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Bivalve aquaculture may provide a variety of ecosystem services including nitrogen
extraction from estuaries, which are often subject to excess nutrient loading from
various land activities, causing eutrophication. This nitrogen extraction may be affected
by a combination of various non-linear interactions between the cultured organisms and
the receiving ecosystem. The present study used a coupled hydro-biogeochemical model
to examine the interactive effects of various factors on the degree of estuarine nutrient
mitigation by farmed bivalves. These factors included bay geomorphology (leaky,
restricted and choked systems), river size (small and large rivers leading to moderate
(105.9 Mt N yr-1) and high (529.6 Mt N yr-1) nutrient discharges), bivalve species (blue
mussel (Mytilus edulis) and eastern oyster (Crassostrea virginica)), farmed bivalve area (0,
10, 25 and 40% of estuarine surface area) and climate change (water temperature, sea
level and precipitation reflecting either present or future (Horizon 2050) conditions). Model
outputs indicated that bivalve culture was associated with the retention of nitrogen within
estuaries, but that this alteration of nitrogen exchange between estuaries and the open
ocean was not uniform across all tested variables and it depended on the nature of their
interaction with the bivalves as well as their own dynamics. When nitrogen extraction
resulting from harvest was factored in, however, bivalve culture was shown to provide a
net nitrogen removal in the majority of the tested model scenarios. Mussels provided more
nutrient mitigation than oysters, open systems were more resilient to change than closed
ones, and mitigation potential was shown to generally increase with increasing bivalve
biomass. Under projected future temperature conditions, nutrient mitigation from mussel
farms was predicted to increase, while interactions with the oyster reproductive cycle led
to both reduced harvested biomass and nutrient mitigation potential. This study presents
the first quantification of the effects of various biological, physical, geomorphological and
hydrodynamical processes on nutrient mitigation by bivalve aquaculture and will be critical
in addressing questions related to eutrophication mitigation by bivalves and prediction of
possible nutrient trading credits.

Keywords: eutrophication, nutrient loading, shellfish aquaculture, ecosystem services, estuary model,
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INTRODUCTION

Bivalve aquaculture is increasingly being acknowledged for the
ecosystem services it provides beyond its primary goal of food
provisioning (van der Schatte Olivier et al., 2018; Alleway et al.,
2019; Smaal et al., 2019). Among these services, nitrogen
extraction from near-shore ecosystems (e.g. estuaries, lagoons
and bays) is of particular interest as these regions are often
subject to excess nutrient loading from various land activities
(e.g. agricultural runoff, waste-water treatment effluent) resulting
in regional eutrophication (Cloern, 2001; Bricker et al., 2007).
Owing to their capacity to clear particles from large volumes of
water, bivalves have been proposed to mitigate these excess
nutrients and be included in nitrogen-trading programs
(Lindahl et al., 2005; Lindahl, 2011; Nielsen et al., 2016;
Petersen et al., 2019). While bivalve harvest clearly contributes
to a net extraction of nutrients, the net effect of wild or cultured
bivalves on nutrient dynamics while present in the coastal
environment is not as obvious. These organisms may
potentially interact with several biogeochemical processes that
regulate ecosystem functioning. Their direct consumption of
food particles can lead to changes such as increased intra- and
inter-specific competition for phytoplankton (Cloern, 2005),
enhanced water clarity (Meeuwig et al., 1998; Newell, 2004),
and alterations in plankton community size structure as a
consequence of their size-selective retention efficiency
(Strohmeier et al., 2012; Sonier et al., 2016). In addition,
non-assimilated food can also affect ecosystem dynamics.
Particulate wastes (e.g. faeces and pseudo-faeces) sink faster
than original food particles (Callier et al., 2006), which may
lead to a net transfer of material from the water column to the
benthos. This process could result in particulate organic material
retention within near-shore ecosystems (Cranford et al., 2007).
Part of the assimilated food is also excreted in dissolved organic
and inorganic forms that can be more readily exported to the
open ocean. These same dissolved wastes (e.g. dissolved organic
nitrogen and ammonia) may also stimulate local planktonic
primary production (Prins et al., 1995) and consequently
increase the residence time of nutrients in the system. The net
role played by cultured bivalves in material exchange between
near-shore systems and the coastal ocean is difficult to predict a
priori as it involves several non-linear interactions between the
bivalves and the supporting ecosystem and can be influenced by
various environmental, physical and farming conditions.

Climate change has the potential to increase nutrient loading,
through increased precipitation (Nazari-Sharabian et al., 2018)
and to intensify eutrophication, through increased water
temperature and its effects on many biogeochemical processes
in coastal waters (Rabalais et al., 2009). The ultimate effect
climate change could have on the role of bivalves in nutrient
cycling through coastal ecosystems remains, however, highly
uncertain as competing influences are at play. For instance,
some bivalve species may grow faster at higher temperatures
(Guyondet et al., 2015; Steeves et al., 2018). Temperature-
associated changes in primary production (Brown et al., 2010)
and planktonic communities (Allen and Wolfe, 2013; Mackas
et al., 2013), however, may alter bivalve food availability.
Frontiers in Marine Science | www.frontiersin.org 2
Temporal shifts in the seasonal temperature cycle may also
affect the interaction between bivalves and the pelagic
ecosystem by changing the phenology of planktonic species
and/or the phenology of bivalves, especially their reproductive
cycle (Filgueira et al., 2015).

