1984/1985. The almost

synchronous regime shifts also indicated that the potential

winter fishing grounds of small yellow croaker were directly

affected by environmental variables. The decadal average

anomaly map manifested that the current velocity in the

potential winter fishing ground of small yellow croaker was

relatively smaller than in other regions (excluding the Kuroshio

region) (Figure 11). This may indicate that small yellow croaker

prefers gentle areas during winter, which could be related to a

lower feeding rate and energy conserved. The small yellow

croaker mainly preys on Japanese anchovy, Kammal thryssa,

Kishi velvet shrimp, and Mitre squid (Xiao et al., 2019). Due to

the limited data, the influence of prey conditions was not

involved in this research.
Effect of climate change on small yellow
croaker

The correlation analyses between the annual mean WFAI and

environmental variables are detected in Figure 12. WFAI showed

a weak relationship with SST and SSS, but a strong negative

relationship with SCV (r = −0.61, p < 0.001). The WFAI and

WFHA highlighted a significant positive correlation (r = 0.97, p <

0.001); hence, WFHA also showed a strong negative correlation

with SCV (r = −0.62, p < 0.001). As for climate indices, PDO

highlighted regime shifts in 1976/1977 and 1988/1989, NPGO

showed regime shifts in 1997/1998 and 2013/2014, AOI showed a

regime shift only in 1988/1989, and AMO showed a regime shift

only in 1994/1995. The correlation tests indicated that WFAI and

WFHA highlighted a strong negative correlation with AMO

(WFAI: r = −0.44, p < 0.01; WFHA: r = −0.46, p < 0.01) and a

relatively weak correlation with AOI, NPGO, and PDO

(Figure 12). This may imply that AMO had a closer relationship

with WFAI and WFHA than AOI, NPGO, and PDO. Previous

studies have attributed the decadal variability in the North Pacific

to PDO, but recent studies have illustrated that the AMO instead

controlled it using long records of observations (Wu et al., 2020).

They found that PDO had little relationship with the North Pacific

subtropical mode water when the data were extended back to the

1940s, and only after 1978 did the negative correlation appear,

which reflected the fact that the warming trend of the mode water
FIGURE 9

The 50-year average WFAI distribution map of small yellow
croaker with environmental conditions (the dashed lines
represent isobaths, and the solid lines represent isotherms).
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coincided with a phase transition of the PDO index from a

positive to a negative phase, rather than a robust relationship.

Our results also supported this view with a strong correlation

between WFAI and AMO and a lower correlation with PDO.

Among environmental variables and climate indices, SST and SSS

showed relatively strong positive correlations with AMO (r = 0.33,
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p < 0.05 for SST; r = 0.39, p < 0.05 for SSS), and SCV showed a

weak correlation with AMO (r = 0.17, p < 0.1). SST had a positive

correlation with SSS (r = 0.34, p < 0.05). This could be related

because the salinity and temperature were related to the ocean

current in the China Seas (Chen, 2009). From these observations,

we proposed a potential process to explain the variations of small
FIGURE 11

Decadal average anomaly map of surface current velocity in 1971–2020.
FIGURE 10

The decadal average WFAI distribution map of small yellow croaker with environmental variable in front (the black solid line is the front of
decadal average temperature, and the dashed line is the front of decadal average salinity).
frontiersin.org

https://doi.org/10.3389/fmars.2022.915765
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2022.915765
yellow croaker in the overwintering period. AMO-based climate

regimes led to changes in the Kuroshio Current region through

ocean–atmosphere interactions. The Kuroshio Current entered

the China Seas, which were located on the western edge of the

North Pacific and were affected by the Kuroshio Current and

its branches. The potential winter fishing grounds of small

yellow croaker were directly affected by the coastal currents

and the Yellow Sea Warm Current (YSWC), which was the

branch of the Kuroshio Current (Bian et al., 2013). The YSWC

brings warm and saline water into the interior of the Yellow Sea

(Ma et al., 2006). The abundance of small yellow croaker was

directly influenced by the environmental conditions (SST, SSS,

and SCV) in winter fishing grounds. Therefore, the long-term

changes of WFAI and WFHA were more likely associated with

AMO than other climate indices.
Future prediction of winter fishing
ground change

