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Reduced amounts of aerosols blowing into the Yellow Sea (YS), owing to the temporary 
lockdown of factories in China during COVID-19, resulted in a 15% decrease in spring 
chlorophyll-a concentration (CHL) in March 2020 compared to its mean March values 
from 2003 to 2021. Particularly, the effect of land-based AOD is insignificant compared 
with that of atmospheric aerosols flowing into the YS, as indicated by the currents 
and wind directions. Hence, the main objective of this study was to understand the 
relationship between atmospheric aerosols and CHL by quantitatively considering 
relevant environmental changes using a Random Forest (RF) algorithm. Various input 
physical forcing variables to RF were employed, including aerosol optical depth (AOD), 
sea surface temperature (SST), mixed layer depth (MLD), wind divergence (WD), and total 
precipitation (TP). From the RF-based analysis, we estimated the relative contribution of 
each physical forcing variable to the difference in CHL during and after the COVID-19 
lockdown period. The sensitivity of the RF model to changes in aerosol levels indicated 
positive effects of increased amounts of aerosols during spring blooms. Additionally, we 
calculated the quantitative contribution of aerosols to CHL changes. When SST was 
warmer and TP was lower than their climatology in March 2020, CHL increased by 0.22 
mg m-3 and 0.02 mg m-3, respectively. Conversely, when MLD became shallower and 
AOD was lower than their climatology, CHL decreased as much as 0.01 mg m-3 and 
0.20 mg m-3. Variations in WD caused no significant change in CHL. Overall, the specific 
estimations for reduced spring blooms were caused by a reduction in aerosols during the 
COVID-19 lockdown period. Furthermore, the RF developed in this study can be used 
to examine CHL changes and the relative role of significant environmental changes in 
biological blooms in the ocean for any normal year.

Keywords: COVID-19 lockdown, aerosol, spring bloom, random forest, Central Yellow Sea

1 INTRODUCTION

The outbreak of Coronavirus disease 2019 (COVID-19) in Wuhan, Hubei Province, China, was 
officially reported to the World Health Organization on December 31, 2019 (https://covid19.who.
int). At the end of January 2020, public transportation in Wuhan was closed to minimize the spread 
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of the virus. Furthermore, industrial activities at manufacturing 
plants were temporarily shut down in most provinces in China, 
including Hubei, Zhejiang, Xinjiang, Hebei, Shannxi, and Henan. 
This lockdown was decontrolled in early April 2020, which is 
referred to as the COVID-19 lockdown period (Bauwens et al., 
2020; Shakoor et al., 2020). Many studies have reported improved 
air quality from the reduced anthropogenic aerosol emissions, 
owing to the enforcement of the COVID-19 lockdown policy 
(He et al., 2020; Timmermann et al., 2020). Generally, aerosols 
in the atmosphere are anthropogenic in origin as they are mainly 
from emissions from Chinese factory operations, motor vehicle 
pollution, and seasonal dust such as Asian dust (Yu et al., 2013; 
Park et  al., 2017). Aerosols from China can reach the North 
Pacific Ocean through the Korean Peninsula via the westerlies. 
Specifically, the region most affected by aerosols in the North 
Pacific Ocean is the Yellow Sea (YS), which is located on the 
western Korean Peninsula adjacent to northeastern China (Kim 
et al., 2009; Qi et al., 2013; Zhang et al., 2013; Lee et al., 2019). 
This is because this area of China has many industrial cities (Li 
et al., 2003; Wang and Su, 2020; Yoon et al., 2021). Aerosols can 
influence long-range transboundary air pollution (Oh et al., 2015; 
Lim et al., 2019) and ocean–atmosphere interactions (Tao et al., 
2012; Liu et al., 2013; Kripalani et al., 2022). In addition, aerosols 
scatter radiance from solar radiation in short wavelengths, which 
can disrupt the radiative energy balance of the earth–atmosphere 
system. This process leads to low sea surface temperatures 
(Yue et al., 2011; Kripalani et al., 2022) or makes smaller cloud 
droplets, thereby reducing precipitation Cheng et  al., (2021). 
However, humid environments can also increase precipitation 
(Khain et al., 2008).

Anthropogenic nitrogen (NOx and NHy) in aerosols can 
be considered an important factor that can change the marine 
ecosystem when deposited into the ocean (Tan et al., 2011; Liu 
et al., 2013; Wei et al., 2015; Moon et al., 2021). The supply of 
nitrogen, a limiting factor, to the ocean temporarily promotes 
phytoplankton growth and increases primary production in the 
YS (Wang et al., 2003; Mahowald et al., 2005; Zhang et al., 2010; 
Liu et al., 2013; Mahowald et al., 2018). Kang et al. (2017) showed 
that phytoplankton’s biochemical composition, including the 
carbohydrates, proteins, and lipids, may change upon exposure 
to the additional supply of nitrogen from the atmosphere 
(Moon et  al., 2021). Additionally, changes in the biochemical 
composition of phytoplankton, which comprise the first trophic 
level of the food web, may be influenced by higher trophic levels 
(e.g., biomass and productivity of fishery resources) (Kang et al., 
2017).

Liu et al. (2013) and Qi et al. (2013) investigated the marine 
ecosystem using in-situ measurements after aerosols were 
imported into the ocean. Since then, many studies have used 
satellite data to monitor and evaluate the effects of continuous 
and long-range aerosol transport in near real-time and wide-
area to complement the limitations of field observations. Using 
aerosol optical depth (AOD) from the MODerate Resolution 
Imaging Spectroradiometer (MODIS)-Terra, Lien et  al. (2017) 
reported that phytoplankton blooms increase when Asian dust 
increases. Yoon et  al. (2019) also used the aerosol index (AI) 
provided by the Visible Infrared Imaging Radiometer Suite 

(VIIRS) to investigate the increase in spring blooms in the North 
Pacific owing to the increase in Asian dust (Tan et  al., 2011). 
Through many studies conducted over a long period of time, we 
attempted to confirm the effect of aerosols on marine ecosystems. 
However, previous studies have mainly focused on identifying 
the relative relationships among the contributing factors of 
the phytoplankton blooms, rather than on the quantitative 
contribution of each factor (Tan and Shi, 2012a; Yoon et  al., 
2021). As a result, previous studies have been limited in their 
ability to evaluate the quantitative contribution of aerosols to 
marine ecosystems in the YS.

