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Carotenoids are widely distributed and structurally diverse, which have significant roles in
the photosynthesis of plants. As a precursor of vitamin A, carotenoids are also
antioxidants that reduce various chronic diseases, which are beneficial for human
health. Currently, the existing studies concerned the biological roles of APETALA2
(AP2)/ethylene-responsive factor (ERF) genes originated from higher plants. The AP2
superfamily of the transcriptional regulator was identified in higher plants, which was
related to growth, development, carotenoid metabolism, and responses to various
stresses. However, the regulatory mechanisms of the AP2-modulating carotenoid
metabolism have not been reported in microalgae, which remain to be elucidated.
Dunaliella parva AP2 (i.e., DpAP2), an important transcription factor, promotes
carotenoid accumulation by binding to the promoter of target gene. Here, we identified
an important AP2/ERF transcription factor, DpAP2, which could promote carotenoid
accumulation by binding to the promoter of target gene. To demonstrate the function of
DpAP2, the interacting proteins were identified by the yeast two-hybrid system. The
results showed that DpAP2 could interact with three proteins with different activities (DNA-
binding transcription factor activity, protein kinase activity, and alpha-D-
phosphohexomutase activity); these proteins may be associated with multiple biological
processes. This paper laid a good foundation for a deep understanding of the regulatory
mechanisms of DpAP2 and genetic engineering breeding in D. parva.
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INTRODUCTION

Microalgae have been utilized commercially in the Far East for
healthy foodstuffs such as Arthrospira platensis and in the United
States for wastewater treatment (Oswald, 2003). At present, in
response to the increasing concern around global warming, the
microalgal culture was again considered for a carbon-neutral
process to obtain third-generation biofuels such as biodiesel
(Gilmour, 2019). Biomass productivity, oil content, and
energy-intensive harvesting were the major constraints for
biodiesel production from microalgae on a large scale (Shahid
et al., 2020). Nitrogen limitation has been widely used to increase
oil content in microalgae (Kumari et al., 2021; Zhang et al., 2021).
When Scenedesmus acuminatus grew under nitrogen-limited
conditions, oil productivity was enhanced (Zhang et al., 2021).
Nitrogen limitation increased oil content in Chlorella vulgaris,
which might be related to the upregulation of mRNA levels of
several oil biosynthesis genes (Kumari et al., 2021). Our previous
study also showed that nitrogen limitation could induce an
increase in oil content from 25% to 40% in D. parva (Shang
et al., 2016). However, nitrogen limitation also hampered the
growth, photosynthetic antennae size, and maximum
photosynthetic efficiency in algae (Jiang et al., 2021;
Kamalanathan et al., 2021), which was also demonstrated by
our previous study (Shang et al., 2016). The biochemical
engineering approach depended on physiological stresses such
as nitrogen limitation to channel metabolic fluxes to lipid
accumulation. However, an inherited shortcoming of the
biochemical engineering approach was the reduced cell
division, which limited the application of this approach
(Ratledge, 2002). Compared with the biochemical engineering
approach, the transcription factor engineering approach was an
emerging technology to improve the yield of the specific
metabolites by overexpressing transcription factors regulating
the metabolic pathways related to the accumulation of target
metabolites (Courchesne et al., 2009).

A comprehensive utilization of microalgae could significantly
reduce the cost of microalgae biofuels, which included
microalgae cultivation using wastewaters in outdoor raceway
ponds (Arora et al., 2016; Gao et al., 2018; Keerthana et al., 2020)
and the production of bioactive substances such as
polysaccharides (Li et al., 2019), antiviral substances (Fritzsche
et al., 2021), bioactive peptides (Donadio et al., 2021), and
carotenoids (du Preez et al., 2021; Todorović et al., 2021).

