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Earth’s Radiation Budget is partly dictated by the fragile and complex balance between
biogenic volatile organic compounds (BVOCs) and greenhouse gases (GHGs), which have
the potential to impose cooling or warming once emitted to the atmosphere. Whilst methane
(CH4) is strictly associated with global warming due to its solar-radiation absorbing
properties, dimethyl sulfide (DMS) is generally considered a cooling gas through the light
scattering properties of its atmospheric oxidation products. However, DMS may also
partially contribute to the Earth’s warming through a small portion of it being degraded to
CH4 in the water column. Coral reefs emit both DMS and CH4 but they have not previously
been simultaneously measured. Here, we report DMS and CH4 fluxes as well as aerosol
particle counts at Heron Island, southern Great Barrier Reef, during the austral summer of
2016. Sea-to-air DMS and CH4 fluxes were on average 24.9 ± 1.81 and 1.36 ± 0.11 µmol
m-2 d-1, whilst intermediate (< 0.5-2.5 um) and large (> 2.5 um) particle number
concentrations averaged 5.51 x 106 ± 1.73 x 105 m-3 and 1.15 x 106 ± 4.63 x 104 m-3,
respectively. Positive correlations were found between DMS emissions and the abundance
of intermediate (R2 = 0.1669, p < 0.001, n = 93) and large (R2 = 0.0869, p = 0.004, n = 93)
aerosol particles, suggesting that DMS sea-to-air emissions significantly contribute to the
growth of existing particles to the measured size ranges at the Heron Island lagoon.
Additionally, a strong positive correlation was found between DMS and CH4 fluxes
(R2 = 0.7526, p < 0.00001, n = 93), suggesting that the emission of these volatile
compounds from coral reefs is closely linked. The slope of the regression between DMS
and CH4 suggests that CH4 emissions at the Heron Island lagoon represent 5% of that of
DMS, which is consistent with the average sea-to-air fluxes reported in this study (i.e. 24.9 ±
1.81 µmol m-2 d-1 for DMS and 1.36 ± 0.11 for CH4). These findings provide new insights on
the complexity of BVOC and GHG emissions in coral reef systems and their potential role in
climate regulation.

Keywords: fluxes, great barrier reef, biogenic volatile organic compounds (BVOCs), greenhouse gases (GHGs),
aerosol particles, Heron Island
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1 INTRODUCTION

Dimethyl sulfide (DMS) and methane (CH4) are key biogenic
compounds in climate change processes (Carpenter et al., 2012).
DMS is often associated with a cooling effect through
contributing to aerosol formation that increase Earth’s
radiative properties (Charlson et al., 1987). In contrast, CH4 is
responsible for a warming effect with a short-term greenhouse
potential that is 23 to 69 times greater than that of CO2 (Shine
et al., 2005). The bulk of DMS is produced through the algal and
bacterial enzymatic cleavage of dimethylsulfoniopropionate
(DMSP) (Simó, 2001), a biogenic sulfur compound that is
synthesised by a wide range of marine algae (Stefels, 2000),
bacteria (Curson et al., 2017) and invertebrate corals (Raina et al.,
2013). In contrast, the bulk of biogenic CH4 is mainly produced
by anaerobic methanogenic bacterial activity through the
reduction of either CO2, acetate or methyl-group containing
compounds (Liu and Whitman, 2008), although recent studies
show that CH4 can also be produced by plants, fungi, algae and
cyanobacteria from methylated nitrogen- and sulfur-containing
compounds in the presence of oxygen (Ernst et al., 2022). Thus, a
small portion of CH4 can originate from the hydrolysis of DMS
according to the following equation (Kiene et al., 1986; Liu and
Whitman, 2008):

2 CH3ð Þ2S + 2H2O ! 3CH4 + CO2 + 2H2S (1)

The link between DMS degradation and CH4 production has
now been reported across several studies on anoxic marine
sediments (Kiene and Visscher, 1987; Kiene, 1988; Wang et al.,
2009), where methanogenic bacteria are particularly abundant
(Mechalas, 1974; Barnes and Goldberg, 1976). Indeed, it seems
that the DMS-to-CH4 conversion can also be mediated by
methanogenic bacteria (Kiene and Visscher, 1987) but also by
me thy lo t roph i c bac t e r i a be l ong ing to the o rde r
Methanosarcinales and Methanobacteriales (Liu and Whitman,
2008). More recently, the role of DMS as a precursor of CH4 was
clearly demonstrated in upwelling waters as addition of 13C
enriched-DMS led to a significant increase in 13C enriched-CH4

(Florez-Leiva et al., 2013). Interestingly, DMS was estimated to
contribute to about 28% of CH4 production in both anoxic
sediments (Kiene, 1988) and upwelling waters (Florez-Leiva
et al., 2013), although these two marine habitats are likely to
host very different bacterial communities. DMS as a potential
precursor of CH4 across various marine ecosystems adds a level
of complexity to the role of DMS as a climate cooling agent
(Charlson et al., 1987; Quinn and Bates, 2011; Jones, 2013).