In general, phytoplankton blooms can be estimated using 
the chlorophyll-a concentration (CHL), which indicates 
phytoplankton biomass (Arteaga et al., 2016). CHL is not only 
affected by aerosols, but also by physical forcing variables, such as 
sea surface temperature (SST) (Zhao et al., 2019) and mixed layer 
depth (MLD) (Tan and Shi, 2012b; Lu et al., 2021). An increase 
in photosynthetically active radiation (PAR) may increase SST, 
resulting in shallow MLD. The effects of each factor on CHL are 
as follows. Phytoplankton growth has a positive relationship with 
SST that reaches its highest peak when SST is between 9°C and 
13°C; however, it has a negative relationship when SST is over 
13°C (Xu et al., 2013; Zhao et al., 2019; Lu et al., 2021). PAR also 
has a positive relationship with CHL because CHL increases 
as light intensity increases (Tan and Shi, 2012b); however, 
phytoplankton growth declines when it exceeds a threshold 
intensity level. Furthermore, the deepening of the MLD, owing to 
more intense wind speeds, increases the CHL (Tan and Shi, 2012b; 
Lu et al., 2021), whereas the decrease in anthropogenic aerosols 
is correlated with a reduction in spring phytoplankton biomass 
(Yoon et  al., 2021). In addition, precipitation deposits aerosols 
directly into the ocean, thereby increasing phytoplankton growth 
(Tan and Shi, 2012a). However, some studies have reported that 
precipitation can inhibit phytoplankton growth through metal 
components, such as Cu and Pb, within rain drops (Paytan et al., 
2009; Liu et al., 2013).

Thus, CHL changes relate to various physical parameters, as 
discussed. Hence, many studies have investigated the complex 
effects on CHL using machine learning (ML). ML is a technique 
that can solve nonlinear relationships and complex interactions 
between ecological factors, such as CHL and physical variables, 
rather than by using linear statistical methods (Kotsiantis et al., 
2006; Cutler et  al., 2007). Cheng et  al. (2021) reported that 
the accuracy of the random forest (RF) model in predicting 
phytoplankton blooms, using multiple predictors, was higher than 
that of other the ML methods such as support vector machines 
and decision trees (Liu and Wu, 2017). Park et  al. (2019) also 
found that the CHL reconstructed for multiple variables through 
the RF model more accurately simulated spatial patterns and 
CHL values when compared with other techniques. In addition, 
Park et  al. (2020) qualitatively and quantitatively studied the 
effects of various factors on CHL through RF.

Anthropogenic aerosol emissions into the atmosphere have 
declined due to the COVID-19 lockdown policy in China. This 
phenomenon may provide a natural experimental environment 
that can facilitate the quantitative evaluation of changes in 
environmental conditions, including the effects of reducing 
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anthropogenic aerosols, which can cause changes in the marine 
ecosystem. In doing so, we required an answer for the following 
scientific question: what happened during spring blooms in 
the YS under reduced aerosol levels (especially anthropogenic 
aerosols) during the COVID-19 lockdown? To answer this 
critical question, we examined the contributions of all relevant 
environmental changes to phytoplankton blooms in the YS based 
on the RF model using satellite ocean color data (Sections 3.1 to 
3.3). Furthermore, we estimated the quantitative contribution of 
aerosols to CHL through partial dependence (PD) analysis of the 
RF model (Sections 3.4 to 3.5).

2 DATA AND METHODOLOGY

2.1. Study Area
The YS, located between China and Korea, is a semi-enclosed 
marginal sea in the Pacific Northwest with an average depth 
of 44 m (Jin et  al., 2013). The YS is predominantly affected by 
aerosols, as it is near the northeastern part of China where there 
is significant industrial activity. As a result, this area is influenced 
by atmospheric nitrogen deposition and it exhibits high primary 
productivity (Yoon et al., 2021). In addition, the YS is influenced 
by river inflows containing suspended sediment. This study 
examined the influence of aerosols on phytoplankton growth 
in an area that minimizes the effects of river discharge and 
suspended sediment. The central region of the YS (Central Yellow 
Sea [CYS]; 121.5–125.5°E, 34–37°N) was selected (Figure  1) 
(Shi et al., 2017; Fu et al., 2018) because it was the region where 
spring blooms mainly occurred in the YS (Xu et  al., 2013). In 
addition, the sources of land-based AOD in the study area did 
not make a substantial contribution to atmospheric aerosols in 

the CYS, as per the ocean currents and wind directions. Hence 
help intensively investigate the effect of aerosols on the CHL. 
According to Xu et  al. (2013), spring blooms in the CYS were 
defined as a CHL higher than 1.2 mg m-3.

2.2.Data
2.2.1. AOD Data
The MODIS-Terra aerosol product provided daily observations 
for bright land surfaces based on the Deep Blue algorithm and 
daily observations of AOD at the global scale. This was performed 
at 0.55 μm over vegetated land (Kaufman et al., 1997; Levy et al., 
2013) and ocean surfaces (Tanré et al., 1997; Levy et al., 2013) 
based on the Dark Target land and Dark Target ocean algorithms, 
respectively (Hsu et al., 2004; Hsu et al., 2006; Hsu et al., 2013). 
AOD datasets, combined with Deep Blue and Dark Target 
algorithms (Hsu et  al., 2013; Levy et  al., 2013), were obtained 
from Ocean Color (https://lads-web.modaps.eosdis.nasa.gov). 
Its temporal and spatial resolutions are daily and 10 km × 10 km 
(at nadir), respectively, as provided by Level-2 MODIS-Terra. On 
comparing various satellite observations with AERONET around 
the CYS, the AOD from MODIS-Terra was more accurate than 
other sensor measurements.