Based on the optimal prediction model, the decadal

distribution maps of hotspots were generated to investigate

variations in winter fishing grounds (Figure 10). The decadal

distribution maps indicated that the spatial range and area of

hotspots tended to be shrinking. Moreover, the winter fishing

grounds tended to be divided into two parts, and this trend

became more distinct after the 1990s. The boundary of hotspot

distribution also changed with time. The north boundary of

hotspots moved southward to 34°N after the 1970s, which was

also reported byHan et al. (2020). The south boundary of hotspots

tended to move northward near 30°N after the 1970s. The east
Frontiers in Marine Science 13
boundary of the north parts of the winter fishing grounds

extended eastward to 127°E and the west boundary of the south

parts tended to move westward to 123°E. Moreover, the hotspot

distribution showed a more concentrated trend though the area

became smaller. Our results indicated that the spatial distribution

changes in the winter fishing ground of small yellow croaker were

likely to be embodied in the boundary.
We conducted future distribution maps based on two

extreme scenarios (RCP2.6 and RCP8.0). The results showed

that the distribution of small yellow croaker will move obviously

northward and the WFHA will become broader (Figure 8), and

the southernmost overwintering districts might become less

important to the stock under future climate change. The north

boundary of WFHA can reach 40°N, and the south boundary

can reach 30°N. The west boundary moves to 118°E, and the east

boundary moves to 127°E. The center of the winter fishing

ground was also generated to investigate the long-term changes

with a focus on hotspots (Figure 13). Results showed that the

center of winter fishing ground would distinctly move

northward in the 2050s and the 2100s than in 1970–2020

related to 16°C isotherms. Distribution movement driven by

climate change has been found in a large number of species

(Perry et al., 2005; Last et al., 2011). Thirteen fish species have

been newly recorded in the Taiwan Strait beyond their historic

range in the South China Sea (Du et al., 2013). The hotspot

distribution of hairtail in the East China Sea was found to move

north eastward from 1991 to 2011 (Yuan et al., 2017). Many

species have been simulated to move poleward under different

scenario predictions of climate change (Jones and Cheung, 2015;

Morley et al., 2018). These shifts were projected to lead to

increases in mid- and high-latitude oceans and decreases in
FIGURE 12

The correlation analyses between the annual mean WFAI, WFHA, mean values of environmental variables, and climate indices.
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tropical regions (Cheung et al., 2009). All these changes call for

the improvement of resource management and conservation.
Conclusion

Three types of SDMs (GLMs, GAMs, and RFs) of small

yellow croaker were developed using WFAI as the response

variable and environmental variables as explanatory variables. A

comparison of the models revealed that the RF model was the

optimal prediction model. Results showed that the WFAI

distribution was related to SST, SSS, SCV, and DE, and the

winter fishing ground hotspots were mainly distributed between

11°C and 16°C isotherms and between 50-m and 100-m

isobaths. The shape of hotspots was strongly affected by

temperature fronts and salinity fronts. A long-time scale

analysis revealed a decreasing trend in the winter fishing

ground hotspots—the northern boundary shifts southward, the

southern border shifts northward, and there was a tendency to

divide into two parts, gradually. The WFHA has significantly

decreased over the past 50 years. WFAI and WFHA highlighted

similar regime shift trends, and the distribution of small yellow

croaker might be more closely related to AMO than PDO, AOI,

and NPGO in winter fishing grounds. Future predictions based

on two extreme climate scenarios (RCP2.6 and RCP8.0)

indicated that the winter fishing ground hotspots of small
Frontiers in Marine Science 14
yellow croaker would move obviously northward by the end of

this century under climate warming. Climate and environmental

changes could have far-reaching effects on changes in small

yellow croaker fisheries.
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