DMS is expected to be particularly concentrated in coral reef
ecosystems due to the high DMSP content in corals, coral-
associated symbionts and a wide range of coral reef
invertebrates (Deschaseaux et al., 2016; Haydon et al., 2018).
However, although coral reef sea-to-air DMS fluxes contribute to
atmospheric sulfur emissions (Swan et al., 2017), a recent
modelling study suggested that coral-reef-derived DMS
emissions most likely have a negligible effect on the local
climate of the Great Barrier Reef (Fiddes et al., 2021). Coral
reef frameworks are also sites of active anoxic and suboxic
Frontiers in Marine Science | www.frontiersin.org 2
organic matter oxidation, making coral reef pore waters
particularly rich in CH4 and coral reef ecosystems ideal
platforms for the release of CH4 to the water column and
atmosphere (Sansone et al., 1993; O’Reilly et al., 2015), which
could be counteracting the cooling effect of DMS emissions. A
recent study showed that permeable coral reef carbonate
sediments were a source of DMS and CH4 into the water
column and that CH4 production could be a sink for DMS in
coral reef systems (Deschaseaux et al., 2019). Since sea-to-air
DMS and CH4 fluxes from coral reef systems have been
independently reported by previous studies, the focus of this
study was to simultaneously quantify and report sea-to-air DMS
and CH4 fluxes from the Heron Island reef lagoon, southern
Great Barrier Reef, to assess the interplay of atmospheric DMS
and CH4 emissions.

We hypothesised that coral-reef DMS emissions would
contribute to the growth of aerosol nanoparticles and that
coral-reef DMS and CH4 emissions are linked due to a small
portion of DMS being hydrolysed to CH4 in coral reef waters.
2 MATERIAL AND METHODS

2.1 Study Site and Sampling
A field campaign was conducted on Heron Island, southern
Great Barrier Reef (23.44°S, 151.91°E), in the austral summer of
2016 (4th to the 17th of February) where dissolved CH4 and CO2

were measured alongside dissolved DMS (DMSw) using a cavity-
ring-down spectrometer (Picarro G2201-i) (Maher et al., 2013)
and a Vapor Generation – Chemiluminescence (VG-CL) device
(Nagahata et al., 2013), respectively. A Gas Chromatograph
(Varian CP3800 GC) equipped with a pulsed flame
photometric detector (GC-PFPD) was used to measure
atmospheric DMS (DMSa) (Swan et al., 2015; Swan et al., 2017).

A water pump and a 60 m suction-rated pipe were used to
pump seawater from the Heron Island reef flat to the Heron
Island Research Station (HIRS), where all instruments were
operated. The seawater inlet was attached to a cinder block 50
cm above the sediment bed and about 50 cm below the low-tide
mark. A non-return valve and a 1 mm mesh net were placed
around the suction pipe inlet to prevent large pieces of sediment
and seaweed getting through the suction line. The mesh was
cleaned every 2-3 days to prevent biofouling. Part of the pumped
seawater was diverted into a showerhead exchanger that was
connected in line with the cavity-ring-down spectrometer for
CH4 and CO2 measurements, while the remainder was diverted
to the HIRS’ flow-through seawater recycling system. The
recycling water outlet was used to manually sample seawater at
a low flow rate using a 50 mL syringe for DMSw analysis. A
HYDROLAB HL4 sonde was placed within 1 m of the water
intake to record seawater temperature, salinity, dissolved oxygen
(DO), and depth, every 15 min. Tide predictions were sourced
from the Bureau of Meteorology (BoM) with low tide times
locally adjusted +1.25 h for the Heron Island reef flat according
to Swan et al. (2017).
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An air intake consisting of ~10 m Teflon™ tubing was fixed
to the roof of the HIRS, within ~100 m in line of sight to the reef
flat location where seawater was continuously pumped from. The
air intake was shielded from rain. A wireless automated weather
station (AWS, model XC0348, Electus Distribution) mounted
within 1 m of the air intake provided data for wind speed (WS, ±
1 m s-1 for WS < 10 m s-1 and ± 10% for WS > 10 m s-1), wind
direction (WD), rainfall, air temperature (± 1°C), humidity (±
5%) and barometric pressure (± 3hPa), at 5-min intervals.
Meteorological data at 5 min intervals was used to match to
the 15 min interval chemical measurements. Solar irradiance at
the proximity of the air intake was recorded using a HOBO
(Onset Co., USA) light logger (upper limit ~6000 mE m-2 s-1).
Light intensity HOBO Lux units were adjusted to a maximum
light intensity of 2000 mEm−2 s−1. First and last daytime lights
were at 5:14 and 18:57 respectively on average over the sampling
period. An air quality monitor laser particle counter (Dylos
DC1700, Dylos Corp, CA, USA) was used to record 1-min
averaged particle number concentrations at ambient humidity
in the two size range fractions 0.5-2.5 μm and > 2.5 μm every 15
min. The air quality monitor was placed in a shielded location
near the air intake.