Anthropogenic aerosols from northeastern China were 
considered to be the main factor influencing AOD during the 
lockdown because the emergence of Asian dust did not occur in 
March 2020. Yoon et  al. (2021) found that the AOD in March 
2020 was predominantly influenced by aerosols originating from 
northern China. In addition, it is worth noting that while there 
are strong coastal currents and thus very weak intrusion to the 
CYS in spring season (March to May), strong southwesterly 

FIGURE 1 |   Central Yellow Sea (CYS), was analyzed to determine AOD (A–C) and CHL (D–F) anomalies in March 2019, 2020, and 2021.
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winds toward the CYS usually transport aerosol in this season. 
Thus, aerosols transported from coastal regions into the CYS 
are likely minimal. Hence, this study considered only aerosols 
generated in the industrialized regions of China.

2.2.2. Ocean Color, Numerical Model and  
Reanalysis Data
The MODIS-Aqua phytoplankton biomass product provided 
daily and monthly CHL measurements. Monthly Level-3 
MODIS-Aqua CHL datasets with a 4 km spatial resolution were 
obtained from the NASA Ocean Biology Processing Group 
(https://oceandata.sci.gsfc.nasa.gov). In addition, monthly 
Level-3 SST data provided by MODIS-Aqua were used and its 
spatial resolution was the same as that of the CHL data.

The Hybrid Coordinate Ocean Model provided 
temperature and salinity datasets at an ~8 km (1/12°) spatial 
resolution with 3-hour intervals. The MLD was calculated 
using a density threshold of 0.03 kg m-3 from a depth of 10 m, 
according to de Boyer Montégut et  al. (2004). In addition, 
the European Center for Medium-range Weather Forecasts 
Reanalysis v5 (ERA5) provided the eastward component of 
the 10  m wind (U10) and the northward component of the 
10  m wind (V10) datasets at  ~25 km × 25 km (1/4° × 1/4°) 
with a monthly temporal resolution. Wind divergence (WD),  
∂u/∂x+∂v/∂y , which estimates the atmospheric inflow of 
aerosols into the ocean, was calculated using U10 and V10 
(Freitas et  al., 2017). The total precipitation (TP) data, 
provided at the same resolution in ERA5, were used to consider 
the effect of precipitation, which enables atmospheric aerosol 
information to enter the ocean directly.

We used re-mapped monthly mean data rather than daily 
or weekly due to missing measurement by cloud presence in 
ocean color satellite measurements (Table 1). Thus, we cannot 
address the specific lags of 5 to 14 days between aerosol sink 
to the sea surface and CHL, as reported by Tan et al. (2011); 
Shi et al. (2012); Tan and Wang (2014) , and Yoon et al. (2019). 
In addition, we used data for March of each year from 2003 to 
2021 because the COVID-19 lockdown period was from the 
end of February 2020 to the beginning of April 2020.

2.3. Method
According to previous studies, among the ML techniques, the RF 
model simulates fairly well the complex effect of various factors 
on CHL (Liu et al., 2013; Liu and Wu, 2017; Park et al., 2019). 
Thus, we performed a regression analysis to evaluate the CHL 

response to AOD and other physical forcing variables (SST, 
MLD, WD, and TP) of the RF model. The RF model, an ensemble 
learning method, can perform classification and regression 
analyses to evaluate the CHL response to AOD and other physical 
forcing variables (SST, MLD, WD, and TP). Decision tree-based 
algorithms, such as RF, can measure the variable importance (VI) 
of the features used in model development (Breiman, 2001; Ali 
et  al., 2012). After training, this score was calculated for each 
feature and the result was normalized such that the total sum 
of importance was 1. Thus, the VI, which indicates the effect of 
the predictors used in the RF model on CHL, could be evaluated 
(Cutler et al., 2007; Park et al., 2020; Pham et al., 2021).

Generally, the RF model sets the number of single decision 
trees (Ntrees) and the number of features (Mtry) to generate the 
best performance in each tree node. For regression, Mtry was set 
to the maximum number of features and for classification, it was 
set to the square root of the number of features (Geurts et  al., 
2006). Then, for the feature selected at each node, the node was 
divided into two child nodes based on the optimal partitioning 
condition (i.e., a small mean squared error, MSE) and a leaf node 
was calculated (Park et al., 2020). Finally, the results produced by 
each tree were ensembled on average to draw a conclusion. The 
critical parameters considered in the RF model were Ntrees and 
Mtry. Ntrees was set to 50 through an empirical trial and Mtry was 
set to 6 according to the convention.

Six predictors (variables) were used as the inputs for the RF 
model. The predictors used were the AOD, physical forcing 
variables (SST, MLD, WD, and TP), and climatology of the 
CHL (CHLc) during spring (March 1 to March 31) from 2003 
to 2021. As inputs for the RF model, we used CHLc because it 
is considered the factor illustrating the environmental variables 
(Park et  al., 2020). It is worth noting that PAR was not used; 
instead, we used AOD as input because both have directly inverse 
relations (Li et al., 2020). The target was the MODIS-Aqua CHL 
(CHLMODIS). The significance test of the predictors was conducted 
using the Boruta algorithm and all the data were normalized. 
In addition, for CHLc and CHLMODIS, which have skewed data, 
a logarithmic transformation was performed to approximate a 
normal distribution (Gregor et al., 2017; Hahm et al., 2019).

In Section 3.2, the performance of the RF models was evaluated 
using various statistical metrics, such as the determined coefficient 
(R2), root mean square error (RMSE), mean absolute error 
(MAE), and MSE (Popoola et al., 2019; Park et al., 2020). The R2 
indicates how well the estimated linear model fits the given data 
in statistics. RMSE is a measure commonly used when dealing 

TABLE 1 | Description of the dataset of using satellite, reanalysis, and model data.

