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Diarrhetic shellfish poisoning (DSP) toxins are potent marine biotoxins. It can cause a
severe gastrointestinal illness by the consumption of mussels contaminated by DSP
toxins. New methods for effectively and rapidly detecting DSP toxins-contaminated
mussels are required. In this study, we used near-infrared (NIR) reflection spectroscopy
combined with pattern recognition methods to detect DSP toxins. In the range of 950-
1700 nm, the spectral data of healthy mussels and DSP toxins-contaminated mussels
were acquired. To select optimal waveband subsets, a waveband selection algorithm with
a Gaussian membership function based on fuzzy rough set theory was applied.
Considering that detecting DSP toxins-contaminated mussels from healthy mussels
was an imbalanced classification problem, an improved approach of twin support
vector machines (TWSVM) was explored, which is based on a centered kernel
alignment. The influences of parameters of the waveband selection algorithm and
regularization hyperparameters of the improved TWSVM (ITWSVM) on the performance
of models were analyzed. Compared to conventional SVM, TWSVM, and other state-of-
the-art algorithms (such as multi-layer perceptron, extreme gradient boosting and
adaptive boosting), our proposed model exhibited better performance in detecting DSP
toxins and was little affected by the imbalance ratio. For the proposed model, the F-
measure reached 0.9886, and detection accuracy reached 98.83%. We explored the
physical basis for the detection model by analyzing the relationship between the
occurrence of overtone and combination bands and selected wavebands. This study
supports NIR spectroscopy as an innovative, rapid, and convenient analytical method to
detect DSP toxins in mussels.

Keywords: near-infrared spectroscopy, diarrhetic shellfish poisoning toxins, mussels (Mytilidae), waveband
selection, twin support vector machines (TWSVM)
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INTRODUCTION

Mussels (Perna Viridis) are economically important coastal
bivalve mollusks belonging to the family Mytilidae. The mussels
can supply certain vitamins such as niacin, thiamine, riboflavin,
and essential trace metals (e.g. Ca, Fe) (Aktar, 2014). They have
become important sources of nutrients for human consumption
around the world. Whether from wild fisheries or aquaculture,
mussels are grown and harvested under natural conditions. They
have the capacity of accumulating contaminants from food and
sediment, in concentrations that significantly exceed those found
in the environment (Pinto et al., 2015). Therefore, the chemical
and biological quality of the growing environment is very
important for the survival and growth of mussels hence affecting
the quantity and quality of the yield.

In the last several decades, the occurrence of harmful algal
blooms has increased due to changes in climate conditions,
anthropogenic activities, and technological advances. Mussels
are filter-feeding organisms. They can accumulate large amounts
of toxins produced by harmful algal blooms (Costa, 2019).
Toxins mainly accumulate in the mussel’s digestive glands and
do not adversely affect the mussel itself. Severe intoxication may
occur if humans consume substantial amounts of contaminated
mussels (Gerssen et al., 2010).

DSP toxins are among the most frequent occurrence and the
widest distributed marine biotoxins (Zou et al., 2016). They
include okadaic acid and diaphysis toxins. Human consumption
of mussels contaminated with DSP toxins can cause poisoning
(Yuan et al., 2021). DSP symptoms include diarrhea, abdominal
cramps, vomiting, and nausea after ingestion (Eberhart et al.,
2013). Several studies suggest that the consumption of DSP toxins-
contaminated mussels may increase the risk of cancers in the
digestive system (Li et al., 2014). More importantly, after cooking
or freezing, the properties of the DSP toxins do not change, nor do
they affect the taste of the contaminated mussels. Thus, they are
often difficult to detect without rigorous testing (McCarron et al.,
2008). How to effectively and rapidly detect the mussels
contaminated by DSP toxins has attracted widespread attention.

So far, many methods have been developed for DSP toxins
detection, including the mouse bioassay, cell toxicity assay,
enzyme-linked immunosorbent assay, high-performance liquid
chromatography fluorescence detection (HPLC-FLD), liquid
chromatography coupled to tandem mass spectrometry (LC-
MS/MS), and surface-enhanced Raman spectroscopy (SERS)
(Prassopoulou et al., 2009). The mouse bioassay method is easy
to operate, nevertheless, it needs a complex process in toxin
extraction and a long time to get the result, and the false-positive
results often occur caused by many different reasons (Li et al.,
2006). The cell toxicity test is tedious and requires large numbers
of cells and a long test time. The immune analysis technology is
not easy to obtain pure antibodies, and cross-reaction of the
toxin is low (Huai et al., 2013). The applications of LC-MS/MS
and HPLC-FLD are often hampered by expensive reference
substances and instruments, and the lack of well-trained
professionals (Zou et al., 2016). For the SERS method, it is
difficult to record a reference Raman spectrum of DSP toxins
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because of the low concentrations of the commercially available
standard solutions (Cintă Pinzaru et al., 2016). These methods
do not have the capability of rapid detection and are not suitable
for routine monitoring. Therefore, cost-effective, real-time, and
technically less complex techniques are highly needed for
detecting DSP toxins.