Carotenoid biosynthesis involves a complex pathway (Narang
et al., 2021). Our previous study also cloned and characterized
several carotenoid synthesis genes such as GGPS encoding
geranylgeranyl diphosphate synthase (Shang et al., 2016b), Psy
encoding phytoene synthase, and Pds encoding phytoene
desaturase (Shang et al., 2018). In D. parva, the PSY gene played
important roles in carotenoid metabolism (Ismaiel et al., 2018).
These genes played a key role in the carotenoid biosynthesis
pathway because they catalyzed the rate-limiting step. The
current studies focused on the regulators (especially
transcription factors) of the metabolic pathway rather than the
key enzyme (Li et al., 2021). A lot of transcription factors (TFs)
Frontiers in Marine Science | www.frontiersin.org 2
regulating the carotenoid biosynthesis pathway were identified in
higher plants, which included MADS-box (Kang et al., 2021),
NAC (Gong et al., 2021), AP2/ERF (Dang et al., 2021), and MYB
families (Shi et al., 2021). These TFs can bind to the promoter of
the target gene. The putative carotenoid biosynthetic pathway in
microalgae is shown in Figure 1. The metabolic enzymes were
encoded by the structural genes in the carotenoid biosynthesis
pathway, which included zeta-carotene desaturase (ZDS),
carotenoid isomerase (CRTISO), z-carotene isomerase (ZISO),
lycopene b-cyclase (LCY-b), beta-carotene hydroxylase (CHY-b),
lycopene ϵ-cyclase (LCY-ϵ), and zeaxanthin epoxidase (ZEP)
(Ampomah-Dwamena C et al., 2019).

The APETALA2/ethylene-responsive factor (AP2/ERF)
superfamily in plants contains four subfamilies including AP2,
CBF/DREB, ERF, and RAV according to the number of AP2/
ERF domains and the sequence (Xing et al., 2021). TFs played
important regulatory roles in the development, growth, and
responses to various stresses in plants. The AP2/ERF, a
complex TF family, is one of the largest families, which
efficiently regulates carotenoid accumulation in plants. In
Auxenochlorella protothecoides, AP2, ERF, and R2R3-MYB
promoted triacylglycerol accumulation by triggering the lipid
biosynthesis pathway (Xing et al., 2021). Previous studies have
reported that AP2/ERF TF could modulate carotenoid
accumulation. In apple, MdAP2-34 was able to enhance
carotenoid accumulation by binding to the MdPSY2-1
promoter (Dang et al., 2021). SIERF6 could exactly regulate
carotenoid accumulation in tomato (Lee et al., 2012). The TFs
(AP2, AP2-like) related to phytohormones potentially affected
carotenoid metabolism in apricot (Zhang et al., 2019). RAP2.2
could efficiently regulate carotenoid accumulation by binding to
the selected site of the promoter region in tomato (Koul et al.,
2019). In Arabidopsis, RAP2.2 could also accelerate carotenoid
accumulation by binding to the PSY promoter (Welsch et al.,
2007). In addition, we have overexpressed DpAP2 genes in D.
parva in our subsequent experiments. The total carotenoid
content increased to 0.85 mg/g of dry cell weight. However, the
regulatory mechanism of AP2/ERF TF for carotenoid
metabolism is currently unknown in D. parva.

D. parva is an oleaginous halophilic green alga without a cell
wall, which can also accumulate large amounts of carotenoids
(mainly b-carotene) (Shang et al., 2016). The simultaneous
production of biodiesel and carotenoids using D. parva is more
attractive compared with the model microalgae. As a new type of
bioreactor, D. parva has been widely used because of its
characteristics including rapid growth, rapid reproduction, easy
culture, the ease of controlling pollution, high efficiency, and low
price (Shang et al., 2016). D. parva is rich in natural carotenoids,
folic acid, calcium, and other trace elements required for human
health. Carotenoids can be utilized as a colorant, provitamin,
precursor of abscisic acid, chemopreventive substance against
cancer, and antioxidant (Mohsin et al., 2021). AP2/ERF TF plays
significant roles in carotenoid accumulation in plants, but these
roles remain unknown in D. parva.