Variables Abbreviation (Unit) Spatial/Temporal Resolution Dataset

Aerosol optical depth AOD (Non dimension) 10 km x 10 km (at nadir), daily MODIS-Terra
Sea surface temperature SST (°C) 4 km x 4 km, monthly MODIS-Aqua
Mixed layer depth 
(Temperature, Salinity)

MLD (m) ~ 8 km x ~ 8 km, 3 hours HYCOM

Wind divergence 
(U10, V10)

WD (sec-1) ~ 25 km x ~ 25 km, monthly ERA5

Total precipitation TP (mm) ~ 25 km x ~ 25 km, monthly ERA5
Chlorophyll-a concentration CHL (mg m-3) 4 km x 4 km, monthly MODIS-Aqua
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with the difference between the in-situ data (X) and predicted 
value (Y). MAE means errors between paired observations 
expressing the same phenomenon. In other words, MAE is the 
mean absolute difference between the X and Y. MSE shows the 
mean of the squares of the error. The closer the MSE is to 0, the 
higher the accuracy is because the guessed value is closer to the 
original (Chicco et al., 2021). In addition, using the RF model, 
we determined whether CHL could increase when only AOD 
was additionally supplied to environmental conditions in March 
2020 (Section 3.3). Subsequently, the quantitative contribution 
of each factor, including AOD to CHL in the RF model, was 
evaluated using a partial dependence (PD) plot (Section 3.4). A 
partial dependence (PD) plot depicts the relationship between 
input variables and predictions (Friedman. 2001). These results 
show how the predictions partially depend on the values of the 
input variables of interest. This method can be used to interpret 
a trained model that can identify linear, monotonic, or more 
complex relationships between predictors and targets (Molnar, 
2020). Furthermore, the PD plot quantitatively describes the 
response probabilities of the predictors (Friedman, 2001; 
Greenwell, 2017; Zeng et al., 2017). In other words, the PD plot 
describes the dependence between the target and predictors of 
interest, marginalizing over the value of all other predictors. We 
considered that this PD analysis could represent the quantitative 
effect on the absolute contribution of each physical variable to 
CHL, that is, the amount of change in CHL (Park et al., 2020). PD 
analysis was performed as follows:

 ( ) ( ) ( ) ( )ˆ ˆ ,, ,
cs s X s c s c c c cf X E f X X f X X p X dX = =  ∫  (1)

where ( ) { }1 2

ˆ
pf x x x x x= �  represents the number of 

features in the RF model (p = 6 in this study). In addition, when 
we divide x by the set of selected Xs and complement (Xc ) the 
response variable in the PD plot for Xa is defined by Eq. (1). In 
other words, Xs is the feature (i.e., variables and inputs) to be 
calculated through the model and XCis all variables except Xs 
used feature. pc(Xc) represents the marginal probability density 
of Xc. Xs is set to one variable, and Xc is the average value that the 
remaining inputs are affected by the change of Xs . This means 
that the effects of all the other predictors in the model were 
average. For more details, refer to Park et al. (2020). Eq. (1) can 
be evaluated using the training set, as follows:

 

f X
n

f X Xs s
i

n

s i c( ) = ( )
=
∑1

1

˘ , ,

 (2)

where Xi,c (i=1, 2, ..., n) represents the value of Xc in the training 
samples.

The methodology of this study was based on that of Park 
et al. (2020) (Park et al., 2019). However, unlike the referenced 
papers on the RF approach, in this study, regression analysis was 
used among the RF model features to understand the effect of 
each factor on CHL. In addition, after quantitatively evaluating 
the impact of each element on spring blooms, the effect was 

formulated as an equation. Accordingly, this study attempted 
to extract critical information on how AOD was quantitatively 
related to spring blooms during the COVID-19 lockdown period.

3 RESULTS AND DISCUSSIONS

3.1. Environmental Conditions of the 
COVID-19 Lockdown Period
First, we determined how much the aerosol decreased during 
the COVID-19 lockdown period compared to the other years; 
therefore, we compared AOD and CHL in March from 2019 
to 2021 (Figure  1). During the COVID-19 lockdown period 
in 2020, local patches were inferred to be small spring blooms 
(Figure  1E). Especially, it was confirmed that the levels of 
both data in March 2020, during the COVID-19 lockdown 
period, decreased significantly compared to those of the other 
years (Figures  1B, E). In 2019 and 2021, we observed that 
regions with high AOD distribution showed high CHL levels, 
confirming that both variables had similar spatial distributions 
(Figures 1A, C, D, F). From Figure 1, it can be inferred that the 
abnormally low CHL levels in 2020 was affected by low AOD. 
We also investigated the changes in other factors to determine 
whether the effect of reduced aerosol weakened spring blooms 
during the COVID-19 lockdown period.

Figure  2 shows that AOD and CHL in March 2020 were 
lower than the average values from March 2003 to 2021, 
by approximately 50% (from 0.50 to 0.26) for AOD and 
approximately 15% (from 2.18 mg m-3 to 1.90 mg m-3) for 
CHL  (Figures  2A, F). In contrast, Figure  2B shows that SST 
increased by approximately 20% from 7.61°C to 9.34°C during 
the same period. This warmer SST is likely due to the reduced 
amounts of aerosols, which might have caused the increase in 
SST due to higher incoming solar radiation (Yue et  al., 2011; 
Kripalani et  al., 2022). Accordingly, an increased SST can 
induce strengthened thermal stratification and a shallower MLD 
(Tan  and Shi, 2012; Lu et  al., 2021). Consequently, the MLD 
in 2020 became 25% more shallow, from 44.37  m to 33.09  m 
(Figure  2C). In addition, phytoplankton biomass generally 
decreases as the MLD becomes more shallow (Lu et al., 2021). 
This was also seen for the CHL in 2020 and 2021. Additionally, 
the WD indicated that the airflow from the atmosphere to the 
ocean was slightly weakened by 13% (from -2.13 × 10-6 sec-1 
to -2.39 × 10-6 sec-1), but this value was not significantly different 
than that of other years. TP also decreased by 45%, from 
7.38 × 10-5 mm to 3.92 × 10-5 mm, which is presumed to be an 
effect of aerosol reduction in humide environmental conditions 
(Figures 2D, E) (Khain et al., 2008).

In the case of 2021, many factors showed a significant change 
compared with the average values from March 2003 to 2021. 
AOD showed a sharp increase compared with the same period, 
and SST showed a similar increasing pattern in 2020. Therefore, 
the thermal stratification was strengthened owing to the 
increased SST, and the MLD became shallow, as in the COVID-
19 lockdown period. In contrast, the WD and TP in 2021 
showed much higher levels than the mean values throughout the 
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FIGURE 2 | Time series of monthly means of AOD (A), SST (B), MLD (C), WD (D), TP (E), and CHL (F) from February (Feb.) 2003 to May 2021. Gray lines indicate 
the monthly mean predictor in each year from 2003 to 2019. Red lines show from February 2020 to May 2020 in the COVID-19 lockdown period (red shaded) and 
blue lines represent from February 2021 to May 2021.