2.2 DMSw and DMSa Measurements
DMSw concentrations were determined in triplicate every 15 min
by placing 10 mL of seawater into a 50 mL sample tube that was
manually shaken for 1 min, then pressurised with 30 mL of air
and injected onto the chemiluminescence device (VG-CL)
(Nagahata et al., 2013). When DMSw mixes with ozone in the
VG-CL, it generates an instant chemiluminescent emission
where the light intensity is converted into a quantifiable
electrical signal. The injection tube was rinsed with deionised
water in between each injection to prevent analyte carry-over. A
6-point calibration was run at the beginning of the field
campaign, and either a 4 nM or 10 nM DMSP standard was
randomly run each day to monitor the reproducibility and
stability of the system over time. Because these measurements
are labour-intensive and could not be automated, sampling
occurred at random times of the day and night over the 2-
week field campaign.

DMSa concentrations were determined on the GC-PFPD
using an automated cryogenic trapping system that collected
~4L of air for analysis, providing a 0.1 nmol m-3 (0.002 ppb) limit
of detection. The expanded relative measurement uncertainty of
the automated GC-PFPD was 13% (k = 2, for a 95% CI). A
complete description of the configuration, operation, calibration,
and uncertainty analysis of the automated GC-PFPD is described
by Swan et al. (2015).

2.3 Flux Calculations
Sea-to-air DMS fluxes were estimated based on the different
parameterisations proposed by Liss and Merlivat (1986) (LM86),
Nightingale et al. (2000) (N00) and Wanninkhof (2014) (W14)
and by applying the approach of Lana et al. (2011) (L11) (see
details in Supplementary Table 1). The sea-to-air DMS fluxes
and uncertainties presented here correspond to the median and
standard error of these combined fluxes.
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Briefly, sea-to-air fluxes of DMS (FDMS) (in μmol m-2 d-1)
were estimated based on the following equation:

FDMS = KT(Cw –aCg) (2)

Where KT is the gas transfer velocity constant (in m d-1), a is
the dimensionless Henry’s Law constant and Cw and Cg are DMS
concentrations (in μmol m-3) in the water and gas phase,
respectively, with each parameterisation using a different
approach to estimate KT.

The dimensionless Henry’s Law Constant (a) for DMS
solubility in seawater was calculated using the following
equation:

a = 1=HK x RT (3)

Where HK (atm L mol-1) is the Henry’s Law Constant for
DMS, R is the universal gas constant (0.082 L atm K−1 mol−1)
and T is the seawater temperature in Kelvin. HK was calculated
based on the following equation by Dacey et al. (1984):

HK = e −3547=T +12:64ð Þ (4)

Sea-to-air CH4, CO2 and O2 fluxes were calculated based on
the parameterisation approaches proposed by Ho et al. (2006)
and Wanninkhof (2014). Atmospheric concentrations were
assumed to be constant (CH4 1.8 ppm, CO2 400 ppm and O2

21000 ppm). Solubility coefficients for CH4 (Wiesenburg and
Guinasso Jr, 1979), CO2 (Weiss, 1974) and O2 (Benson and
Krause Jr, 1984) were calculated based on temperature
and salinity.

2.4 Reef Production
Reef DMS, CH4, CO2 and O2 production (RP, mol m-2 h-1) were
calculated around each low tide using the following equation:

RP =  
DCw
DT

x  D   +
MeanFlux

24
(5)

Where DCW is the difference in dissolved concentrations
between the highest point following low tide and the actual
low tide, DT is the time difference between these 2 points, D is the
average depth for that time period and MeanFlux is the average
sea-to-air flux for that period.
2.5 Statistical Analysis
The significance of the correlations between DMS, CH4, CO2 and
O2 were evaluated using the Pearson correlation method. Given
that DMS and CH4 showed the strongest correlation (R2 =
0.7526, p <0.00001, n = 93), we specifically assessed what
drives DMS and CH4 fluxes by carrying out stepwise multiple
linear regressions (MLRs) against seven potential predictors and
their interactions (salinity, pH, depth, wind direction, dewpoint,
windchill and solar irradiance). In order to avoid over-fitting and
find a balance between model complexity and explanatory
power, we followed a backward elimination process based on
the Akaike Information Criter ion (AIC, detai ls in
Supplementary Figure 1) starting with all seven potential
measured predictors. Note that we opted not to include
June 2022 | Volume 9 | Article 910441
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temperature and wind speed, which are covariates in flux
calculations. Windchill and dewpoint are influenced by air
temperature, which is not a covariate in flux calculations, and
wind direction is not correlated to wind speed. Calculations were
performed using the functions “boxplot”, “stepwisefit”, and
“plotEffects” in MATLAB.
3 RESULTS