Intrinsic features of near-shore regions may also greatly
influence their response to pressures such as nutrient loading,
bivalve aquaculture and climate change. Specifically, inlet
morphology plays a major part in controlling the intensity of
exchange with the open ocean and, consequently, strongly
influences the prevailing internal conditions and the sensitivity
to external stressors (Filgueira et al., 2013; Panda et al., 2013;
Roselli et al., 2013). The objective of the present study was to
determine the overall net nitrogen retention versus extraction of
bivalve aquaculture in semi-enclosed estuaries and explore some
of the driving factors of this relationship. Specifically, we focused
on the exchange between various types of embayments and the
open ocean under various levels of nutrient loading, different
shellfish culture species/biomass and climate-change-induced
temperature increase as drivers of coastal ecosystem response.
Numerical modelling provides an adequate framework for this
investigation involving the non-linear intricacies of bivalve-
ecosystem interactions, as suggested in previous research using
coupled hydro-biogeochemical model simulations (Filgueira
et al., 2016). This modelling could help to characterize the
eutrophication mitigation potential of bivalve culture in the
context of different environmental and biological scenarios
relevant to coastal management.
MATERIAL AND METHODS

Coupled Hydro-Biogeochemical Model
The RMA10-11 suite of models was used for this work (King,
1982; King, 2003) in a 2D depth-averaged configuration with a
spatial resolution of 100 – 250 m (distance between nodes). This
same modelling framework was successfully applied to bivalve-
ecosystem interaction studies in the past (Guyondet et al., 2010;
Guyondet et al., 2015). Details of the model structure are given in
these previous reports and the latest configuration, used in the
present study, was similar to Filgueira et al. (2016) and provided
in Appendix 1. Briefly, the model simulates the nitrogen cycle
through a coastal pelagic ecosystem consisting of dissolved
inorganic nitrogen (DIN), phytoplankton (Phyto), zooplankton
(Zoo) and organic detritus (D). Cultured bivalves are fully
integrated within this pelagic structure and their physiology
including feeding, somatic growth and reproductive cycle is
simulated using a dynamic energy budget (Kooijman, 2010)
with parametrizations from (Filgueira et al., 2011; Filgueira et
al., 2014) for mussels and oysters, respectively. The model also
accounts for the effect of water temperature on all simulated
biological processes. The benthic nitrogen cycle is not explicitly
simulated, rather temperature-dependent rates of DIN efflux
from the sediment are prescribed outside and inside
commercial bivalve farms according to observations made in a
coastal lagoon of the Magdalen Islands, Atlantic Canada
June 2022 | Volume 9 | Article 909926
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(Richard et al., 2007). River, atmospheric, and open-boundary
conditions were constructed from observations in the southern
Gulf of Saint Lawrence (GSL), Atlantic Canada (Guyondet et al.,
2015) and are characterized by weak mixed diurnal and semi-
diurnal tides (0.15 – 0.60 m amplitude). Further forcing details are
provided in Appendix 1.

Model Factors: Bay Geomorphology
In order to draw general conclusions, we chose to carry out
numerical experiments on geomorphologically-idealized coastal
systems, which are representative of shallow temperate estuaries
(model mean depth of 4.6 m). Three geomorphologies were
tested that only differed by their inlet configuration, leading to
leaky, restricted and choked systems in increasing order of tide
and exchange attenuation (Kjerfve, 1986). This strategy allowed
spanning over a wide range of systems that real estuaries could be
compared to and provided a full control on the degree of
exchange between the near-shore area and the open ocean as
reflected by the differences in water renewal time among the
three systems (Figure 1), computed following Koutitonsky
et al. (2004).

Model Factors: Environmental Drivers
A factorial design was developed to test the effects of several
factors and their interactions on the response of the coastal
ecosystem. In addition to the system’s geomorphology, the
following factors were tested. The first was nutrient loading,
Frontiers in Marine Science | www.frontiersin.org 3
with two levels, where nutrient inputs were obtained from small
and large river discharges resulting in moderate (105.9 Mt N yr-1)
and high (529.6 Mt N yr-1) loading, respectively (Coffin et al.,
2018). This factor also influences the overall water exchange
between the embayment and the open ocean. The second factor
was bivalve species, with two levels, being either the blue mussel
(Mytilus edulis) or the eastern oyster (Crassostrea virginica).
These species are two of the most commonly cultured bivalves
in Atlantic Canada. The third factor, with four levels, was the
surface area of the embayment covered by bivalve aquaculture
(no aquaculture and low, medium and high aquaculture), which
was based on the farm surface area coverage of the embayment (0,
10, 25 and 40%, respectively, Figure 1). The “no aquaculture”
scenario (stocking coverage = 0%) served as a reference to test the
effects induced by the presence of the bivalve farms. The density
of bivalves in farmed areas was typical of culture practices in
southern GSL with 94.1 mussels m-2 and 30.0 oysters m-2