FIGURE 3 | Performance evaluation of RF model for the training set (A) and validation set (B) between MODIS-Aqua CHL (CHLMODIS) and the RF model-derived 
CHL (CHLRF) The evaluation of variable importance (VI) of each predictor is also included here (C).

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Baek et al.

7Frontiers in Marine Science | www.frontiersin.org September 2022 | Volume 9 | Article 911819

Spring Bloom During COVID-19 Lockdown

period, and the increased WD strengthened the flow from the 
atmosphere into the ocean. The increase in TP may have been 
because of increased aerosols, and atmospheric aerosols may 
have possibly directly entered the ocean through precipitation. 
Consequently, in 2021, with an increase in aerosols, more 
aerosols could flow into the sea from the atmosphere due to 
the physical environment’s conditions. We confirmed that 
2021 showed a higher CHL than 2020 under different physical 
environmental conditions during the COVID-19 lockdown 
period (e.g., increased SST and decreased MLD). Accordingly, 
the spring blooms in the study area were mainly controlled by 
AOD changes, as shown in Figures 1, 2. Ultimately, we focused 
on the qualitative and quantitative effects of aerosol changes 
that significantly influenced spring blooms.

3.2. RF Model Performance to CHL
To identify the effect of each factor on CHL, we developed a RF 
model using the above-mentioned data. The performance of the 
training set with 80% of the total data (n = 94,480) showed R2 = 
0.98, RMSE = 0.22 mg m-3, MAE = 0.07 mg m-3, and MSE = 0.05 
mg m-3 with high accuracy and low RMSE (Figure 3A; Table 2). 

It is worth noting that the splitting ratio of 80% to 20% for training 
and validation dataset shows slightly better results compared 
to other splitting ratios. According to Despotovic et al. (2016), 
relative RMSE (RRMSE) evaluates model construction accuracy 
and is considered good when 10 % ≤ RRMSE < 20 % (i.e., 10.49 
% indicates a good level), excellent if RRMSE < 10 %, fair if  
20 % ≤ RRMSE < 30 %, and poor if 30 % ≤ RRMSE (Jamieson et al., 
1991; Heinemann et al., 2012; Li et al., 2013). Hence, the training 
set almost coincided with CHLMODIS and the reconstructed 
CHL derived from the RF model (CHLRF) (Figure  3A). The 
performance of the validation set with 20 % of the total data 
(n = 23,620) had accuracy with R2 = 0.85, RMSE = 0.54 mg m-3, 
MAE = 0.17 mg m-3, and MSE = 0.29 mg m-3, and RRMSE = 
25.37 %. Although the validation set had a lower R2 and higher 
RMSE than those of the training set, thus, the reconstructed 
result was significant (Figure  3B; Table  2). Additionally, we 
determined the relative contribution of each predictor to the RF 
model through the VI (Figure 3C). The relative contributions 
of CHLc, TP, SST, WD, MLD, and AOD were 46.10 %, 14.42 %, 
12.87 %, 9.64 %, 8.71 %, and 8.27 %, respectively. In addition, 
the standard deviations of CHLc, TP, SST, WD, MLD, and AOD  
were ±0.29 %, ±0.47 %, ±0.44 %, ±0.44 %, ±0.49 %, and ±0.39 
%, respectively. CHLc, the average CHL from March 2003 to 
2021, had the most significant effect on the CHL prediction 
because it reflects the CHL trend. Hence, CHLc was excluded 
from the physical forcing variables that directly influenced 
CHL variation.

To determine whether the RF model could simulate the 
regional pattern, we compared the spatial distributions of 
CHLMODIS and CHLRF (Figure 4). The locations and intensities 
of the spring blooms were also closely simulated each year. The 

TABLE 2 | Evaluation of RF model performance.

  Training set Validation set

N 94,480 23,620
R2 0.98 0.85
RMSE 0.22 mg m-3 0.54 mg m-3

MAE 0.07 mg m-3 0.17 mg m-3

MSE 0.05 mg m-3 0.29 mg m-3

RRMSE 10.49% 25.37%

FIGURE 4 | Comparison of spatial patterns between the CHLMODIS (A–C) and CHLRF (D–F) from 2019 to 2021. The black boxes indicate the study area.
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CHLMODIS was 2.09 mg m-3, 1.89 mg m-3, and 2.71 mg m-3, and 
CHLRF was 2.01 mg m-3, 1.82 mg m-3, and 2.66 mg m-3 in 2019, 
2020, and 2021, respectively. If we estimated CHLRF without 
CHLc, the CHLRF predicted an overestimate (not shown). 
This result may be because CHLc reflects the CHL information 
trend. In particular, spring blooms in 2020, which occurred on 
a small scale and were weak compared to those in other years, 
were simulated reasonably well. Therefore, it was confirmed that 
the RF model was well-reconstructed based on the intensity and 
spatial pattern of CHL (Figures 4B, E).

The established RF model simulated the spatial pattern and 
CHL value using six factors. The five factors that directly affect 
CHL had slight differences, but their relative contributions to 
the RF model were almost similar. Previous studies have shown 
that CHL is positively related to SST (Zhao et  al., 2019) and 
negatively related to the MLD and TP (Liu et al., 2013; Lu et al., 
2021). The influence of each factor (SST, MLD, WD, and TP), 
which changed as AOD decreased, was discussed in Section 3.1. 
Therefore, we concentrated more on the spring blooms based 
on CHL affected by AOD, which changed the most during the 
COVID-19 lockdown.

3.3. Relative Contribution of Aerosol 
to CHL
We focused on the relative effect of AOD on spring blooms, 
which contributed the least to the RF model but showed the 
most significant change in 2020 (Section 3.2). This section 
describes the sensitivity experiments for CHLRF to AOD 

variations under artificially changing aerosol levels (Figures  4, 
5). CHLRF satisfactorily represents the spring blooms that occur 
each year. However, spring blooms had lessened in the COVID-
19 lockdown period of 2020 compared to that in other years 
(Figure 4E). Therefore, we attempted to confirm the change in 
spring blooms by artificially increasing and decreasing aerosols 
during the COVID-19 lockdown period through a sensitivity 
experiment using the RF model.