3.1 Environmental Data
Sea surface temperature (SST) within the Heron Island reef
lagoon fluctuated between 25.0 and 29.2°C over the course of
the campaign with an average SST of 27.3 ± 0.94°C. Salinity and
pH were on average 37.0 ± 0.25 ppt and 8.18 ± 0.19, respectively.
Seawater depth ranged from 0.46 to 1.38 m, 10 m wind speed
from 0 to 9.20 m s-1, windchill from 21.3 to 29.9°C, dewpoint
from 20.0 to 23.4°C and light intensity from 0 to 2000 μE m-2 s-1.

3.2 Sea-to-Air Fluxes and Relationships
Sea-to-air DMS fluxes varied from not-detectable to 69.5 μmol m-2

d-1 with an average flux of 24.9 ± 1.81 μmol m-2 d-1 (mean± SE, n =
93; Figure 1A). Sea-to-air CH4 fluxes varied from -0.12 to 3.91
μmol m-2 d-1 with an average flux of 1.36 ± 0.11 μmol m-2 d-1

(Figure 1B). Atmospheric CO2 and O2 fluxes varied from -15.4 to
30.7 mmol m-2 d-1 and from -188 to 403 mmol m-2 d-1, with mean
CO2 and O2 fluxes of 0.30 ± 0.71 and 70.5 ± 12.3 mmol m-2 d-1,
respectively (Figures 1C, D).
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All 24h-integrated sea-to-air fluxes showed a diurnal trend
with DMS, CO2 and CH4 fluxes being generally greater at night
than during the day while O2 fluxes showed the opposite trend
(Figure 1). Sea-to-air CO2 fluxes showed the most variability
during the first hours of sunlight while DMS and O2 fluxes
showed the most variability between dusk and midnight. CH4

fluxes showed the most variability both at night and during the
first hours of sunlight.

Sea-to-air O2 fluxes negatively correlated with DMS (R2 =
0.0569, n = 93, p = 0.02), CH4 (R

2 = 0.1476, n = 93, p < 0.001)
and CO2 (R

2 = 0.346, n = 93, p <0.00001), although the negative
relationship between O2 and CO2 was clearly the strongest
(Figure 2). Sea-to-air CO2 and CH4 fluxes were weakly
positively correlated (R2 = 0.1709, n = 93, p <0.001) while
CO2 and DMS fluxes were not significantly correlated (R2 =

0.0242, n = 93, p > 0.05). Sea-to-air DMS and CH4 fluxes
showed the strongest positive correlation (R2 = 0.7526, n = 93; p
< 0.00001).

Dissolved DMS, CH4, CO2 and O2 concentrations are presented
in the supplementary material (Supplementary Figure 2). Because
fluxes are calculated based on concentrations and transfer velocity,
and the transfer velocity is shared across fluxes, the relationships
between dissolved DMS and dissolved CH4, CO2 and O2

concentrations were also plotted. Dissolved DMS concentrations
positively correlated with dissolved CH4 (R

2 = 0.7706, n = 93) and
CO2 (R

2 = 0.2273, n = 93) concentrations and negatively correlated
with dissolved O2 concentrations (R2 = 0.3847, n = 93)
(Supplementary Figure 3, p < 0.00001).
FIGURE 1 | 24-h integrated DMS (A), CH4 (B), CO2 (C) and O2 (D) fluxes from the Heron Island reef, southern Great Barrier Reef, for the period 4-17 February,
2016. Shaded areas represent hours of darkness.
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3.3 Multiple Linear Regressions
The backward elimination process used in the stepwise Multiple
Linear Regressions (MLRs) revealed that salinity, pH, depth, wind
direction, dewpoint and wind chill were the six main drivers of sea-
to-air DMS fluxes and that pH, depth, wind direction, dewpoint,
wind chill and light were the six main drivers of CH4 fluxes
(Table 1). The linear fit between measured and predicted DMS
and CH4 fluxes exhibited an R2 of 0.717 and 0.631 (n = 93, p
<0.00001), respectively (Figures 3A, B). The most negative drivers
ofDMSemissionswerewindchill andpHwhereas themostpositive
driver was wind direction (Figure 3C). Similarly, themain negative
and positive drivers of CH4 emissions were pH and wind direction,
respectively (Figure3D).Whenplottingwinddirection (in azimuth
degrees) againstDMS andCH4fluxes (Supplementary Figure 4), it
Frontiers in Marine Science | www.frontiersin.org 5
appeared that the wind direction leading to the greatest DMS and
CH4 emissions was predominantly at 180°, which corresponds to
the direction of the dominant southerly trade winds at
Heron Island.