(Drapeau et al., 2006; Comeau, 2013). The remaining three
factors were related to climate change, with two levels each.
Water temperature, sea level and precipitation reflected either
present or future (Horizon 2050) conditions. Current conditions
were obtained from observations in the southern GSL (Guyondet
et al., 2015) while future conditions were derived from
predictions at the regional scale based on observed trends
(Vasseur and Catto, 2008; Taboada and Anadón, 2012) and
corresponding to an annual mean 2°C increase in temperature
[with warmer summer peak and earlier Spring Appendix 1)], a
FIGURE 1 | Inlet configuration and water renewal time for the three bay geomorphology types (left) and bivalve farm stocking areas for the three aquaculture
scenarios (right).
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0.5 m sea level rise and a 10% precipitation increase, forced
through increased river discharge.

The combination of all the factors and their respective levels
led to a total of 336 scenarios, which were simulated over a full
year from June to June, preceded by a 90-day spin-up period in
order for the system to reach an equilibrium state. For the
purpose of the present study, exchange fluxes of all variables
across an inlet section were recorded and then integrated over
the year to estimate their net annual import/export balance.
These net figures for all variables were also combined into a
single estimate of the overall net import/export balance of the
coastal ecosystems using the conversion coefficients reported in
Table 1. Bivalve production was computed as the difference in
individual biomass between the end and beginning of the
simulation, scaled up to the total cultured population of each
scenario. Among the climate factors tested, Filgueira et al. (2016)
noted that temperature had by far the largest influence on the
ecosystem response. Therefore, temperature is the only climate
factor explicitly discussed in this study.

Eutrophication Mitigation Potential
As mentioned in the Introduction, some of the feedbacks from
cultured bivalves to the ecosystem can lead to retention of
inorganic/organic material within the near-shore area (i.e.
estuary or bay). This retention was quantified by comparing
the net annual exchange of material for a given aquaculture
scenario with the exchange for the corresponding scenario
without aquaculture. The eutrophication mitigation potential is
defined here as the difference between the bivalve production,
representing the material that can actually be extracted through
harvest, and the retention of material defined above. Bivalve
production had to be estimated at a fixed date (end of
simulation), which makes the evaluation of the mitigation
potential sensitivity to the various factors somewhat tributary
to the phenology of the biological processes, in particular the
bivalve reproductive cycle (see Discussion).

Statistics
Statistical analyses were conducted using R version 4.0.2 (R Core
Team, 2020-06-22) operating in the RStudio version 1.2.1335
environment. Significance for all statistical tests was set at
p < 0.05.
Frontiers in Marine Science | www.frontiersin.org 4
Our first goal with the application of statistics was to understand
how three independent variables of interest (bivalve area coverage,
baymorphology and species) interact to predict changes in response
variables, namely primary production (PP) and export to the open
sea of phytoplankton biomass (Phyto), detritus biomass (Detritus),
dissolved inorganic nitrogen (DIN), zooplankton biomass (Zoo),
and total nitrogen (TN). Response variables were expressed as a
percentage change when compared to non-aquaculture scenarios.
In order to meet normality assumptions prior to analyses, all
response variables were subjected to Yeo-Johnson transformations
(Yeo and Johnson, 2000) using the recipe() function in the recipes
package (Kuhn and Wickham, 2022). QQ plots were produced to
visually assess the normality assumption for all groups together and
also for each group separately. Residuals versus fits plots were
produced to check the homogeneity of variances. The absence of
extreme outliers was confirmed using the identify_outliers()
function from the rstatix package (Kassambara, 2021). Finally,
three-way ANOVAs were performed using the Anova() function
from the car package (Fox and Weisberg, 2019).

Our second statistical objective focused on the extractive
capacity of bivalve aquaculture. Our null hypothesis was that the
annual amount of nitrogen extracted from the system due to bivalve
harvest was equal to the annual amount of nitrogen further retained
within the system (export reduction) due to the presence of bivalve
farms. A comparison of scenarios ‘with’ and ‘without’ cultured
bivalves revealed that differences between paired scenarios were not
distributed normally, nor symmetrically around the median. Hence
the paired samples sign test was used to determine whether
differences were consistent across scenarios. The same approach
was utilized for assessing whether differences were consistent
across species.