In a previous study, we identified a gene fragment DpAP2
encoding AP2/ERF TF. The role of DpAP2 is still unclear in
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carotenoid metabolism in D. parva. In view of a correlation
between DpAP2 and carotenoid production, it is of interest to
study the function of DpAP2 at the molecular level. Here, we
reported the cloning of the full-length complementary DNA
(cDNA) of DpAP2. Then, the DpAP2-interacting proteins were
identified by yeast two-hybrid systems and subjected to
bioinformatics analysis and further discussion.
MATERIALS AND METHODS

Microalgal Material and Growth Conditions
D. parva FACHB-815 was purchased from Freshwater Algae
Culture Collection at the Institute of Hydrobiology (Wuhan,
China). The cells of D. parva grew in the Dunaliella medium
under the light intensity of 34 mmol of photons m−2 s−1

illumination at 26°C with 14 h light/10 h dark cycle. The algae
bottles were gently swirled one or three times each day by hand.

First-Strand cDNA Synthesis
Total RNA was extracted from D. parva cells using a Total RNA
Extractor (Trizol) (SangonBiotech, Shanghai, China). To ensure that
the enough and qualified samples were obtained, the RNA quantity
Frontiers in Marine Science | www.frontiersin.org 3
and quality were determined with a Nanophotometer NP80
Spectrophotometer (Geneflow, Lichfield, United Kingdom). First-
stand cDNA was synthesized using PrimeScript II Reverse
Transcriptase (Takara Bio, Dalian, China) and Oligo (dT) primer.
A total amount of 1.5 mg of total RNA was used for reverse
transcription reaction.

Full-Length cDNA Cloning
An attempt was made to gain full-length cDNA by the rapid
amplification of cDNA ends (RACE) method. Based on the
previous 582 bp cDNA fragment of DpAP2, four specific primers
(Table 1), AP2(3w)/AP2(3n) for 3’ RACE and AP2(5w)/AP2(5n)
for 5’ RACE, were designed. The 5’ and 3’ RACE were firstly
performed using the 5’/3’-Full RACE Kit (Takara) according to the
manufacturer’s protocol. The outer and inner PCR were conducted
with LA Taq (Takara) under the following conditions, respectively:
94°C 3 min, 25 cycles (94°C 30 s, 55°C 30 s, 72°C 2 min), 72°C
10min for outer PCR, and 94°C 3min, 35 cycles (94°C 30 s, 55°C 30
s,72°C 2 min), 72°C 10 min for inner PCR. The resulting products
were detected with 1% agarose gel electrophoresis and ligated into
the pMD19-T vector. However, the resulting 5’ nucleotide sequence
was shorter than the expected 5’ end sequence. In order to obtain
the entire 5′ sequence, the second 5’ RACEwas carried out using the
FIGURE 1 | A graphic representation depicting the putative carotenoid biosynthetic pathway in microalgae. IPI, isopentenyl diphosphate isomerase; GGPPS,
geranylgeranyl diphosphate synthase; PSY, phytoene synthase; PDS, phytoene desaturase; ZDS, zeta-carotene desaturase; CRTISO, carotenoid isomerase; ZISO,
z-carotene isomerase; LCY-b, lycopene b-cyclase; CHY-b, beta-carotene hydroxylase; LCY-ϵ, lycopene ϵ-cyclase; ZEP, zeaxanthin epoxidase.
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specific primer AP2(GSP) and Long Primer from the SMARTer
RACE 5’/3’ Kit (Table 1) (Zhu et al., 2001). The primer AP2(GSP)
was designed according to the obtained sequence in the first 5’
RACE. According to the assembled full-length sequence, specific
primers AP2(N) and AP2(C) (Table 1) were synthesized to obtain
the accurate full-length cDNA of DpAP2. PCR products were
purified, cloned, and sequenced as described above (Abid
et al., 2012).