To overcome the disadvantages and limitations of the previous
methods, spectroscopy coupled with chemometrics and machine
learning techniques has been explored as alternative tools for DSP
toxins detection. Spectroscopy is the study of the interaction of
electromagnetic radiation with substance (Ghidini et al., 2019).
The result of these interactions is a spectrum that contains many
characteristics of the substance being analyzed. In the NIR region,
the fundamental molecular vibrations of chemical bonds C-H, O-
H, N-H, C=O, and other functional groups are detected.
Substances containing components like protein, fat, water, and
carbohydrate have these bonds. They absorb the light with
wavelengths that match the vibrations of a particular functional
group when irradiated with NIR light. The rest of the wavelengths
is either transmitted or reflected. The light undergoing reflection,
transmission, or absorption is detected (Chakrabarti et al., 2020).
These specific patterns exhibited by the substances in the NIR
region can reveal the physical and chemical composition of the
substances being studied. Therefore, NIR spectroscopy coupled
with chemometrics is a good tool for detection that provides a
rapid, simple, accurate, and reliable measurement of food quality
and safety. It has been used to detect meat, fruit, seafood, grains,
and others (Tao et al., 2019; Caramês ET dos et al., 2020; Mishra
and Passos, 2021).

As for specific applications to shellfish, NIR spectroscopy has
been successfully applied to qualitatively discriminate and
quantitatively analyze. It was applied to analyze moisture, fat,
protein, and glycogen of oyster samples (Brown, 2011), to classify
healthy Tegillarca granosa and Tegillarca granosa that were
contaminated by heavy metals (Chen et al., 2015), to characterize
objectively changes in the freshness of Pacific oysters (Madigan
et al., 2013), to detect of Perkinsus Marinus in the eastern oyster,
which was a disease caused by the protozoan parasite (Guévélou
et al., 2021), and to rapidly detect mussels contaminated with Cd,
Zn, Pb, and Cu (Liu et al., 2022). However, there is little
documented information on the use of NIR spectroscopy to
detect mussels contaminated with DSP toxins. Hence, the aim of
our research is to evaluate the feasibility of NIR spectroscopy for
rapidly detecting DSP toxins, with minimal processing of
mussel samples.

The NIR spectra data contains a lot of information, but part of
which is in some cases irrelevant or redundant. When learning
models face numerous input features which are not necessary for
predicting output, the predictive performance degrades. Therefore,
the selection of optimal wavelengths that correlate best with the
object of interest is necessary. To obtain the best prediction
accuracy, wavelength selection algorithms select as few
wavelengths as possible, since the less the data needs to be
analyzed the faster the learning model is. Many wavelength
selection algorithms have been explored and proven that
models’ performance is improved and learning time is decreased
June 2022 | Volume 9 | Article 907378
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in many application domains. In this study, for maximally
preserving the useful information in the original data, fuzzy
rough sets (FRS) theory (Liu et al., 2019) has been used.

A phenomenon is encountered in the real-world application of
DSP toxins detection, that is, samples contaminated by DSP toxins
are unlikely to occur as frequently as healthy samples. In machine
learning applications, datasets, where one class has more samples
than the other, are known as the class imbalanced problem. The
class with the fewer number of samples is called the minority class,
while the class with the larger number is called the majority class
(Hoyos-Osorio et al., 2021). Traditional classification models
usually assume that training samples are evenly distributed
between classes, therefore, training of models needs a sufficient
amount of healthy mussel samples as well as corresponding
contaminated ones by DSP toxins. However, it is difficult to
acquire sufficient contaminated samples for calibrating detection
models in practical applications. In general, imbalanced numbers
of healthy mussels and contaminated mussels always present in a
real environment. Without consideration of the imbalanced
problem, the classification algorithms tend to favor the majority
class, that is, the classifiers might classify most of the samples as
healthy samples. Thus, it is important to find solutions for
imbalanced datasets. In this work, a novel approach based on
twin support vector machines (TWSVM) (Huang et al., 2018),
called improved TWSVM (ITWSVM), is attempted to solve the
imbalanced classification problem.

The main contributions of this paper are as follows.

• We propose a NIR spectroscopy method to detect DSP
toxins-contaminated mussels non-destructively and rapidly.

• We select characteristic wavelengths that distinguish healthy
mussels and contaminated mussels by a waveband selection
algorithm based on the FRS theory.

• Considering that detecting DSP toxins-contaminated mussels
was an imbalanced classification problem, we construct the
ITWSVM model.

• We explore the physical basis for the detection model by
analyzing the relationship between the occurrence of overtone
and combination bands and selected wavebands.