All statistical results, raw data, and annotated R-script can be
found in the Supplementary Material (Appendices 2–4).
RESULTS

Embayments Without Aquaculture
As expected, all coastal system configurations tested in this study
under “natural”, i.e. without bivalve farms, and both present and
future conditions, showed a net export of material (all forms of N
combined) to the open sea (Figure 2). The magnitude of this
export is mainly driven by the inlet morphology and the river
discharge – the more open the system and the larger the river, the
greater the nitrogen exports to the open sea. The total N export
ranged from 13.1 to 316.7 Mt N yr-1 for small rivers and 27.5 to
532.5 Mt N yr-1 for large rivers, while these systems received a
total N river loading of 105.9 Mt N yr-1 and 529.6 Mt N yr-1,
respectively, of which 60% was of inorganic form (DIN) and 40%
of organic form (Detritus) for both river sizes.

There are some obvious associations that can be made
between nutrients and primary biomass/production within
bays (Table 2). High nutrient loading from rivers are
associated with high concentration of all pelagic variables
(Phyto, Zoo and DIN), and also with elevated rates of PP.
With respect to bay morphology, there is a tendency for
TABLE 1 | Conversion coefficients used to express the different model variables
in a common nitrogen currency.

Parameter Value Units Reference

Phytoplankton
(Carbon to Nitrogen)

0.176 mg N mg C-1 Redfield, 1934

Zooplankton
(Carbon to Nitrogen)

0.194 mg N mg C-1 Omori, 1969; Tang and
Dam, 1999; Walve and
Larsson, 1999

Detritus
(Carbon to Nitrogen)

0.176 mg N mg C-1 Redfield, 1934

Bivalve
(Energy to Carbon)

0.182 mg C J-1 van der Veer et al., 2006

Bivalve
(Carbon to Nitrogen)

0.185 mg N mg C-1 Smaal and Vonck, 1997;
Higgins et al., 2011
June 2022 | Volume 9 | Article 909926
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curtailed dissolved nutrient concentrations (but high PP) in open
systems. This pattern is more obvious in systems with large rivers
as Phyto and DIN remain at the same level independently of the
morphology of the bay when a small river is present.

Embayments With Aquaculture
For all scenarios, the addition of bivalve farms consistently led to
a decrease in total N export to the open sea (Figure 3A),
signaling the presence of aquaculture-related retention
mechanisms at the bay scale. Export reduction was influenced
by a two-way interaction between stocking area and bay
morphology, F(4, 270) = 6.53, p < 0.001, h2

p = 0.09
(Appendix 2; the three way interaction including the species
factor is non-significant). Stocking area has a highly significant
effect on export reduction (p < 0.001) across all bay
morphologies, with a strikingly large effect in choked systems
(h2p= 0.54 for mussels, 0.53 for oysters). Bay morphology also
has a highly significant (p < 0.001) and large (h2

p = 0.13 to 0.17)
effect on export reduction, although only at high and medium
stocking area levels; at low stocking area levels, the effects of bay
morphology on export reduction are either non-significant
(mussels, p = 0.09) or significant but small in magnitude
(oysters, p < 0.01, h2p = 0.04).

The addition of bivalve farms increases grazing pressure (top-
down control), which leads to a decrease in primary production
in most scenarios (Figure 3B). The low stocking area results
show however that there is potential for a positive feedback from
Frontiers in Marine Science | www.frontiersin.org 5
bivalves on primary production through the excretion of DIN
(bottom-up control). As with total N export, PP is influenced by
a two-way interaction between stocking area and bay
morphology, F(4, 270) = 4.45, p < 0.01, h2

p = 0.06; however,
PP is also regulated by a two-way interaction between stocking
area and species, F(4, 270) = 4.29, p < 0.05, h2p = 0.03. In more
detail, the effects of stocking area on PP are significant (p < 0.05)
for all bay morphologies, with the exception of mussels in leaky
systems (p = 0.16). Where significant the magnitude of the
stocking area effect ranged from a low effect size (h2

p = 0.03
for oysters in leaky bays) to a large effect size (h2p = 0.17 for
oysters in choked bays). Overall, these factorial ANOVAs
revealed that both mussels and oysters can decrease PP and
reduce total N exports to the open sea, particularly when
cultivation activities are carried out at high intensity in
choked systems.

The alteration of material exchange induced by bivalve
farming is not uniform among pelagic components (Figure 4).
Despite being the preferred bivalve food source, Phyto export
was among the least affected, while Zoo showed the highest
relative change. ANOVAs corroborated the data’s inference that
stocking area coverage increased retention across all pelagic
components (Appendix 3). However, the nature of the
stocking area effect varied across components. A two-way
interaction between stocking area and bay morphology
regulated Phyto [F(4, 270) = 2.65, p < 0.05, h2p = 0.04] and
DIN [F(4, 270) = 26.42, p < 0.001, h2

p = 0.28]. By contrast there
FIGURE 2 | Mean ( ± SD) net total nitrogen (N) export to the coastal ocean as a function of river discharge and bay morphology under the “no aquaculture”
scenarios. Error bars represent variability introduced by other factors (i.e. climate).
TABLE 2 | Main pelagic model variables and rates (annual mean ± SD) in scenarios without aquaculture.