Construction of cDNA Library of D. parva
Total RNA was isolated from D. parva using the MiniBEST Plant
RNA Extraction Kit (Takara). This kit is more efficient, fast, and
convenient. The construction of the cDNA library of D. parva
requires a high concentration and purity of RNA. Up to 10 µg of
total RNA with high purity could be extracted from 50~100 mg
plant tissue by this kit. The degradation and contamination of
RNA were detected by 1% agarose gel electrophoresis. The RNA
concentration was determined with the Nanophotometer NP80
Spectrophotometer. The cDNA library was constructed
according to the instructions from the SMART cDNA Library
Construction Kit (Takara) (Mendelsohn and Brent, 1994). First-
strand cDNA was synthesized using CDS (complementary
determining region) III Oligo (dT) primer and MMLV reverse
transcriptase. Double-strand cDNA was synthesized by LD PCR
with specific primers (5’ PCR Primer and 3’ PCR Primer)
(Table 1). The cDNA size was fractionated by CHROMA
SPIN+TE-400 Column to select cDNA molecules (>200 bp).
Finally, cDNA fragments were cloned into the pGADT7-Rec
plasmid through homologous recombination in vivo ,
transformed into the competent yeast strain Y187, and selected
on the selective medium by the yeast two-hybrid assay.

Subtraction Efficiency of the Library
The purified double-strand cDNA and pGADT7-Rec were co-
transformed into Y187 yeast competent cells. Then, all liquids
were combined in a single sterile flask. The library broth was
Frontiers in Marine Science | www.frontiersin.org 4
diluted 10-2 and 10-4 times, and 100 ml was spread onto the SD/–
Leu plate for 3–5 days. The number of colonies on plates were
counted. PCR amplification was used to evaluate recombination
efficiency (Zheng et al., 2005). PCR was performed with universal
sequencing primers designed for PGADT7-REC using 24 colonies
as templates, which were randomly selected on SD/-Leu plates. PCR
was performed using Green Taq Mix 12.5 ml, T7 Primer (10 mM) 1
ml, 3’AD Primer (10 mM) 1 ml, yeast culture 1 ml, ddH2O 9.5 ml. The
procedures were as follows: 94°C for 3 min, 35 cycles (98°C for 10 s,
42°C for 30 s, 72°C for 2 min), 72°C for 10 min. PCR products were
analyzed by 1% agarose gel electrophoresis. The size and
recombination rate of inserted fragments were measured
and analyzed.

Generation of Yeast Bait Strain
All plasmids and strains used in the two-hybrid experiment were
included in the Matchmaker Gold Yeast Two-Hybrid System Kit
(Takara). To confirm the binding region required for the
interaction of DpAP2, cDNA fragments corresponding to N-
terminus (67–252 and 349–537 bp) and C-terminus (537–2,331
bp) of DpAP2 were amplified by PCR, respectively. A PCR-
amplified bait was obtained using primers AP2-JHN2 and AP2-
JHC2 that contained 24 bp homology to the bait sequence and 15
bp homology to the linear end of pGBKT7. The 5’ terminus of
DpAP2 was cloned in-frame into the pGBKT7 plasmid at BamH
I and EcoR I sites. In order to confirm that the fusion construct
was in frame, the construct was sequenced using the T7 Primer.
It is imperative to confirm that the bait does not autonomously
activate reporter genes and is not toxic in Y2HGold in the
absence of a prey protein. The pGBKT7 and pGBKT7-AP2N3
plasmids were used in a series of transformation tests to exclude
false activation and the toxicity of reporter gene of the system
(Chung et al., 2021). The yeast strains Y2HGold and Y187 were
transformed using a slightly modified method. In brief, one
colony was inoculated into 3 ml of the YPDA medium at 30°C
with shaking at 250 rpm for 8–12 h. Then, 5 µl of the culture was
transferred to 50 ml of the YPDA medium, and it was continued
to be incubated until OD600 reaches 0.15–0.3. Cells were
centrifuged at 700 g for 5 min at room temperature. The
supernatant was discarded and each pellet was resuspended in
30 ml of sterile ddH2O and centrifuged again using the same
condition. Cells were resuspended in freshly prepared LiAc/TE.
Plasmid DNA, carrier DNA, and DMSO were added; then, the
mixture was centrifuged with 14,000 g at room temperature after
incubation. The yeast sediment was resuspended in YPD plus the
medium in a shaker at 30°C for 90 min. Yeast cells were
resuspended in 0.9% NaCl, and 100 µl of 1/10 and 1/100
diluted cells were spread on the SD selection medium plate at
30°C for 3–6 days.