3.4 Reef Production
The DMS reef production exhibited positive values at all times,
with a few sporadic spikes around peak hours of sunlight (~
11:00) and in the middle of the night (~23:00) (Figure 4A).
Although an order of magnitude lower, the CH4 reef production
was also positive at all times but with greater values recorded at
night (Figure 4B). The CO2 reef production was positive at night
and for the first half of the day but negative from about 12:00 to
20:00 (Figure 4C). As expected, the O2 reef production was
(A) (B)

(D) (E) (F)

(C)

FIGURE 2 | Correlations between sea-to-air fluxes of CH4 and O2 (A), CO2 and O2 (B) and CO2 and CH4 (C) as well as between fluxes of DMS and CH4 (D), O2

(E) and CO2 (F). Trendlines, regression equation and R2 values are displayed for each correlation.
TABLE 1 | Multiple Linear Regression (MLR) statistics (estimated coefficient, standard error – SE; t and p values), describing sea-to-air DMS and CH4 fluxes in
response to various environmental variables (salinity, pH, depth, wind direction – WD, dewpoint – DP, windchill – WC and light) with interactions, for the best six-
variable model using the Akaike Information Criterion (AIC, Supp. Mat.), i.e. lowest number (compare to Figure 3).

DMS Estimate SE t p CH4 Estimate SE t p

(Intercept) 19054 2785 6.841 <0.001 (Intercept) 999.7 174.9 5.717 <0.001
salinity 22.42 5.333 4.203 <0.001 pH -122.9 21.27 -5.778 <0.001
pH -2419 348.3 -6.944 <0.001 depth 19.07 5.476 3.483 0.001
depth 211.4 88.35 2.393 0.019 WD 0.025 0.005 4.679 <0.001
WD 0.321 0.078 4.132 <0.001 DP -44.22 7.805 -5.666 <0.001
DP -651.5 121.1 -5.382 <0.001 WC 0.371 0.199 1.868 0.065
WC -203.1 56.71 -3.581 0.001 light -0.024 0.010 -2.476 0.015
pH:DP 79.02 14.73 5.366 <0.001 pH:DP 5.371 0.948 5.664 <0.001
pH:WC 24.78 7.047 3.517 0.001 pH:light 0.003 0.001 2.462 0.016
depth:WD -0.312 0.090 -3.474 0.001 depth:WD -0.027 0.006 -4.507 <0.001
depth:WC -6.458 3.482 -1.854 0.067 depth:WC -0.579 0.212 -2.734 0.008
June 2022 | Vo
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essentially positive during the day until dusk, and negative at
night (Figure 4D).

3.5 Particle Number Concentrations
and Their Relationship With Wind
Speed and DMS Exchange
Over the course of the study, intermediate (< 0.5-2.5 μm) and large
(> 2.5 μm) aerosol particle number concentrations averaged 5.51 x
106 ± 1.73 x 105 m-3 and 1.15 x 106 ± 4.63 x 104 m-3, respectively
(Figures 5A, B). Particle numbers in the 0.5μm-2.5 μmportion size
fraction were highest in the early morning (7:00 and 11:00) and
again at the end of the day around and following sunset (from18:30
to 20:00). Particle numbers in the > 2.5 μm size fraction occurred
slightly later in the morning (~11:00), early afternoon (11:00 to
15:00) and in the evening between 18:30 and 20:00.

Wind speed positively correlated with the abundance of
intermediate (R2 = 0.3337, n = 93, p < 0.0001) and large (R2 =
0.1424, n = 93, p = 0.0002) aerosol particles (Figures 5C, D). Sea-
to-air DMS fluxes also positively correlated with the abundance
of intermediate (R2 = 0.1669, n = 93, p = 0.0001) and large (R2 =
0.0869, n = 93, p = 0.004) aerosol particles (Figures 5E, F).
4 DISCUSSION

4.1 Flux Estimations
DMS fluxes reported in this study (Min = not-detectable, Max =
69.5 μmol m-2 d-1, Mean = 24.9 ± 1.81 μmol m-2 d-1, n = 93) fell
Frontiers in Marine Science | www.frontiersin.org 6
within the range of previously reported sea-to-air DMS fluxes for 5
coral reef systems across the Great Barrier Reef, which varied from
not-detectable to 153 μmol m-2 d-1 in the austral summer wet
season (Jones et al., 2018). However, seasonal DMS fluxes
recorded in the current study were about five and four times
greater on average than the 2012 summer wet season study
conducted on Heron Island (5.0 μmol m-2 d-1, n = 651) (Swan
et al., 2017) and the average DMS fluxes reported by Jones et al.
(2018) (6.4 μmol m-2 d-1, n = 237), respectively. Since DMSa
(mean ± SD) at Heron Island in the 2012 and 2016 summers were
similar (i.e. 3.9 ± 1.5, n = 651, and 3.7 ± 0.8, n = 761 nmol m-3,
respectively, data not shown), the high fluxes in this study most
likely result from temporally elevated DMS production in the
Heron Island reef lagoon in the year 2016 or on the section of
the Heron Island reef flat where seawater samples were collected.
The significant differences in the average DMS fluxes for the
summers of 2012 and 2016 at Heron Island might also reflect
differences in the employed flux calculation (photochemical
ambient mass balance approach used by Swan et al. (2017) as
opposed to the gradient method flux calculation used in this
study). Similarly, Jones et al. (2018) used the LM86 gradient
method flux parameterisation, which was shown to give much
lower flux estimates than the other gradient method flux
parameterisations used in the current study (see Supplementary
Table 1), hence indicating that the approach employed can lead to
significantly different values. The estimated flux difference might
also reflect the limitations of the non-automated VG-CL
instrument used in this study, which ultimately led to
(A) (B)