This work provides new insights into approaches for efficient
and rapid detection of DSP toxins-contaminated mussels using
the NIR spectroscopy technology.
MATERIALS AND METHODS

Preparation of Mussel Samples
Mussels were purchased from the Dongfeng seafood market in
Zhanjiang, Guangdong Province, China. Mussels of similar size
were selected and placed in a plastic container for acclimatization
to adapt to the experimental environment. After 3 days of
acclimatization, the mussels with high vitality were selected for
follow-up experiments. The selected mussels were transferred to
two plastic tanks of 119 × 108 × 32 cm. Each tank was filled with
80 L seawater, whose salinity level was 30‰ and temperature was
26°C. The mussels of the experimental group were fed with 1 L
Frontiers in Marine Science | www.frontiersin.org 3
Prorocentrum Lima with a concentration of 7.3×109 cell L-1 and
those of the control group were fed with 0.5 L of photosynthetic
bacteria with a concentration of 109 cell L-1 every day. The feeding
amount of Prorocentrum Lima and photosynthetic bacteria was
determined by previous experiments to maintain the healthy state
of mussels.

The seawater in the feeding tank was aerated continuously
during the experiment to maintain the good physiological state
of the mussels. The seawater was changed every 24 hours to keep
the mussels’ living environment clean. The experiment lasted for
6 days to allow DSP toxins to accumulate in the mussel samples.
During this period, several mussels died from DSP toxins-
contamination. The dead mussels were picked out. A total of
240 samples (120 samples for each group) were collected for
spectral acquisition.

Acquisition of Spectra From
Mussel Samples
NIR spectra for each mussel sample were obtained using a NIR
spectroscopy measurement system (Figure 1), which consists of
a NIR spectrometer (SW2520-050-NIRA, OtO Photonics Inc.,
Taiwan, China), a halogen light source, an optical fiber, a USB
data line, an adjustable displacement platform, and a computer.
NIR spectra included 114 variables ranging from 950 nm to 1700
nm with 6.5 nm intervals. Before collecting NIR spectra of
mussels, the black and white correction (Xiao et al., 2019) was
carried out to reduce noise. The white reference data were taken
from a standard reflectance board with a reflectivity of
approximately 100%, while the source light was on. The dark
reference data were obtained by turning off all the lights. The raw
spectrum was calibrated as R = (raw-dark)/(white-dark).

Mussels were removed from the seawater tanks. We opened
the shell of mussel and put the tissue of mussels on half of its
shell. After positioning the fiber probe directly on the central
surface of the mussel, spectral measurements were carried out.
The spectrum for each sample was the average of three scans in
the reflectance mode. Spectral data of samples were obtained
through SpectraSmart software.

The Waveband Selection Algorithm Based
on the FRS Theory
NIR spectral data contains some highly correlated variables and
noise. It is required for waveband selection, which can extract
FIGURE 1 | A NIR spectroscopy measurement system.
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relevant information that correlates best with the detection of
DSP toxins. It can decrease learning time, measurement efforts,
and storage space, and improve the performance of the
classification model by taking optimum subsets of wavebands
as inputs. Here, the waveband selection algorithm based on FRS
theory (Qian et al., 2015) was used for seeking optimum subsets.
A forward greedy algorithm was employed to search for a subset
of wavebands for preserving the same information as provided
by all the wavebands.

The flow chart of the waveband selection algorithm based on
the FRS theory (Liu et al., 2019) is shown in Figure 2.

In the decision tableDT=<U,C,D>, C andD are condition and
decision feature sets, respectively. For NIR spectral datasets, the
category labels are denoted by D, and the spectral-waveband
matrices are denoted by C. U={x1 , x2 , .... , xn} is a finite set of
samples. The associated indistinguishable relation is defined as
IND(B)={ (xi,xj)∈U×U|∀a∈B,f(xi,a)=f(xj,a) }

Fuzzy cardinality is computed by j½xi�Rj =o
n

j=1
rij, where [ xi ]R

is fuzzy equivalence class, and rij =(xi,xj,) represents the grade in
which the two elements are equivalent or indiscernible. The
samples in the boundary region are taken values by Gaussian

membership function, which is defined as R(xi, xj) = exp( −
∥ xi−xj ∥2

2l2 ).
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Information quantity of fuzzy equivalence relation is defined

by H(B) = − 1
jU jo

jUj

i=1
log

j½xi�Rj
jU j and conditional entropy of D

cond i t i oned to B i s defined by H(DjB) = − 1
jU jo

jUj

i=1
log

j½xi�D ∩ ½xi�Bj
j½xi�Bj

,where [xi]B and [xi]D are fuzzy equivalence

classes produced by B and D, respectively.
SIG(ai,red,D)=H(D|red)−H(D|red∪{ ai }) is used to compute

the significance of ai. If SIG(ai ,red,D)>0.01, the waveband which
brings the maximum of SIG(ai ,red,D) is selected and added to
the subset red. The waveband subset red is an optimum subset
we need.