Library Screening
Library screening was done via the yeast mating of one aliquot of
Y187 cDNA library with 5 ml (an OD600 : Optical Density (OD)
of at least 2.0) of the Y2HGold culture transformed with
pGBKT7-AP2N3 (Zhang et al., 2020). Two cultures were
combined in a sterile 2 L flask, and 45 ml of the 2×YPDA
liquid medium (with 50 µg/ml kanamycin) was added. The
TABLE 1 | Primers used in this study.

Primer
name

Primer sequence (5’-3`)

AP2-5-W GGCTCAGTTCCTCCGTGT
AP2-5-N CGCTTCCTCCTGAGTTCCA
AP2-3-W GGAGGCAGTGAGACAGAAGG
AP2-3-N GTAGGAGGAGCAGGAACAACT
AP2-5-
GSP

GATTACGCCAAGCTTGCCGCTTCCTCCTGAGTTCCAAA

Long
primer

CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT

AP2-N CATGCAGGCCTTGCCATTGCATGAC
AP2-C CTATGATCGCTTTAAGCTTAGGGG
AP2-
JHN2

CATGGAGGCCGAATTCAAGTACAAGGGCGTGACACGACAT

AP2-
JHC2

GCAGGTCGACGGATCCCTCCGTGTACATGTCCAGGGAGAA

5’ PCR
primer

TTCCACCCAAGCAGTGGTATCAACGCAGAGTGG

3’ PCR
primer

GTATCGATGCCCACCCTCTAGAGGCCGAGGCGGCCGACA
June 2022 | Volume 9 | Article 907065
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culture was incubated at 30°C with slow shaking (30–50 rpm) for
20–24 h to prevent cells from settling at the base of the flask.
After 20 h, we checked for the presence of zygotes under the
phase contrast microscope (×40). The mating culture was
centrifuged at 1,000 g for 10 min, washed with 100 ml of
0.5×YPDA containing 50 mg/ml of kanamycin, and
resuspended in 10 ml of 0.5×YPDA with 50 mg/ml of
kanamycin. For the mated culture, 100 ml of undiluted, 1:100
and 1:10,000 diluted cultures were spread on each of the SD/-
Trp, SD/-Leu, and SD/-Leu/-Trp (DDO) agar plates to calculate
the mating efficiency. The remaining culture was spread on SD/-
Leu/-Trp (with X-a-Gal/AbA) and SD/-Ade/-His/-Leu/-Trp
(with X-a-Gal/AbA) and incubated at 30°C for 3–5 days.
Colonies were numbered and restreaked on the SD/-Ade/-
His/-Leu/-Trp (with X-a-Gal/AbA) (QDO/X/A) master plate
and then grown for another 4–6 days. All QDO/X/A-positive
interactions must be further analyzed to identify duplicates and
verify the genuineness of the interaction.