Two sensitivity experiment conditions were constructed to 
investigate changes in CHL variation by adjusting AOD. The two 
conditions are with AOD ± two sigma (2 σ ± 95%), according 
to the empirical rule (three sigma rule) of statistics; where 2 σ 
is derived by assuming the Gaussian fitting for the distribution 
of AOD climatology. Furthermore, the sensitivity experiments 
are conducted with AOD + σ and AOD − σ while all other 
predictors remain unchanged. In other words, when only the 
AOD either increased or decreased, all other predictors except 
AOD are constant. The CHL changes to high (CHLHAOD) and low 
(CHLLAOD) AOD were estimated using the following equations:

 CHL AOD CHLHAOD all others constant RF= +( ) −2σ |  (3)

 CHL AOD CHLLAOD all others constant RF= −( ) −2σ |  (4)

The CHLHAOD increased by approximately 95% in AOD 
and showed an increased CHL in most areas when compared 
with the existing CHLRF (Figures  5A–C). When aerosols were 
artificially increased during the COVID-19 lockdown period 

FIGURE 5 | Result of CHLRF according to changes in AOD. The upper panels (A–C) represent the result of CHLRF when AOD is increased by two sigma (2σ, 
increasing about 95%) and the lower panels (D–F) show when AOD is reduced by two sigma (2σ,increasing about 95%) for a given year.
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(in March 2020), phytoplankton biomass increased rapidly in 
most regions compared with the biomass values from other years 
(Figure 5B). In particular, although differences occur depending 
on the region, CHLRF increased by about 60% or more on average 
in 2019, 2020, and 2021. Based on this result, if the AOD had 
additional supplies, it could have generated intense spring 
blooms in March 2020. The CHLLAOD decreased by approximately 
95% in AOD and also exhibited a decreased CHL in most areas 
when compared with CHLRF (Figures  5D–F). Furthermore, 
Figures 5D, 5F show that the region had significantly lower CHL 
when the AOD was decreased by approximately 95%. However, 
the CHLLAOD in 2020 did not represent a significant decrease in 
most areas when compared to CHLRF because the AOD in March 
2020 was already reduced by approximately 50% (0.50 to 0.26) 
(Figure 5E). This result indicates that the effect of AOD on CHL 
during the COVID-19 lockdown period was analogous to that of 
CHLLAOD. This also proves that the experimental results suitably 
simulated the CHL response to the actual change in the aerosols 
in the environment.

Therefore, in Section 3.3, we presented the experimental results 
for predicting CHL changes according to real environmental 
conditions through CHL reactions, based on artificial AOD 
fluctuations. These results suggest that AOD (i.e., atmospheric 
aerosol deposition) significantly affects spring blooms in the 
CYS.

3.4. PD Analysis for the Six Predictors
In Sections 3.2 and 3.3, we calculated the relative contribution 
of each factor to spring blooms. Relative contribution refers to 
the relative value that each factor can influence when various 
physical factors affect the CHL in combination. However, in 
Section 3.4, the quantitative contribution was considered as the 
absolute impact of each variable on CHL individually. This means 
that the relative contribution and quantitative contribution are 
different. Therefore, in this section we evaluated the quantitative 
contribution of each factor’s absolute effect, including AOD, on 
spring blooms using a PD plot. The contribution of predictors 
to fluctuating CHL was expressed as the CHL<predictor>. 
The predictors included AOD (CHLAOD), SST (CHLSST), 
MLD (CHLMLD), TP (CHLTP), and CHLc (CHLCHLc). To 
quantitatively reveal the fluctuation of CHL according to the 
increase or decrease in AOD, we fixed the values of other 
predictors, except for AOD, during the entire period (i.e., an 
average of variables for March 2003 to 2021), as shown in Eq. 
(2). The fluctuating CHL according to the change in AOD was 
then determined using Eq. (1). For other predictors (e.g., SST, 
MLD, WD, TP, and CHLc), the fluctuating CHL was simulated 
using a method similar to that of AOD.

Figure 6 shows the estimated CHLRF through the PD plots. 
This analysis can explain the fluctuating CHLRF responses 
to each variable. When AOD increased from 0 to 1, CHLAOD 
increased from 1.31 mg m-3 to 1.76 mg m-3 (Figure  6A). 
When AOD was less than approximately 0.3, CHLAOD slowly 
increased. However, the peak value of CHLAOD appeared at 
0.3 and the CHL fluctuation for AOD was approximately 1.40 
mg m-3. Hence, a low AOD during the COVID-19 lockdown 

period induced a slight variation in CHLAOD. Therefore, 
through the PD plot for AOD, AOD reduction was presumed 
to cause weaker spring blooms in March 2020 than in other 
years. As a result, the AOD during the COVID-19 lockdown 
period (March 2020) recorded an abnormally low CHL (Section 
3.1 and Figure 2). CHLSST increased from 1.35 mg m-3 to 2.20 
mg m-3 when SST changed from 5°C to 11°C (Figure 6B). From 
approximately 7°C to 8.5°C , where SST was low, phytoplankton 
grew slowly and even decreased in abundance (Xuan et al., 2011). 
However, SST gradually increased and reached 8°C to 12°C (the 
average SST in the CYS ranges from 8°C to 10°C ), showing a 
spring bloom peak (Lu et al., 2021). Moreover, the changing CHL 
pattern influenced by SST matched the generated spring bloom 
pattern conditions in the CYS (Xu et al., 2013; Zhao et al., 2019).