For the FRS algorithm, the parameter l controls the
granularity of approximation and tunes the width of the
membership functions. Different optimal waveband subsets are
generated according to different l. To study the impact of
parameter l on the result of waveband selection and
classification, various values of l in the range of 0 - 1 are tested.

The ITWSVM Classification Model
Among supervised machine learning approaches, SVM has
obvious advantages in complex nonlinear and high
dimensional space classification. The core of SVM is about
attempting to reduce generalization error by maximizing the
margin between two disjoint half planes (Jayadeva et al., 2007).
Optimization tasks are resolved by minimizing the convex
quadratic function under linear inequality constraints.
However, classical SVM can’t handle imbalanced data well. A
TWSVM method has emerged in recent years, which finds two
hyperplanes, one for each class. It classifies a point according to
the hyperplane closest to a given point (Ding et al., 2019). The
TWSVM method does not include a proper mapping based on
reproducing kernel Hilbert space (RKHS) within their
optimization. Thus, the virtues of dual problems and intrinsic
formulation concerning the kernel method are neglected
(Jimenez-Castaño et al., 2020). Moreover, the performance of
TWSVM also depends on the adjustment of regularization
parameters and kernel parameters.

An ITWSVM method is presented for imbalanced data
classification, which allows coding a decision function in a
possible infinity dimension RKHS. To favor data separability,
an approach based on a centered kernel alignment (CKA) is used
(Alvarez-Meza et al., 2017).

The Gaussian kernel is favored in pattern classification
because of its general approximation ability and mathematical
tractability. In the ITWSVM approach, the kernel function is
Ko(xn, xn ′) = exp( − 1

2 (xn − xn ′)
To−1(xn − xn ′)).

In this study, to reveal discriminative data structures and
avoid instability issues, a strategy based on CKA has been used to
learn the covariance matrix of the Gaussian kernel S, where S ∈
RP × P. It leverages a data-driven to tune covariance matrix by
quantifying the similarity between input kernel matrix K and a
kernel computed over output labels Z. The inverse covariance
matrix is written as S-1=EET, where E ∈ RP × P′(P′ ≤ P). The
traditional Gaussian kernel function is redefined as Ko(xn, xn ′;
FIGURE 2 | The flow chart of the waveband selection algorithm based on
the FRS theory.
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E) = exp( − 1
2 ∥ xnE − xn ′E ∥22 ) This kernel function encourages

the matching between K and Z based on the CKA-based cost
r(K(E),Z) = 〈 ~K (E) ;  ~Z 〉F

∥ ~K (E) ∥F ∥ ~Z ∥F
where ~K and ∥∥F stands for a centered

kernel matrix and the matrix based Frobenius inner product
and norm. The cost function is applied to learn the inverse
o f c o v a r i a n c e m a t r i x S

- 1 f r o m E a s
follows: E = arg max

E
 log(r(K(E);Z))

The ITWSVM is summarized in Algorithm 1.
A l g o r i t hm 1 . T h e I TWSVM a l g o r i t hm f o r

imbalanced classification.
Step 1: Build the minority class matrix X+ ∈RP×N+ (output

labels tn=+1) and majority class matrix X-∈RP×N- (output labels
tn=-1), where P is the number of features and N=N++N- is the
number of samples.

Step 2: Compute the projection matrix E = argmax
E

 log(r(K(E);Z))
Step 3: Compute the input data similarities based

on Ko(xn, xn ′;E) = exp( − 1
2 ∥ xnE − xn ′E ∥22 )

Step 4: Compute the Lagrangian multipliers al’by solving max
al0

1Tl0 al ′ −
1

2c1,l
aT
l ’; (K̂ l ′,l ′ − K̂ l ′,lA

−1
l K̂ l,l ′)al ′, s : t : 0 ≤ al ′ ≤

c2,l ′1l ′, l ′ = −l,∀ l ∈ f+;  �g, where l and l’ are indexing
variables to distinguish between majority and minority class
parameters, c1,l’ and c2,l’ are regularization parameters, and 1l′ is
an all ones column vector. The kernel matrices can be inferred as
Kl,l0 = FT

l Fl ′ (the imbalanced dataset in the RKHS defined as F)

and K̂ l,l ′ = Kl,l ′ + 1l1
T
l ′ respectively. Al is computed as Al =

K̂ l,l + c1,lI.
Step 5: Compute the score of a new sample as fl(x∗) =z

l
0

c1,l
(k̂ T

∗,l0
− k̂ T

∗,l(K̂ l,l + c1,lI)
−1K̂ l,l 0 )al , w h e r e z l ' = + 1 i f l=+ ,

otherwise, zl′=−1; k∗,l holds elements k∗,l={k(x∗, xn):tn=zl }, and
k̂ ∗,l = k∗,l + 1l .