Yeast Colony PCR
Positive colonies were selected and incubated on the QDO/X/A
liquid medium. PCR amplification was performed with primers
T7 and 3’AD under the following conditions: 94°C for 3 min; 35
cycles (98°C for 10 s, 42°C for 30 s, and 72°C for 2 min). Plasmid
was isolated from yeast using the MiniBEST Plasmid Purification
Kit (Takara) and transformed into Escherichia coli. Positive
colonies were subjected to sequencing and similarity searches
in the National Center for Biotechnology Information (NCBI)
database. All identified colonies were checked for the right frame
and orientation.
RESULTS AND DISCUSSION

Full-Length cDNA Cloning
A 582 bp cDNA fragment of differentially expressed DpAP2 gene
associated with the regulation of carotenoid biosynthesis inD. parva
was obtained by a comparison between SCH-5.0mMA (nitrogen-
sufficient control sample) and SCH-0.5mMA (nitrogen limitation-
treated sample) using transcriptome technology. To obtain the full-
length cDNA, we performed 5’ RACE and 3’ RACE with gene-
specific primers designed from the obtained 582 bp fragment.
Then, using primers AP2(GSP) and the Long Primer, a 405
bp cDNA fragment was obtained. The full-length cDNA was 3,129
bp with an open reading frame (ORF) of 2,331 bp encoding 776
amino acids, a 3’ untranslated region (UTR) of 582 bp, and a 5’UTR
of 216 bp (Figure 2). The agarose gel electrophoresis analysis of the
productamplifiedbyprimersAP2(N)andAP2(C)detectedabandof
approximately 2,331 bp (Figure 3). The Blastx search suggested
that the PCR product was homologous to a number of
known AP2 genes. The detailed sequence of DpAP2 is shown in
Supplementary Figure 1.

Phylogenetic Analysis of AP2
The conserved amino acid residues in the AP2 domain from D.
parva and Arabidopsis thaliana AP2/ERF superfamily proteins
were identified by MEME online software (Figure 4). The AP2
Frontiers in Marine Science | www.frontiersin.org 5
subfamily in D. parva contains two AP2 domains such as AP2-R1
and AP2-R2. The results displayed that both D. parva and A.
thaliana have RAYD, WLG/YLG, AA, and YRG elements. The
analysis of the AP2 domain between D. parva and A. thaliana
suggested that the domain was highly conserved. The AP2-R1
domain includes G22, E29, F24, L21, and T26, and the AP2-R2
domain includes E15, S16, F7, and H17. We constructed an
evolutionary tree to analyze the evolutionary relationship of
AP2/ERF TFs (Figure 5). The results indicated that Scenedesmus
sp. And D. parva shared the closest relationship, which was
consistent with the traditional classification.

Construction of Two-Hybrid cDNA Library
In order to hunt for the interaction partners of DpAP2, we
generated an appropriate cDNA library well suited for the yeast
two-hybrid system. Total RNA was extracted from D. parva cells
FIGURE 2 | Full-length cDNA of the DpAP2 gene. The graphic was
constructed base on a complete sequence of the DpAP2 gene using the
DOG 2.0 program. The full-length cDNA was 3,129 bp with an ORF of 2,331
bp encoding 776 amino acids, a 3’ UTR of 582 bp, and a 5’ UTR of 216 bp.
FIGURE 3 | ORF amplification of the DpAP2 gene. M: DL 2000 Marker, 1:
ORF of the DpAP2 gene. The ORF of DpAP2 gene was amplified by primers
AP2(N) and AP2 (C).
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(Figure 6). Approximately 2.0 µg of total RNAwas transcribed to
form first-strand cDNA using SMART technology, and second-
strand cDNA was amplified using long-distance PCR with the
universal primers (Figure 7). The CHROMA SPIN TE-400
Frontiers in Marine Science | www.frontiersin.org 6
Column was used to select DNA molecules more than 200 bp
that were likely to encode the translated region of mRNAs. The
cDNA was cloned into yeast strain Y187 along with AD plasmid
pGADT7-Rec. Plasmid pGADT7-Rec and cDNA fragments were
FIGURE 4 | The conserved amino acid residues in the AP2 domain from the D. parva and A. thaliana AP2 subfamily. The domain was analyzed by MEME software.
The horizontal number indicates the amino acid site; each site represents a stack. The height of character represents the frequency of the amino acid.
FIGURE 5 | Phylogenetic tree of AP2 proteins. The tree was constructed based on the complete protein sequences of AP2 proteins by the neighbor-joining method
of the MEGA program.
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combined in vivo through homologous recombination.
Transformation efficiency was identified by calculating the
number of colonies on a plate with a 1:1,000 dilution of
transformation (Figure 8). PCR was performed to evaluate
recombination efficiency (Figure 9). Transformation efficiency
could be calculated with the data shown in Table 2. Cell density
was more than 2 × 107 per milliliter of the cDNA library.