Large River (high loading) Small River (moderate loading)

DIN Phyto Zoo PP DIN Phyto Zoo PP

Choked 126.3 ± 9.1 4.3 ± 0.3 49.4 ± 3.4 72.3 ± 4.1 92.4 ± 10.0 2.9 ± 0.2 37.7 ± 2.8 41.1 ± 4.8
Restricted 117.7 ± 7.4 4.1 ± 0.3 42.4 ± 3.8 76.3 ± 4.4 92.5 ± 6.6 3.0 ± 0.2 36.5 ± 4.7 49.4 ± 6.4
Leaky 109.4 ± 3.8 3.9 ± 0.3 36.2 ± 6.3 87.8 ± 8.8 94.4 ± 3.0 3.0 ± 0.2 32.2 ± 5.9 58.7 ± 8.2
June 202
2 | Volume 9 | Arti
DIN, dissolved inorganic nitrogen (µg N L-1); Phyto, phytoplankton (µg Chl a L-1); Zoo: zooplankton (µg C L-1) and PP, net phytoplankton primary production (mg C m-2 d-1).
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are no interactions between predictors for all other pelagic
components. Rather, the main effect of stocking area is
remarkably large for Detritus [F(4, 270) = 666.87, p < 0.001,
h2p = 0.83] and Zoo [F(4, 270) = 1152.55, p < 0.001, h2

p = 0.90].
The main effect of bay morphology is similarly notable for
detritus [F(4, 270) = 55.00, p <0.001, h2

p = 0.29] and Zoo [F(4,
270) = 52.76, p < 0.001, h2

p = 0.29]. Zooplankton was the only
component regulated by the three main effects (stocking area,
bay morphology, and species). Lastly, with respect to the
direction of effects, there was a clear tendency related to export
changes in DIN and Zoo, with leaky systems being more resilient
(i.e. less impacted by presence of aquaculture) compared to
restricted or choked systems.

While bivalve aquaculture reduced exports to the open sea, it
may also provide an extraction service due to harvests. It was found
that the magnitude of these contrasting effects differs between
cultured species (Figure 5). Export reduction mechanisms were
stronger for oysters than for mussels (Appendix 4; p < 0.05, paired-
samples sign test), with the exception of leaky systems at low
stocking density where there was no species effect (p = 0.077). By
contrast, mussel production provides a much higher extractive
potential than oyster production (p < 0.001, paired-samples sign
Frontiers in Marine Science | www.frontiersin.org 6
test). Consequently, the mitigation potential was stronger for mussel
farms (43.8 ± 5.6 – 148.0 ± 35.1 Mt N yr-1) compared to oyster
farms (1.1 ± 7.6 – 29.4 ± 2.2 Mt N yr-1). The mitigation potential
was highly significant across all culture scenarios (p < 0.001, paired-
samples sign test), with the exception of oysters cultured under high
densities in leaky systems, for which there was no significant
(positive or negative) mitigation effect. Net retention (negative
mitigation) only occurred in a small subset of scenarios (15 out of
288), corresponding to oyster culture in leaky systems at medium or
high stocking area coverage under future temperature conditions.

Water temperature interacted with other factors such as
bivalve species, stocking surface area and system morphology
(Figure 6). The mitigation potential of mussels increased with
temperature for the majority of scenarios (54/72 points above the
1:1 line). In contrast, the mitigation by oysters tended to decrease
at higher temperature and all cases of negative mitigation
potential (i.e. net N retention) occurred in leaky systems and
future temperature conditions. This result, although counter-
intuitive and also contradicting the faster growth of oysters at
higher temperature (not shown, but see companion paper
Filgueira et al., 2016), is caused by the strong influence of
temperature on the reproductive cycle of oysters, which leads
B

A

FIGURE 3 | Mean ( ± SD) relative changes in (A) total nitrogen export to the coastal ocean and (B) primary production, following the introduction of various cultured
bivalve species at various stocking surface areas in the three bay types. Error bars represent variability introduced by other factors (i.e. nutrient loading and climate).
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to an increased reproductive output (larger spawning), which in
turn may decrease the oyster final biomass and production
estimate. The positive relationship between mitigation potential
and stocking area for a given morphology is preserved in future
temperature scenarios except for oyster farms in leaky systems.
The general rule stating that the stronger the flushing the more
resilient the system is to changes (points closer to the 1:1 line) is
verified for the temperature effect on mitigation potential of
mussel farms, leading more enclosed systems to benefit more
from mitigation in future climate scenarios. However, mitigation
by oyster farms departs from this rule due to the influence of
temperature on their reproductive cycle mentioned above.
Finally, the clearer temperature response pattern provided by
the mussel farm scenarios allows the viewing of a different
behaviour between the small and large river systems (only
visible for medium and high stocking areas). In systems with
large rivers, higher flushing from wider openings tends to lead to
a lower mitigation potential, consistent with the higher resilience
hypothesis, while the reverse occurs in small river systems,
especially at current temperature forcing. Moreover, while
increased temperature tends to exacerbate the flushing effect in
large river systems (stretch along the y-axis), the range of
Frontiers in Marine Science | www.frontiersin.org 7
mitigation potential in small river systems becomes much
narrower among flushing scenarios in future conditions
(compressed y-axis range).
DISCUSSION

