AUTHOR=Gerakaris Vasilis , Varkitzi Ioanna , Orlando-Bonaca Martina , Kikaki Katerina , Mozetič Patricija , Lardi Polytimi-Ioli , Tsiamis Konstantinos , Francé Janja TITLE=Benthic-Pelagic Coupling of Marine Primary Producers Under Different Natural and Human-Induced Pressures’ Regimes JOURNAL=Frontiers in Marine Science VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.909927 DOI=10.3389/fmars.2022.909927 ISSN=2296-7745 ABSTRACT=
Marine primary producers are highly sensitive to environmental deterioration caused by natural and human-induced stressors. Following the Water Framework Directive and the Marine Strategy Framework Directive requirements, the importance of using the different primary producers of the coastal marine ecosystem (pelagic: phytoplankton and benthic: macroalgae and angiosperms) as appropriate tools for an integrated assessment of the ecological status of the coastal environment has been recognized. However, the processes by which water column characteristics and phytobenthic indicators are linked have not been systematically studied. Based on a large dataset from three Mediterranean sub-basins (Adriatic, Ionian and Aegean Seas) with different trophic conditions, this study aims to explore the coupled responses of benthic and pelagic primary producers to eutrophication pressures on a large scale, focusing on the structural and functional traits of benthic macroalgal and angiosperm communities, and to investigate the key drivers among the different eutrophication-related pelagic indicators (such as nutrient and Chl-a concentrations, water transparency, etc.) that can force the benthic system indicators to low ecological quality levels. In addition to the effects of high nutrient loading on phytoplankton biomass, our results also show that increased nutrient concentrations in seawater have a similar effect on macroalgal communities. Indeed, increasing nutrient concentrations lead to increased coverage of opportunistic macroalgal species at the expense of canopy-forming species. Most structural traits of