H

HStep 6: Compute the weighting normal vector ∥wl ∥2
H
=

〈wl ,wl 〉
H
= 1

c21,l
aT
l ′(Kl ′,l ′ − 2Kl ′,lA

−1
l K̂ l,l ′ + K̂ l ′,lA

−1
l Kl,lA

−1
l K̂ l,l ′)

al ′ where H is an RKHS, which is a high dimensional feature
space. The dot product in H is computed through kernel
function KS( , ).

H

Step 7: The distance from a new sample to the hyperplanes is
u s e d t o c l a s s i f y t h e s amp l e , w h i c h i s b a s e d

on t∗ = arg min
l∈f+,−g

jfl(x∗)j
∥wl ∥  H

Evaluation Measures of Detection
Performance of Imbalanced Datasets
For classifiers, accuracy is the most intuitive and simplest
evaluation index, which assesses the probability of the true
value of the class label. It is no longer a proper measure for the
evaluation of imbalanced data since it values the majority class
more than the minority class (Gu et al., 2009). This measurement
is meaningless for learning tasks that focus on the identification
of the minority class. In terms of detecting mussels contaminated
with DSP toxins in our research, a classifier to perform well on
the contaminated samples is of great interest. In this case, we
Frontiers in Marine Science | www.frontiersin.org 5
would like to have a classifier that has high prediction accuracy
for the minority class while maintaining reasonable accuracy
for the majority. Therefore, additional metrics are developed
by combining initially sensitivity, specificity, and precision.
They are computed as Sensitivity = TP

TP+FN , Specificity =
TN

TN+FP,
and Precision = TP

TP+FP where TP, TN, FP, and FN are the
number of true positive, true negative, false positive, and
false negative, respectively (Bekkar et al. , 2013). By
convention, the class labels of the minority class are
positive, and the class labels of the majority class are negative.

F-measure can characterize the trade-off between sensitivity
and specificity, which provides more insight into the
functionality of a classifier than the accuracy metric (Shao
et al., 2014). In our experiments, we use F-measure and
accuracy to test the performance of imbalanced classification.

F-measure is defined as the harmonic mean of sensitivity and
precision (Bekkar et al., 2013) F = 2�Sensitivity�Precision

Sensitivity+Precision The
harmonic mean of two values tends to be closer to the smaller.

Therefore, only when the sensitivity and precision are large,
the F-measure value will be large, and the model will perform
better in the minority class. To evaluate the performance of
ITWSVM for detecting contaminated mussels, we have used F-
measure and accuracy as evaluation measures.
RESULTS AND DISCUSSIONS

Spectral Comparison and Analysis
The spectra of all 240 samples of DSP toxins-contaminated
mussels and healthy mussels at NIR range 950-1700 nm are
displayed in Figure 3(A). Spectral curves of samples have similar
change trends because they belong to the same species. Average
spectral curves of contaminated mussels and healthy mussels are
respectively plotted in Figure 3(B) to show spectral differences of
two the groups of samples. The average spectral curve of DSP
toxins-contaminated mussels is always higher than that of
healthy mussels except in the vicinity of 1500 nm. In these
ranges, two curves overlap slightly. Significant differences in
average spectral curves occur in the 950-1400 nm ranges. This
is because while feeding on toxin-producing algae, mussels can
accumulate DSP toxins in their soft tissues. In mussels, a
complex set of reactions produces, including metabolic and
detoxification processes (Lopes et al., 2018). The DSP toxins
have lipophilic properties and tend to accumulate in the adipose
tissues. As increasing accumulation and esterification of DSP
toxins in tissues, the fatty acid content gradually decreases.
During this process, the lipid enzymes are actively involved in
the metabolism of fatty acids in the digestive gland. Related to
both xenobiotic metabolism and stress response, several
enzymatic activities alter. Moreover, mussels are capable of the
biochemical transformation of DSP toxins, thus generating novel
metabolites. Extremely complex mechanisms of chemical and
enzymatic conversion might be involved after the mussels are
contaminated by DSP toxins. That causes differences in the
components of chemical compositions of contaminated and
healthy mussels.
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In the NIR region, there are spectral features regarding
absorption bands of many chemical compounds (Barbin et al.,
2020). Overtones and combinations of fundamental vibrations of
O-H, N-H, C-H, and S-H functional groups are the most
prominent absorption bands in the NIR region. Thus, spectral
differences exist between DSP toxins-contaminated mussels and
healthy mussels at particular wavebands caused by differences in
compositions. These differences indicate the potential to detect
DSP toxins-contaminated mussels using NIR spectroscopy.

Natural variability in the morphology (shape and size) of
mussels resents a difficulty in the use of NIR spectra for
identifying DSP toxins-contaminated mussels, since the spatial
position in non-flat samples (the morphological effect) may
cause spectral variability and light scattering, and differences in
the effective path length inside solids may cause systematic
variations (Esquerre et al., 2012). Therefore, it is essential to
enhance chemical and physical differences between samples
while attenuating the effect of the morphology of samples.