The use of idealized systems prevents the direct extrapolation of
our results to existing estuaries, however the general conclusions
drawn from these results and discussed in the following sections
can be transposed to real systems with similar dimensions,
loading, and exchange with the open ocean. The model
outputs obtained in this study indicate that for all stocking
area scenarios bivalve culture was associated with further
retention of material within bays. This alteration of the bay
exchange was not uniform across pelagic variables as it depended
on the nature of their interaction with bivalves as well as their
own dynamics. When the material extraction from harvest was
factored in, however, bivalve culture was shown to provide a net
nitrogen removal in the majority of scenarios tested. In addition,
for the husbandry conditions simulated, mussel rather than
B

A

FIGURE 4 | Mean (±SD) relative change in the net export of the different pelagic variables (PHYTO: phytoplankton, DETRITUS: detritus, DIN: dissolved inorganic
nitrogen, ZOO: zooplankton and TOTAL: total nitrogen, i.e. all variables combined) to the coastal ocean following the introduction of (A) mussel or (B) oyster farms
and as a function of stocking surface area and bay morphology. Error bars represent variability introduced by other factors (i.e. nutrient loading and climate).
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oyster farming provided the strongest potential for nutrient
loading mitigation. Our results also support the idea that more
open systems are more resilient to change. The corollary stating
that more enclosed systems should benefit more from bivalve
culture for nutrient mitigation, only holds for oyster farming
scenarios. Moreover, the mitigation potential was shown to
generally increase with bivalve stocking area. In future
temperature conditions, the mitigation from mussel farms was
predicted to increase, while interactions with the oyster
reproductive cycle led to reduced harvested biomass and
nutrient mitigation potential.

Simulated Embayments
The idealized embayments tested are representative of shallow
estuarine systems in temperate regions with a potential for
moderately to highly eutrophic conditions, with nutrient
loading ranging from 21 to 106 kgN estuary ha-1 yr-1,
depending on the river size (Coffin et al., 2018). As can be
expected for such river-driven systems, as opposed to those
driven by coastal upwelling, the balance of material exchange at
the ocean boundary results in a net export. The more open the
Frontiers in Marine Science | www.frontiersin.org 8
system is to the ocean, the higher its export capacity becomes.
In the moderate loading (small river) scenarios choked systems
could only export 1/10 of the river input, leaky systems being
able to export an amount equivalent to three times that same
river loading. The apparent imbalance between inputs and
export of these leaky scenarios is explained by the ability of
the more open systems to also export part of the nitrogen
provided by benthic loading. However, the exporting capacity
seems limited as shown by the higher river loading scenarios
where choked systems could only export 1/20 of the nitrogen
received and leaky systems exported the equivalent of only one
time what they received from river input. Hence, material
retention within the estuary increases in more enclosed
systems and for larger river loading. This material retention
has been referred to as the filtering capacity of an estuary and
for nitrogen has been reported to range from 0 to over 50% of
the river loading on an annual basis (Arndt et al., 2009 and
references therein). Benthic processes such as burial and
denitrification may contribute to the net removal of this
retained material (Seitzinger et al., 2006), however, they were
not explicitly detailed in the model structure so their
B

A

FIGURE 5 | Mean (±SD) nitrogen export reduction (i.e. retention within the bay) and bivalve production (potential nitrogen removal) for (A) mussel and (B) oyster
farming the different shellfish species, and for the different stocking surface areas and bay morphologies tested. Error bars represent variability introduced by other
factors (i.e. nutrient loading and climate).
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contribution and change among model scenarios was
not evaluated.

In real ecosystems, the retained inorganic/organic material
can fuel the internal productivity of higher trophic levels, both
pelagic and benthic, as exemplified by the higher Zoo predicted
Frontiers in Marine Science | www.frontiersin.org 9
in this study for enclosed embayments. Counter-intuitively, these
systems show a smaller PP rate than more open ones (Table 2).
This result must be regarded from an efficiency perspective as it
relates to the importance of the balance between the biological
and hydrodynamic time-scales of a coastal system (Officer, 1980;
B