Generation of Bait Strain Y2HGold
To confirm the binding region required for the interaction of
DpAP2, the cDNA fragments of the N-terminus (67–252 and
349–537 bp) and C-terminus (537–2,331 bp) was amplified using
gene-specific primers, respectively (Figure 10). Plasmid
pGBKT7-AP2N3 (537–2,331 bp) was transformed into the
yeast strain Y2HGold. pGBKT7 and pGBKT7-AP2N3 were
used in a series of transformation tests to exclude the false
activation and toxicity of the reporter gene of the system.
Then, the self-activation of the recombinant vector was
Frontiers in Marine Science | www.frontiersin.org 7
determined by testing the autoactivation of Aureobasidin A
and beta-galactosidase reporter. The recombinant bait plasmid
had no toxic effect on yeast Y2HGold cells without the self-
activation of reporter genes. The yeast strains of Y2HGold-
pGBKT7-AP2N3 and Y2HGold-pGBKT7 could grow on the
SD/-Trp medium without a significant difference in the colony
size and number, which suggested that plasmid pGBKT7-AP2N3
had no effect on yeast growth and no toxicity to yeast
(Figure 11). Furthermore, the blue Y2HGold-pGBKT7-AP2N3
colonies were detected on the SD/-Trp/X-a-Gal agar medium;
however, they were absent on the SD/-Ade/-Trp/X-a-gal plate.
Therefore, the DpAP2 protein had no autonomous activation
effect. Yeast strains Y2HGold and Y187 were transformed by a
slightly modified method.
FIGURE 6 | Total RNA from D. parva cells. Lanes 1 and 2 represented the
total RNA of D. parva cells. The integrity of RNA was detected by 1%
agarose gel electrophoresis.
FIGURE 7 | Long-distance PCR for second-strand cDNA synthesis. M: DL
2000 Marker. 1: Second-strand cDNA. The length of cDNA molecules was
more than 200 bp.
June 2022 | Volume 9 | Article 907065
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Screening of Positive Colonies
One aliquot of cDNA library containing more than 2 × 107

transformed Y187 cells were mated with more than 1 × 108

Y2HGold cells transformed with pGBKT7-AP2N3. The zygotes
were detected under a phase contrast microscope (40×) after 24 h of
co-incubation, which showed that yeast mating was successful. The
mating culture was centrifuged and resuspended on the SD/-Leu/-
Trp (with X-a-Gal/AbA) plate. The mating efficiency was counted
by analyzing the SD/-Leu, SD/-Trp and SD/-Leu/-Trp plates on
which different dilutions of the mating mixture were spread. The
mating efficiency of the two-hybrid screen was approximately 2%.
Many positive colonies grew on the SD/-Leu/-Trp/X-a-Gal/AbA
agar medium and were restreaked for three times on SD/-Ade/-
His/-Leu/-Trp/X-a-Gal/AbA plates (Figure 12). Finally, 34 putative
positive yeast colonies were obtained.