Prior to the development of classification models, original
spectral data are pre-processed by applying some corrections to
enhance spectral characteristics. Pre-processing algorithms
include differentiation methods, standard normal variate,
multiplicative scatter correction (MSC), filtering-based
methods, and so on (Tuncer et al., 2021). In this study, the
MSC pre-processing technique has been used to improve the
accuracy of classification models.

Determination of Parameters in the
FRS Algorithm
To select the optimum subset of waveband variables, the Gaussian
membership function has been used as a fuzzy similarity relation,
in which parameter l controls the granularity (Liu et al., 2019).
We have performed experiments to explore the impact of l on the
effectiveness of the FRS algorithm by setting l between 0.01 and 1
by adding 0.01 at a time. The test set contains 20 healthy samples
and 20 DSP toxins-contaminated samples.
Frontiers in Marine Science | www.frontiersin.org 6
Figure 4 shows the variation in F-measure and the number of
selected wavebands with l for different imbalance ratios (IR).
The IR is the degree of imbalance between healthy mussels and
DSP toxins-contaminated mussels. For example, the IR of 100:60
means that there are 100 healthy samples and 60 samples
contaminated with DSP toxins in the training dataset. When
parameter l is larger than certain values, no waveband has been
selected in the FRS algorithm. The certain values of l are 0.17 for
IR of 100:100, 100:80 and 100:60, 0.18 for IR of 100:40 and 0.22
for 100:20. The number of selected wavebands shows an increase
with the increase in l first and then small fluctuations. The
selected wavebands are about 10, and fewer than 15. It achieves
the purpose of data reduction. Different waveband subsets have
been obtained with different l. The appropriate value of l cannot
be determined only by the number of selected wavebands and
might be combined with the classification results of classifiers.

F-measure has been applied to measure the classification
performance for an imbalanced dataset. For the ITWSVM
classifier, the bandwidth value s2 in the covariance S=s2 of the
Gaussian kernel has been searchedwithin the range {0.1s0,0.2s0,…
s0}, where s0 is the median value of ∥xn-xn′∥2. We have fixed the
regularization hyperparameters c1,l= c1,l′ and c2,l= c2,l′ to reduce the
computational complexity. To obtain the optimal regularization
hyperparameters, a 10-fold nested cross-validation scheme has
been applied. The hyperparameters have been obtained through a
grid search in the range {2-9,2-7,2-5,2-3,2-1,20,21,23,25,27,29}.

The results of the F-measure in Figure 4 are the average of 30
runs by randomly selecting samples of the training set and testing
set. At first, the values of the F-measure significantly increase as l
value increases. There is anoscillation in theprocess of increasing of
F-measure. When the number of selected wavebands increases to
about ten, F-measure does not exhibit an increasing profile with the
increase of l. This indicates that the mere addition of wavebands
provides no reliable improvement in classification performance.
The improvement of classification performance depends on the
specific wavebands contained in the subset. According to
A B

FIGURE 3 | (A) The spectra of all 240 samples, (B) Average spectral curves of contaminated mussels and healthy mussels.
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F-measure values, optimal valuesofl and thenumberofwavebands
for different IR are exhibited in Table 1.

The Interpretation of Selected Wavebands
Wehave further explored thephysical basis for thedetectionmodel by
analyzing the relationship between the occurrence of overtone and
combination bands and selected wavebands. In Figure 5, specific
wavebands contained in the subsets for detecting DSP toxins are
markedonthe spectral curves.Fordifferent IR, the selectedwavebands
are similar. Some wavebands have a great opportunity of being
selected because they can provide abundant critical information for
detection. The wavebands around 980 nm, 1100 nm, 1380 nm,
1470nm, 1520 nm, 1570 nm, 1620 nm, and 1700 nm are selected by
the FRS algorithm. It has been reported that wavebands related to
bonds associated with proteins were found in the ranges 1470 nm -
1516nmand1526nm-1536nm, and signals attributed to lipidswere
revealed at 1690 nm - 1700 nm (Mamani-Linares et al., 2012).

Waveband subsets selected by our algorithms can reflect
spectral differences. Therefore, the detection of DSP toxins-
contaminated mussels can be realized by extracting important
information from spectra.

Determination of Parameters in the
ITWSVM Algorithm
For an in-depth illustration of the impact of regularization
hyperparameters on classification performance in the ITWSVM
Frontiers in Marine Science | www.frontiersin.org 7
model, we have performed experiments by taking IR of 100:80 as
an example.

Figure 6 displays F-measure as a function of regularization
hyperparameter values of c1,l and c2,l when the bandwidth value
s2 = s0 = 2.94. F-measure varies dramatically with regularization
hyperparameters c1,l and c2,l. The results are significantly affected
by the choice of c1,l and c2,l. The optimal F-measure value is
0.9631 when c1,l = c1,l' ={2

1,23,25,27,29} and c2,l= c2,l'=2
-7. This

result is a result of a randomized run only and does not represent
the best result.