When MLD changed from 15 m to 85 m, CHLMLD changed 
slightly from 1.57 mg m-3 to 1.74 mg m-3 (Figure 6C), thereby 
reflecting the mean MLD (~ 60 m) in the CYS. Furthermore, the 
CHLMLD increased with MLD depth. In the CYS, nutrients that 
affect phytoplankton growth accumulate in the bottom water 
during autumn and winter. The accumulated nutrients are then 
moved from the lower layer to the upper layer by vertical mixing 
in the spring (Kim et al., 2000). Additionally, the YS is affected 
by anthropogenic aerosols in the atmosphere (Lin et  al., 2005; 
Wei et al., 2015). However, comparing Figures 6A, C, the rate of 
increase in CHL by MLD was relatively weaker than that in the 
case of AOD. This result is supported by the data in Figure  2. 
Both 2020 and 2021 showed a trend of shallower MLD than the 
average; however, CHL showed the opposite trend (Section 3.2 
and Figure  2) and AOD showed the same variability as CHL 
during the same period. Consequently, we could indirectly 
estimate that CHL was changed by AOD (Figures 2A, F). These 
results are consistent with those of previous studies. According 
to Moon et al. (2021), since 2010, the YS has been significantly 
affected by anthropogenic nitrogen deposition in the atmosphere. 
Further, Yoon et al. (2021) noted that most of the new nitrogen 
input in the YS was caused by atmospheric nitrogen deposition. 
Therefore, we found that the fluctuation in CHL was more 
affected by AOD than by MLD.

When WD ranged from − 1.09 × 10-5 sec-1 to 4.53 × 10-6 sec-1, 
CHLWD fluctuated from 1.53 mg m-3 to 1.68 mg m-3 (Figure 6D). 
Negative divergence refers to the WD flow from the sea surface 
to the atmosphere. If the WD flow from the sea surface to the 
atmosphere decreases, WD flow from the atmosphere to the 
ocean (positive divergence) increases. As WD increased, CHLWD 
decreased and then gradually increased (Figure  6D). The WD 
for March 2020 showed negative divergence. In addition, it 
revealed partially restricted industrial activities owing to the 
COVID-19 lockdown policy and showed that anthropogenic 
aerosol emissions decreased. As a result, the WD flow from 
the atmosphere to the sea surface weakened and the amount 
of aerosols deposited on the sea surface was quickly reduced. 
Conversely, in 2021, the flow from the atmosphere to the sea 
surface increased, which could have added abundant amounts 
of aerosols to the ocean. This process may act as a factor 
limiting the occurrence of spring blooms, thereby supporting 
the hypothesis that reducing AOD caused a decline in 
phytoplankton biomass. When TP increased from 0 mm to 
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0.15 mm, CHLTP decreased from 2.42 mg m-3 to 1.28 mg m-3 
(Figure 6E). These results suggest that phytoplankton growth 
decreased with precipitation. Furthermore, according to 
previous studies, phytoplankton growth is indirectly estimated 
to be limited due to the toxic effects of metal components, 
such as Cu and Pb, in precipitation (Liu et  al., 2013). When 
CHLc increased from 1.29 mg m-3 to 3.55 mg m-3, CHLCHLC 
increased from 1.24 mg m-3 to 4.07 mg m-3 (Figure 6F). Because 
CHLc represents the climatology of CHL in the CYS, CHLCHLC 
increased with increasing CHLc.

3.5. Quantitative Contribution of  
Aerosol to CHL
Based on the results of the quantitative contributions in Section 
3.4, we created an equation that can express the CHL fluctuation 
for each predictor. Thus, this equation can estimate the amount 
of CHL fluctuation exhibiting different responses to each factor 

by summing the amount of change by the deviation of each 
factor in a year. Section 3.5 reveals the quantitative contribution 
of each predictor to CHL under natural conditions. The resulting 
equations are as follows:

 

CHL CHL CHL CHL
CHL CHL
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where αn is the empirically determined regression coefficient for 
each predictor (Figure 6; Table 3). Additionally, Δ CHL<predictor> 
(difference CHL<predictor>) represents the difference between x and 

FIGURE 6 | Partial dependence (PD) plots of the CHL for all predictors including AOD, SST, MLD, WD, TP, and CHLC. The blue dotted lines show PD plots and red 
dashed lines represent the empirical polynomial regression.
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x−1 , where x represents each year of the study periods 2021, 2020, 
2019, … and 2004. Hence, Δ CHL<predictor> was calculated for each 
variable variation simulated in the PD plot. Subsequently, the 
fluctuation CHL was calculated by summing the values of each 
Δ CHL<predictor>.

Although the PD plot in Figure 6 explains the responsive 
function of each predictor to CHL changes, we cannot 
estimate specific contributions of each predictor in different 
years. Subsequently, the  αn (empirical regression coefficients, 
2aX + b, X is predictor) was defined by calculating the first 
derivation based on the empirical polynomial regression. The 
first derivative can represent the effect of a predictor on CHL 
(e.g., positive or negative linear trends) (Boelkins et al., 2018). 
All regression coefficients are listed in Table 3. We calculated 
the quantitative contribution of each predictor to CHL under 
natural conditions only in March 2020 (during the COVID-19 
lockdown period). The αn for each selected predictor was applied 
to Eq. (5). According to the variation in each predictor, the CHL 
variability was then calculated (Table 3). The difference in CHL 
with the variational predictor (Δ CHL<predictor>) was calculated as 
the difference between the COVID-19 lockdown period and the 
average from March 2003 to 2021 (climatology). Δ CHLAOD is 
the difference in CHLAOD, which indicates the change between 
the COVID-19 lockdown period and climatology after fixing 
the variable conditions, except AOD, as in Section 3.4. The other 
variables were calculated using the same process. Using the αn 
based on Eq. (5), Δ CHL<predictor> was quantitatively calculated 
for each predictor. Figure 7 shows the effects of each variable on 
Δ CHL<predictor> when it decreased by at least 90% and increased 
by 90% at most, compared to the climatology. The variation range 
for the predictor is the resulting value for all conditions in which 
each factor may change, including the COVID-19 lockdown 
period. Furthermore, Figure  7 shows the individual effect of 
the  absolute contribution of each parameter to the CHL. As a 
result, Δ CHLAOD decreased by 0.20 mg m-3 due to an AOD less 
than that of the climatology. However, Δ CHLSST increased by 
0.22 mg m-3 because SST was warmer than that measured in the 
same period in other years (Figure 7). Moreover, MLD became 
more shallow than that of the climatology, reducing Δ CHLMLD 
by 0.01 mg m-3. Additionally, the negative WD yielded a stable 
Δ CHLWD, but less TP increased Δ CHLTP by 0.02 mg m-3. Similary, 
we estimated Δ CHLAOD in 2019 and 2021 using the linear 
model of the RF in Figure 7, showing as much as -0.05 mg m-3 
and + 0.13 mg m-3, respectively. However, Δ CHLSST increased 

by 0.07 mg m-3 and 0.18 mg m-3 in 2019 and 2021, respectively. 
Thus, the linear model allows us to estimate the CHL chages due 
to the various predictors