(C) (D)

FIGURE 3 | Linear fits through in situ and predicted sea-to-air DMS (A, R2 = 0.717) and CH4 (B, R2 = 0.631) fluxes by the stepwise Multiple Linear Regression
(MLR) model with the lowest Akaike Information Criterion (AIC) with six main variables, and resulting main effect sizes of salinity, pH, depth, wind direction (WD),
Dewpoint (DP) and Wind Chill (WC) for DMS fluxes (C) and of pH, depth, WD, DP and WC and light for CH4 fluxes (D) (compare to Table 1).
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preferential DMSw sampling during the day and evenings, with a
lack of night-time measurements to match with the continuous
DMSa measurements.

Sea-to-air fluxes for CH4 (Min = −0.12 μmol m-2 d-1, Max =
3.91 μmol m-2 d-1, mean = 1.36 ± 1.03 mmol m-2 d-1) and CO2

(Min = −15.4, Max = 30.7 mmol m-2 d-1, mean = 0.30 mmol m-2

d-1) were consistent with previously reported water-air fluxes for
the Great Barrier Reef (3.4 ± 0.1 μmol m-2 d-1 (O’Reilly et al.,
2015) and 2.2 ± 0.5 μmol m-2 d-1 (Reading et al., 2021) for CH4;
−5.4 ± 0.8 mmol m-2 d-1 (O’Reilly et al., 2015), 1.44 ± 0.15 mmol
m−2 d−1 (Lønborg et al., 2019) and 1.9 ± 0.4 mmol m-2 d-1

(Reading et al., 2021) for CO2).
Sea-to-air O2 fluxes in this study (Min = −188 mmol m-2 d-1,

Max = 403 mmol m-2 d-1, mean = 70 ± 12 mmol m-2 d-1) were
similar to water-air fluxes reported for a Puerto Rican coral reef,
with rates varying between −285 and 329 mmol m-2 d-1 (McGillis
et al., 2011). However, they were rather low compared to O2

fluxes reported for another coral reef system in the Florida Keys,
(Min = −450 mmol m-2 d-1, Max = 4500 mmol m-2 d-1) (Long
Frontiers in Marine Science | www.frontiersin.org 7
et al., 2013), which most likely reflects differences between the
phototrophic communities of different reef systems (e.g. algal
versus coral cover, phytoplankton composition).
4.2 The Interplay Between DMS and CH4
The strong positive correlation between water-air DMS and CH4

fluxes (R2 = 0.7526) suggests that DMS and CH4 emissions from
the Heron Island reef lagoon are closely linked. Further to this
observation, the MLR analysis revealed that sea-to-air DMS and
CH4 fluxes were both driven by pH, depth, wind direction,
dewpoint and wind chill. This indicates that DMS and CH4

fluxes are driven by very similar environmental factors, thus
potentially explaining part of the correlation between DMS and
CH4 emissions at the Heron Island reef lagoon. Dissolved
concentrations of DMS and CH4 were also strongly correlated
(Supplementary Figure 3), which indicates that the production
of DMS and CH4 in this reef system is also intimately linked. In
contrast there was no clear correlation between the RPs of DMS
FIGURE 4 | 24h-integrated reef production (RP) for DMS (A), CH4 (B), CO2 (C) and O2 (D) calculated around each low-tide period. Shaded areas represent hours
of darkness.
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and CH4, which suggests that DMS and CH4 were subject to
different accumulation rates and thus to different production
and/or degradation processes.