Regarding other IR and other bandwidth values, there are
similar patterns of changes in F-measure values with parameters
c1 , l and c2, l . Therefore, adjusting the regularization
hyperparameters c1,l and c2,l is useful in practice.

Comparison of Detection Performance for
DSP Toxins-Contaminated Mussels
To evaluate the performance of detection methods for DSP
toxins, we focus on the comparison of ITWSVM with classical
TWSVM and SVM strategies. The detection performance of
models is assessed by measuring the F-measure and classification
accuracy of 30 different divisions of the training set and test set.
For TWSVM and SVM models, the parameters are set to their
optimal value with which TWSVM and SVMmodels achieve the
best results.

The experimental results are shown in Figures 7, 8, in which
the average and standard deviation of F-measure and accuracy
are presented. Our proposed ITWSVM approach achieves the
best results regarding the average and the standard deviation for
each IR, whose average is larger than and the standard deviation
is smaller than TWSVM and SVM approach. The F-measure and
accuracy of the ITWSVM algorithm achieve over 0.9647 and
96.58%, respectively. The proposed detection method can
effectively detect DSP toxins. When the value of IR changed
from 100:100 to 100:40, the F-measure and accuracy do not
A B D EC

FIGURE 4 | Variations in F-measure and the number of wavebands with l. (A–E) Represent specific variations for different IR.
TABLE 1 | Determined parameters for different IR.

IR l The number of wavebands

100:100 0.10 11
100:80 0.09 13
100:60 0.06 8
100:40 0.1 14
100:20 0.11 13
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decrease, instead, they increase slightly. The maximum F-
measure and accuracy appear at IR=100:40, which are 0.9886
and 98.83%, respectively. This result supports that ITWSVM is
excellent at dealing with an imbalanced dataset.

The F-measure and accuracy of SVM vary greatly with IR,
that is, the more imbalanced the training samples are, the worse
the detection results are. The SVM algorithm ignores the
imbalance between healthy mussels and DSP toxins-
contaminated mussels, obtaining biased results. The ITWSVM
Frontiers in Marine Science | www.frontiersin.org 8
and TWSVM algorithms are little affected by IR. That indicates
that our proposed detection model is more suitable for datasets
of imbalanced training samples.

To demonstrate the statistical significance of the ITWSVM
algorithm compared with classical SVM and TWSVM
algorithms, the pairwise Wilcoxon rank sum test (nonparametric
analysis) has been conducted. The significance level is set as 0.05,
that is,when the estimatedp-value is less than0.05, theperformance
difference between the two methods is statistically significant.
A

B

D

E

C

FIGURE 5 | Selected wavebands of different IR for detecting DSP toxins. (A) IR=100:100, (B) IR=100:80, (C) IR=100:60, (D) IR=100:40, (E) IR=100:20.
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FIGURE 7 | Average and standard deviation of F-measure.
FIGURE 6 | Variations in F-measure with regularization hyperparameters for IR=100:80.
Frontiers in Marine Science | www.frontiersin.org 9
FIGURE 8 | Average and standard deviation of accuracy.
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Table 2 lists the calculated p-values obtained by theWilcoxon test,
which correspond to F-measure and classification accuracy,
respectively. All results in Table 2 are less than 0.05. The results
indicate that the performance differences between ITWSVM and
the other two algorithms (SVM and TWSVM) are statistically
significant for various IR. The performance difference between
ITWSVM and SVM is more significant than that between
ITWSVM and TWSVM. The above experimental results validate
the effectiveness of our proposed ITWSVMmodel.

To compare the performance of the proposed ITWSVM
model with other state-of-the-art models in DSP toxins
detection, we have conducted experiments under various IR.
Multi-layer perceptron (MLP) (Murlidhar et al., 2021), extreme
gradient boosting (XGBoost) (Zhao et al., 2022), adaptive
boosting (AdaBoost) (Liu, 2010), random forest (RF) (Chen
et al., 2021), and k-nearest neighbor (KNN) (Wang et al.,
2021) models have been selected for comparison.

Tables 3, 4 summarize the experimental results in terms of
average detection accuracy and F-measure of models. The
accuracy and F-measure are averaged from the results of 30
times randomly divided datasets. Outstandingly, our ITWSVM
model achieves the best results regarding detection accuracy and
F-measure. As for other classifiers except for ITWSVM, from the
accuracy and F-measure, we can see that MLP is outperforming
other models. The performance of the AdaBoost and XGBoost
models is comparable but slightly worse than that of MLP. The
results of these models support our argument that ITWSVM can
Frontiers in Marine Science | www.frontiersin.org 10
effectively explore the detection of DSP toxins in mussels,
especially the imbalance problem.
CONCLUSIONS