A

FIGURE 6 | Comparison of current and future nutrient loading mitigation potential provided by (A) mussel and (B) oyster aquaculture in the various scenarios of
stocking area, nutrient loading (river size) and bay morphology.
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Kimmerer et al., 1993) that dictates how much of the nutrient
loading can be used by local biological processes (Filgueira et al.,
2016). In more open bays, the faster exchange dynamics are more
favorable to the fast processes of phytoplankton production
(Eyre and Twigg, 1997), while in enclosed or restricted-
opening bays, slower exchange leads to a more efficient
transfer of energy towards secondary producers (i.e.
zooplankton). Part of the reduced pelagic PP in the latter can
also be explained by the overall higher concentration of
suspended particles, which can increase light attenuation and
potentially decrease PP rates, even in bays with ample nutrient
supply (Meeuwig et al., 1998). Moreover, in shallow estuaries,
high nutrient loading leading to eutrophic conditions often
manifests itself through the proliferation of opportunistic
macroalgae, e.g. Ulva spp. (Valiela et al., 1997). Accounting for
this other type of primary producer would provide a more
realistic representation of these system dynamics (Lavaud
et al., 2020) as they may affect the filtering capacity of the bay
by being likely less easily exported than phytoplankton and by
storing large nitrogen pools that would not be directly amenable
to mitigation through bivalve farming.

Climate change, leading to warmer future temperatures,
could possibly increase metabolism in coastal systems
(Angilletta et al., 2002; Brown et al., 2004), resulting in faster
biological dynamics, without directly affecting the hydrodynamic
time-scale. Consequently, these future conditions could favour
an increase in the filtering capacity or material retention of these
nearshore regions. However, warming could also alter coastal
ecosystems more profoundly as it might not affect all
communities and trophic levels in the same way or intensity
(Carr and Bruno, 2013; Mertens et al., 2015; Alexander et al.,
2016; Ullah, 2018). Hence, future changes in the filtering capacity
of estuaries and coastal systems remain highly uncertain and
warrant further research at the ecosystem scale.

Bivalve Influences
Cultured bivalves feed preferentially on phytoplankton and
consequently build their tightest link with this component of
the ecosystem (Filgueira et al., 2011; Saraiva et al., 2012). The net
balance of this interaction results, however, from the competition
between the top-down feeding pressure and the bottom-up
control exerted by the ammonia excretion of these mollusks
(Prins et al., 1995; Smaal et al., 2013). The positive response of PP
in some of the low stocking area scenarios is a direct
manifestation of this bottom-up feedback. Nutrient loading
also contributes to the bottom-up side of this balance, with
higher loading generally counter-acting more of the feeding
pressure from cultured bivalves. Finally, this balance is
modulated by the system’s morphology and temperature as can
be partially seen in Figure 3B (see Filgueira et al. (2016) for a
detailed analysis).

When considering the impact of bivalve aquaculture on the
exchange of material with the open sea, phytoplankton appears
as the most resilient variable. The low impact on it likely results
from its fast turn-over rates and the feedback mechanism
mentioned above. Conversely, zooplankton exchange is the
most affected due to its slower dynamics, the competition for
Frontiers in Marine Science | www.frontiersin.org 10
food with the bivalves (Gianasi et al in review; Granados et al.,
2017a; Granados et al., 2017b) and, although marginal, the direct
bivalve predation on zooplankton (Pace et al., 1998; Davenport
et al., 2000; Trottet et al., 2008; Peharda et al., 2012). Despite the
overall low contribution of zooplankton, representing only 1.8 to
3.9% of total N exported in all scenarios tested, this last result
indicates that the bivalve aquaculture signal can be amplified
through the trophic levels both in and out of these nearshore
systems. Similarly, the retention efficiency of bivalves as a
function of food particle size (Riisgard, 1988; Strohmeier et al.,
2012; Sonier et al., 2016), coupled with the strong feeding
pressure exerted in aquaculture settings, could affect the
pelagic community size distribution at a system scale.
According to size-spectrum theory (Sheldon et al., 1972;
Andersen et al., 2016), bivalve culture could then affect the
way energy propagates through trophic levels. Further work is
required to better understand how and how much these
cascading effects might change coastal ecosystem functioning
and the services they provide, and to examine the balance
between these negative effects and the positive effects that
accrue from added food production and nutrient loading
mitigation from bivalve aquaculture.

All tested scenarios showed an increase in estuarine filtering
capacity (i.e. material retention) in the presence of bivalve
culture farms. This increment in retention ranged from 0.3 to
4.3% and from 1.5 to 18.5% of river N loading for large and small
rivers, respectively. Despite the lower stocking density typically
used in oyster versus mussel farming (30 vs 94 ind. m-2 of farm in
the present model applications) and the slightly lower individual
feeding rate resulting from the mean size and environmental
conditions over the simulated period, oyster culture provided a
slightly higher increase in retention compared to mussel culture
for the same farm coverage. This species difference rests mostly
on a feeding efficiency variance at the individual level and in
particular a higher feedback by mussels through excretion, which
gets amplified by the difference in stocking density. Finally, in
absolute value, material retention from bivalve farms is larger in
systems with stronger flushing intensity, which can be explained
by the retention/export being already high/low in more enclosed
systems, thus limiting the potential for further retention from
bivalve farms. This result is also in accordance with the negative
relation between the fraction of loading exported and freshwater
residence time reported by Dettmann (2001).