DMS production mainly relies on the enzymatic cleavage of
DMSP in the water column (Simó, 2001) while methanogenesis
mainly depends on the conversion of CO2 and acetate into CH4

under anaerobic conditions (Liu and Whitman, 2008), which
most likely occurs in marine sediments in coral reef ecosystems
(Deschaseaux et al., 2019; Reading et al., 2021). The main sinks of
dissolved DMS are expected to be biological and photochemical
Frontiers in Marine Science | www.frontiersin.org 8
oxidation (del Valle et al., 2009) as well as emission fluxes from
the water column to the atmosphere (Lana et al., 2011). Similarly,
oceanic emissions (Weber et al., 2019) and microbial oxidation
to CO2 through both aerobic and anaerobic pathways (Pain et al.,
2019) are considered the main sinks of dissolved CH4 in marine
systems. However, the rate and magnitude of DMS and CH4

sinks rely on different degradation processes (e.g. microbial
communities, vertical distribution in the water column). For
instance, the magnitude of the aerobic and anaerobic CH4

oxidation sinks is dictated by oxygen gradients and
FIGURE 5 | 24h-integrated abundance of intermediate (0.5-2.5 µm) (A) and large (>2.5 µm) (B) aerosol particles and their relationships with wind speed (C, D) and
sea-to-air DMS fluxes (E, F), respectively. Shaded areas represent hours of darkness.
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groundwater residence time, respectively (Pain et al., 2019). The
different sources and sinks of DMS and CH4 in coral reef systems
thus most likely explain the divergence in correlation between
DMS and CH4 sea-to-air emissions on one hand and the RPs of
DMS and CH4 on the other hand.

At the Heron Island reef lagoon, negative correlations were
found between dark DMS and CH4 fluxes from permeable
carbonate coral reef sediments to the water column (Deschaseaux
et al., 2019), suggesting that part of the DMS produced in coral reef
sediments was degraded to CH4 under dark anoxic conditions, most
likely by anaerobic methanogens (Kiene and Visscher, 1987).
However, CH4 production can also occur under aerobic
conditions and across all living organisms, including marine
phytoplankton (Klintzsch et al., 2019; Ernst et al., 2022). As such,
DMS-to-CH4 hydrolysis may not only occurs in permeable
carbonate coral reef sediments, but also in reef waters through
phytoplankton activity and possibly within the coral tissue, where
DMS plays a major role in structuring coral-associated bacterial
communities (Raina et al., 2010).

Growing evidence shows that organic compounds containing
sulfur- bonded methyl groups such as DMS are a source of CH4

under both anaerobic and aerobic conditions (Liu and Whitman,
2008; Ernst et al., 2022), with CH4 production by certain bacteria
being enhanced in the presence of reactive oxygen species under
oxidative stress (Ernst et al., 2022). DMS concentrations in
marine algae and corals also increase under oxidative stress
due to DMS being used as an antioxidant (Sunda et al., 2002;
Deschaseaux et al., 2014). This suggests that the increase in CH4

production might be due to more sulfur-methylated compounds
made readily available to methylotrophs in various types
of organisms.

It was estimated that DMS contributes up to 28% of CH4

production in various marine systems (Kiene, 1988; Florez-Leiva
et al., 2013), which couldwell be the case for coral reef ecosystems. At
the Heron Island reef lagoon, it was estimated that a small portion
(~6.5%) of the CH4 produced in coral reef sediments under dark
anoxic conditions might originate from DMS (Deschaseaux et al.,
2019). Here, the slope of the regression between DMS and CH4

indicates that 0.05 mole of CH4 is emitted for each mole of DMS
being emitted to the atmosphere. This shows that sea-to-air CH4

emissions from theHeron Island reef lagoon represents 5% of that of
DMS, which is consistent with the average sea-to-air DMS (24.9 ±
1.81 μmol m-2 d-1) and CH4 (1.36 ± 0.11 μmol m-2 d-1) fluxes
reported in this study. However, without using isotopic tracers, we
cannot draw conclusions on the actual portion of CH4 emissions
from coral reef systems that actually originate fromDMS hydrolysis.

4.3 Drivers of DMS and CH4 in Coral
Reef Systems
In addition to pH, depth, wind direction, dewpoint and wind
chill, DMS emissions were also positively driven by salinity.
These findings could be counter intuitive given that the most
intense plume of DMS measured over the Heron Island reef
occurred in the winter of 2013 at low tide when rainfall on the
aerially exposed reef apparently caused a combined hypo-salinity
osmotic and hypo-thermic temperature shock to the coral (Swan
Frontiers in Marine Science | www.frontiersin.org 9
et al., 2017). However, salinity in this study only ranged from
36.4 to 37.4 ppt, and thus DMS emissions under rainfall at low
tide was not captured. Nevertheless, it could also be that it was
not only low salinity that led to high DMS emissions reported by
Swan et al. (2017), but also temperature stress and/or other rain-
induced environmental conditions. For instance, rain increases
transfer velocity (Ho et al., 1997), which could explain the higher
emissions in Swan et al. (2017) under rainfall at low tide.