This study confirms the viability of NIR spectroscopy as a rapid,
reliable, and efficient analytical method for detecting DSP toxins
in mussels. The characteristic wavebands selected by the FRS
algorithm can effectively distinguish DSP toxins-contaminated
mussels and healthy mussels. A novel learning model ITWSVM
has been proposed to solve the imbalanced dataset problem in
DSP toxins detection. Taking F-measure and accuracy as
performance measures, the performance of ITWSVM
outperforms TWSVM and SVM algorithms for different IR.
We have analyzed the impact of parameters of the FRS
algorithm and regularization hyperparameters of the ITWSVM
model on detection performance. The optimal parameters of
detection models have been determined by experiments. The
hyperparameters selection of the ITWSVM model is important,
therefore different optimization methods could be studied to
improve the ITWSVM model in the future. Moreover, coupling
the ITWSVM with resampling methods to improve the
classification performance for datasets of imbalanced training
samples would be an exciting research line.

The components and concentrations of chemical
compositions of DSP toxins -contaminated and healthy
TABLE 3 | The comparison of average accuracy for various IR.

100:100 100:80 100:60 100:40 100:20

ITWSVM 98.08% 98.42% 98.75% 98.83% 96.58%
MLP 94.92% 95.42% 96.17% 94.58% 91.25%
XGBoost 88.17% 84.92% 85.92% 75.00% 63.50%
AdaBoost 88.08% 84.83% 84.41% 74.25% 65.67%
RF 82.08% 80.00% 80.17% 72.08% 61.25%
KNN 74.83% 75.00% 69.33% 66.33% 57.08%
June 2022 | Volume 9 | Article
TABLE 4 | The comparison of average F-measure for various IR.

100:100 100:80 100:60 100:40 100:20

ITWSVM 0.9809 0.9843 0.9878 0.9886 0.9647
MLP 0.9492 0.9554 0.9625 0.9490 0.9215
XGBoost 0.8765 0.8524 0.8657 0.7856 0.7236
AdaBoost 0.8814 0.8495 0.8525 0.7758 0.7334
RF 0.8112 0.7986 0.8083 0.7624 0.7142
KNN 0.7577 0.7665 0.7302 0.7274 0.6912
TABLE 2 | The p-values between the ITWSVM algorithm and classical SVM and TWSVM algorithms for various IR.

100:100 100:80 100:60 100:40 100:20

ITWSVM vs. SVM F-measure 1.34×10-7 1.35×10-5 1.52×10-6 4.97×10-11 1.07×10-8

Accuracy 2.21×10-7 4.64×10-6 4.68×10-5 8.99×10-10 2.21×10-7

ITWSVM vs. TWSVM F-measure 4.80×10-5 3.76×10-5 4.18×10-4 4.01×10-2 4.40×10-2

Accuracy 2.28×10-6 2.14×10-4 5.60×10-3 3.53×10-2 2.28×10-6
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mussels are different, which causes the difference in the profile of
the corresponding NIR spectra. This paper has explored the
feasibility of DSP toxins detection by NIR spectroscopy with
chemometrics. The results provide a reference for preventing
seafood poisoning and identifying the contaminant. NIR
spectroscopy, when coupled with innovative chemometrics and
machine learning techniques, is expected to play an important
role in shellfish and seafood monitoring. In further research, the
development of portable on-site instruments for toxic detection
will be carried out, which is a highly-required tool for shellfish
farmers and environmental management. It is expected to play
an important role in the in-situ monitoring of the occurrence of
harmful algal blooms.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
Frontiers in Marine Science | www.frontiersin.org 11
AUTHOR CONTRIBUTIONS

YL: Conceptualization, Methodology, Funding Acquisition,
Software, Formal Analysis, Writing - original draft, Writing -
review and editing. FQ: Visualization, Validation. LX:
Methodology, Investigation. RW: Supervision, Conceptualization,
Writing - review and editing. WJ: Investigation, Formal analysis.
ZX: Visualization, Resources. All authors contributed to the article
and approved the submitted version.
FUNDING

This work was supported by the National Natural Science
Foundation of China (grant number 62005109), Guangdong
Basic and Applied Basic Research Foundation (grant numbers
2020A1515011368, 2021A1515012440), Lingnan Normal
University Nature Science Research Project (grant numbers
ZL1902, ZL2007).
REFERENCES

Aktar, M. (2014). Trace Metal Concentrations in the Green-Lipped Mussel Perna
Viridis (Linnaeus, 1758) Collected From Maheshkhali Channel, Cox’s Bazar,
Bangladesh. J. Fisher. Sci. 8 (1), 42–51. doi: 10.3153/jfscom.2014005

Alvarez-Meza, A. M., Orozco-Gutierrez, A., and Castellanos-Dominguez, G.
(2017). Kernel-Based Relevance Analysis With Enhanced Interpretability for
Detection of Brain Activity Patterns. Front. Neurosci. 11, 550. doi: 10.3389/
fnins.2017.00550
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