Mitigation Potential
When the material retention effect is examined in the context of
the net material removal provided by the harvest of bivalve
production, a positive nutrient loading mitigation potential is
predicted for all mussel and most oyster culture scenarios tested
in this study. Moreover, such mitigation potential can reach
important fractions of the river loading, with values ranging in
high loading conditions (large river) from 8.86 to 36.54% and
from 0.21 to 6.31% for mussels and oysters, respectively, and in
moderate loading conditions (small river) from 35.14 to 132.69%
and from 1.57 to 27.80%, respectively. The stronger mitigation
potential provided by mussel farming can be attributed, at the
individual level, to the faster growth of this species (12 – 18
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months and four years to reach harvest size for mussels and
oysters, respectively) and, at bay-scale, to the higher densities
they are typically reared in (94 mussels vs 30 oysters per square
meter of farm in the present study). The higher mitigation
efficiency predicted in lower loading conditions reflects the
limits to the assimilative capacity that bivalve farms can provide.

The tested mussel culture scenarios show an interesting
interaction between loading and flushing intensities. The
reversal of the relationship between mitigation potential and
flushing, depending on loading intensity, highlights the
importance of the absolute loading level for the vulnerability of
coastal ecosystems to eutrophication and for the mitigation
benefit cultured bivalves can provide, as well as the tight link
between hydro- and biological dynamics in these regions (Officer,
1980; Kimmerer et al., 1993; Dame et al., 2000). From this result,
it appears that a loading inflection point exists beyond which
more flushing becomes detrimental to the mitigation potential of
bivalve farms. Further testing with incremental loading levels
would be required to refine this relationship. In addition, spatial
heterogeneity was not assessed in this study, given the idealized
morphology of the test bays used. In natural systems, however,
the realized mitigation could depend on the distribution of wild
and cultured bivalves in relation to the nutrient loading outfall
location and the distribution of water residence time (Gray et al.,
2021). A spatially-explicit approach would then be critical in any
real-life mitigation potential assessment.

Future warmer temperatures could have competing
influences on mitigation potential. As stated earlier, a general
increase in biological activity is expected that could lead to
increased material retention. At the same time, cultured
bivalves could also benefit from increased metabolism to reach
higher production rates, which would favour nutrient removal.
However, the actual future response of bivalve production in a
given region will depend on how future temperatures relate to
each species’ tolerance range (Steeves et al., 2018), how tightly
adapted they are to current conditions and how quickly they can
evolve in response to these changes (Pernet et al., 2007; Thomas
and Bacher, 2018; Thyrring et al., 2019). According to the
scenarios tested, not accounting for potential adaptation effects,
mussel culture could provide increased mitigation at these future
temperatures. The picture provided by the oyster culture
scenarios is much less clear and even tends to indicate
movement in the opposite direction despite the tolerance for
higher temperatures of that species. Part of this somewhat
surprising result can be explained by a method artefact, which
comes from the necessity in our modelling framework to
evaluate bivalve production at a fixed date at the end of the
simulation period and how this can interact with the changes in
the phenology of the reproductive cycle of the species considered.
The potential for oyster production is actually higher at higher
temperature, but the realized production is sometimes lower
because of the evaluation at a fixed date. However, this result
highlights the importance of the reproductive cycle in optimizing
bivalve culture for nutrient loading mitigation as these species
can invest large fractions of their total tissue weight in gametes
[over 40% for American oysters (Choi et al., 1993) and similar
Frontiers in Marine Science | www.frontiersin.org 11
values (35 – 38%) for blue mussels (Sukhotin and Flyachinskaya,
2009; Hennebicq et al., 2013). Such phenological change
considerations tie to the broader seasonality of the various
processes involved in the filtering capacity of nearshore
systems (Brion et al., 2008) and ultimately in the nutrient
loading mitigation potential from bivalve culture, especially in
temperate regions.

Bivalve culture has been proposed as a mitigation tool in
nutrient trading schemes in Europe and the United States with
studies evaluating its costs/benefits against more traditional
methods (Lindahl et al., 2005; Lindahl, 2011), assessing the
removal potential at farm-scale (Clements and Comeau, 2019;
Bricker et al., 2020) and operationalizing and optimizing the
production for this specific mitigation service (Petersen et al.,
2014; Taylor et al., 2019). The results of the present study concur
on the ability of bivalve farming to provide such a nitrogen
extraction service and detail the influence of various drivers on
the realization of this mitigation. In a management context, the
seasonal considerations mentioned earlier and the tight and
complex links between bivalves and their environment
advocate for the use of a dynamic and spatially-explicit
approach, such as the modelling tool used in this study, to
provide an integrated assessment of the mitigation potential of
bivalve culture within the broader coastal ecosystem functioning.
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