Similarly, in addition to pH, depth, wind direction,
dewpoint and wind chill, CH4 emissions were also negatively
affected by light whereas previous studies show that CH4

production by phytoplankton was accentuated under
increased light conditions (Klintzsch et al., 2020). Given that
light mainly influences photosynthesis and O2 production in
biological systems, this data suggests that light-driven O2

production might negatively impact CH4 production or lead
to enhanced CH4 oxidation in coral reefs. This is consistent
with sea-to-air O2 fluxes being negatively correlated with both
CH4 and CO2 in this study, with CO2 being a precursor of CH4

production (Liu and Whitman, 2008). Although CH4 can
originate from various biogenic sources in the presence of
oxygen (Ernst et al., 2022), it could be that the main source
of CH4 in coral reef systems are methanogen-rich permeable
carbonate sediments (Deschaseaux et al., 2019), which are
productive under dark anoxic conditions.

Maximum dissolved DMS and DMSP concentrations in coral
reef systems coincide with low pH, especially over areas
dominated by seagrass and macroalgae (Burdett et al., 2013),
which is consistent with pH negatively affecting DMS emissions
in the current study. Coral-reef DMS emissions are thus expected
to increase under low pH conditions, possibly due to macroalgae
using DMSP to maintain metabolic functions during periods of
low carbonate saturation state (Burdett et al., 2013). Sea-to-air
CH4 fluxes at Heron Island were also negatively correlated with
pH, which suggests that ocean acidification may increase CH4

emissions in coral reef systems, possibly due to low pH
enhancing organic matter degradation in coral reefs like it is
the case in seagrass sediments (Ravaglioli et al., 2020).

Spikes in DMS emissions at the Heron Island reef lagoon were
previously detected at low tide generally under low wind speeds <
2 m s-1 (Swan et al., 2017), which agrees with depth being a
negative driver of DMS emissions in this study. On the other
hand, it is unknown whether dewpoint and windchill have ever
been considered as environmental factors driving DMS and CH4

emissions in marine systems, although it seems that low
dewpoint and air temperatures coincided with high DMS and
CH4 emissions at the Heron Island reef system. This suggests
that air temperature also plays a role in the gas transfer velocity
of DMS and CH4, most likely as it influences water temperature
and thus the temperature-dependent gas solubility of these
two compounds.

DMS and CH4 emissions were highest under southerly winds,
which travelled over the Heron Island’s reef and the adjacent
large Wistari reef, directly south of our sampling site. This
indicates that Wistari reef is possibly the major source of
coral-reef-derived DMSa measured at Heron Island and that
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coral reefs are a more predominant source of DMS and CH4 than
the surrounding ocean.

4.4 DMS and Climate in Coral Reef Systems
Although there is insufficient information to attribute the
particle counts in this study to new particle formation, because
the measured size ranges are far above that of new nanoparticles
(Clarke et al., 2006), it was interesting to see that sea-to-air DMS
fluxes positively correlated with intermediate (0.5-2.5 μm) and
large (> 2.5 μm) particles, and that a stronger correlation
occurred between DMS emissions and the abundance of
particles in the intermediate size range. This likely indicates
that DMS oxidation products possibly contributed to the growth
of existing particles within the 0.5-2.5 μm measured size range,
which are suspected to be predominantly sea spray aerosols
(SSA) (Quinn et al., 2015). Given that number concentrations of
intermediate size particles were correlated with wind speed (R2 =
0.3337, Figure 5C) and that wind speed is a covariate in DMS
flux, the observed correlation is expected to be linked to wind
speed, which exchanges more DMS and SSA from the ocean.
Given that coral-reef derived DMS and CH4 emissions could be
linked, with a small portion of DMS being hydrolysed to CH4 in
the water column, and that CH4 is a GHG with a stronger
greenhouse potential than that of CO2 (Shine et al., 2005), it is
important to consider both dissolved DMS and CH4 when
predicting BVOC and GHG emissions from marine systems.

5 CONCLUSION

To our knowledge, this study is the first to simultaneously
measure and report sea-to-air DMS fluxes alongside sea-to-air
CH4 fluxes in a coral reef ecosystem. Depth, pH, wind direction,
dewpoint and wind chill were common drivers of DMS and CH4

emissions at Heron Island, a coral reef system on the southern
Great Barrier Reef. Additionally, salinity was a positive driver of
DMS emissions while light negatively affected sea-to-air CH4

fluxes. This research also showed the strong correlation that
exists between DMS and CH4 emissions at Heron Island.
Although it is not possible at this stage to estimate the portion
of CH4 that derives from DMS hydrolysis, it is clear that DMS
and CH4 emissions from the Heron Island reef are intimately
linked, with potential consequences on ocean warming. DMS
emissions were well correlated with the abundance of
intermediate size particles (0.5-2.5 μm), which indicates that
DMS contributes to the growth of existing aerosol particles,
which could eventually form cloud condensation nuclei and
induce cloud-mediated cooling on a local scale. This study
Frontiers in Marine Science | www.frontiersin.org 10
highlights the complexity of BVOC and GHG co-emissions
and the potential impact they may have on the regional
climate of the Great Barrier Reef.
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