From analyzing the individual effects of each factor, it was 
determined that the decreased AOD and shallower MLD, 
compared to those of climatology, affected the CHL reduction. 
Among them, the leading cause of the decreasing spring 
blooms during the COVID-19 lockdown period was the sharply 
reduced AOD from the shutdown policy in China. In addition, 
it was found that the increased SST and decreased TP effect on  
the increasing CHL. As a consequence, AOD and MLD were 
the causes that led to the decrease in CHL and, among them, 
the effect of AOD reduction was approximately 10 times greater 
than that of the shallower MLD. In addition, the quantitative 
(absolute) contribution of the individual factors to CHL, shown 
in Figure 7, was largest in SST, followed by those in AOD, MLD, 
TP, and WD. For comparison, they are listed in absolute value 
order without mathematical symbols. This differs from the 
relative contributions presented in Section 3.2, suggesting that 
the strength of spring blooms in the YS can be controlled mainly 
by SST and AOD. In addition to the relationship already revealed 
in Figure 7, the final results of this study, which is the quantitative 
relationship between CHL and each factor, which was limited in 
previous studies, are presented together.

Accordingly, we determined a causal relationship between 
AOD and CHL through time series analysis for each factor to 
investigate the cause of spring blooms that were weakened during 
the COVID-19 lockdown period. In addition, intense spring 
blooms were induced when additional AOD was supplied in 
March 2020 using the RF model. Finally, as a result of estimating 
the quantitative contribution of each factor to CHL, it was 
observed that the decrease in aerosols led to a decline in CHL. 
Overall, the weakened spring blooms during the COVID-19 

TABLE 3 | Coefficient of the empirical polynomial regression for each predictor.

Predictor Empirical polynomial coefficient (2a + b)

a b

AOD -0.9283 1.3340
SST 0.0756 -1.2849
MLD 3.7738×10-5 -0.0014
WD 4.3302×109 2.9383×104

TP 3.1281×106 -827.8749
CHLc -0.5207 3.2518

FIGURE 7 | Empirical variation coefficient of each predictor with the 
climatology of each variable from March 2003 to 2021. Red and black lines 
indicate the difference for CHL along variational AOD (ΔCHLAOD) and SST 
(ΔCHLSST), respectively. Blue, gray, and purple lines represent the ΔCHLMLD, 
ΔCHLWD, and ΔCHLTP, respectively. Square boxes defined CHL according 
to the conditions of each predictor in the COVID-19 lockdown period. The 
green line and gray dot show CHL’s zero and climatology condition for 
ΔCHLeach predictor, respectively.
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lockdown period could have resulted from complex factors 
instigated by the temporary closure of industrial activities.

4 CONCLUSIONS

The quantitative evaluation using the RF-based model and PD 
results was applied to understand the decrease of CHL in the 
CYS, which was mainly due to the reduction in aerosol during 
the COVID-19 lockdown period. Consequently, the following 
specific results were obtained:

1. We identified the aerosol effect on CHL by checking the spatial 
distribution of CHL, according to AOD ±  2σ , through the 
established RF model. In particular, as AOD decreased by 
about 95%, CHL also reduced by about 50% or more through 
sensitivity experiments. This result proves that decreased 
anthropogenic aerosol emissions due to the COVID-19 
lockdown policy decreased spring blooms in the CYS. 
Therefore, aerosol must be considered essential to increasing 
spring blooms in the CYS (Section 3.3).

2. We performed the quantitative analysis in CHL according 
to the adjustment for each predictor using a PD plot and 
empirical polynomial regression analysis. These methods 
evaluated the quantitative effect of predictors affecting CHL 
reduction during the COVID-19 lockdown period in 2020. 
The CHL was affected by AOD (− 0.20 mg m-3), MLD (− 0.01 
mg m-3), WD (± 0.00 mg m-3), TP (+ 0.02 mg m-3), and SST 
(+ 0.22 mg m-3); among them, AOD had the predominant 
reduction effect (Section 3.5).

3. There, we elicited an abnormally low CHL during the COVID-
19 lockdown period, affected by AOD, based on sensitivity 
tests for the RF model and various analysis methods. These 
results suggest that the effect of each factor, especially AOD, 
that affected the COVID-19 lockdown period could be 
quantitatively evaluated.

The limitations of this study are as follows: (1) Regarding 
aerosol sinking into the sea, Liu et al. (2013) showed the extent 
to which aerosols (including Asian dust) could indirectly induce 
CHL blooms in the YS. Furthermore, although the Cloud-Aerosol 
Lidar and Infrared Pathfinder Satellite Observation can provide 
aerosol subtype data, it cannot provide the amount of aerosol 
entering the ocean (e.g., Tan and Wang, 2014; Yoon et al., 2019; 

Yoon et al., 2021). Thus, we could not quantitatively estimate the 
amount of aerosol (anthropogenic aerosol) absorbed into the 
sea surface in the current analysis. (2) Regarding nutrient loads, 
AOD contains anthropogenic nitrogen (NOx and NHy) and 
minerals such as iron (Fe). Aerosols containing Fe (i.e., Asian 
dust) are also a significant factor that can cause spring blooms in 
the CYS (Shi et al., 2012; Yoo et al., 2018; Yoon et al., 2019). Thus, 
spring blooms can be accelerated by the nitrogen (excluding 
anthropogenic nitrogen) supplied by nearby rivers. Since there 
were no nutrient observations during the COVID-19 lockdown 
period in YS, the central area of the YS was selected as the study 
area to avoid the effects of nitrogen from the surrounding river. 
Additionally, we confirmed that Asian dust did not occur during 
that period, nor was any additionally supplied Fe (Section 2.2.1). 
Thus, further research may be needed to measure directly how 
much aerosol sinks into the sea and nutrient load through ocean 
currents from coastal regions.
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