Bioinformatical Analysis of Sequencing
Information
To select for stable expression of interaction partners, the colonies of
mating screen were restreaked on the 4×Dropout medium, and 34
positive yeast colonieswereobtained.A total of 34 cDNAinsertswere
Frontiers in Marine Science | www.frontiersin.org 8
verifiedbyacolonyPCRusinguniversalprimersT7and3’AD,and24
cDNA fragments were determined. Plasmid was isolated from 24
yeast strains and purified, then transformed into E. coli DH5a
(Figure 13). The transformants containing only pGADT7-DpAP2
plasmids from the cDNA library were obtained on the Luria-Bertani
(LB) agar medium with 50 mg/ml of ampicillin. The sequencing
results were subjected to the Blastx search. Three proteins interacting
with DpAP2 were identified, including protein 1 (alpha-D-
phosphohexomutase), protein 2 (protein serine/threonine kinase
activity), and protein 3 (DNA-binding transcription factor activity)
in D. parva (Table 3). The detailed sequences of three proteins
interacting with DpAP2 are shown in Supplementary Figure 2. The
functions of three interacting proteins of DpAP2 were analyzed by
NetGO 2.0 software, which are shown in Supplementary Figure 3.

The yeast two-hybrid system was widely used to identify the
interacting protein of specific proteins. Chen et al. found
that the AP2/ERF transcription factor SlERF.F5 functioned
in leaf senescence in tomato, and SlERF.F5 and SlMYC2
(a transcription factor downstream of the jasmonic acid receptor)
could physically interact by the yeast two-hybrid experiment (Chen
et al., 2022). Transcription factor SHE1 was identified as an
A B

FIGURE 8 | Colony number was counted for the cDNA library. (A) 1/1,000 dilution. (B) 1/10,000 dilution. The colony number on plate was approximately 600 under
the condition of 1:10,000 dilution.
FIGURE 9 | Identification of the integrity of the recombinant sequence of the cDNA library. M: DL 2000 Marker. 1–24: PCR verification of positive colonies. Positive
colonies were selected to evaluate recombination efficiency by PCR amplification with primers T7 and 3’AD.
June 2022 | Volume 9 | Article 907065

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Shang et al. Target Proteins of DpAP2
interacting protein of cucumbermosaic virus 1a protein in the yeast
two-hybrid system (Yoon and Palukaitis, 2021). AP2/ERF family
transcription factors ORA59 and RAP2.3 interacted in the nucleus
identified by yeast two-hybrid technology and functioned together
in ethylene responses (Kim et al., 2018). Zander et al. reported that
Frontiers in Marine Science | www.frontiersin.org 9
at least 17 plant-specific glutaredoxins interactedwith TGA2by the
yeast two-hybrid system in Arabidopsis (Zander et al., 2012).

The ubiquitous and ancient alpha-D-phosphohexomutases are
a large enzyme superfamily that exists in three domains of
organisms (Backe et al., 2020). Enzymes in alpha-D-
phosphohexomutases superfamily catalyze the reversible
conversion of phosphosugars, such as glucose 1-phosphate and
glucose 6-phosphate (Stiers et al., 2017). The phosphoglucomutase
5 (PGM5)of thealpha-D-phosphohexomutase family is a structural
muscle protein in humans (Gong et al., 2020). In the Atlantic
herring, PGM5 is a gene closely related to ecological adaptation to
the brackish Baltic Sea (Gustafsson et al., 2020). In our study, D.
TABLE 2 | Calculation of the transformation efficiency of the cDNA library.

Number of colonies on plate (1:10,000) 600

Transformant density of undiluted transformation mix 6,000,000/plate
Number of plates used for streaking out transformants 94
Total number of transformants 5.6 × 108 cfu/ml
FIGURE 10 | Prediction of conserved domains in DpAP2. The diagram was constructed based on a complete protein sequence of DpAP2 using the DOG 2.0
program. The conserved domain was analyzed by the NCBI CD-Search tool.
A B C

FIGURE 11 | The toxicity assays of DpAP2 protein in yeast cells. (A) PGBKT7-AP2N3. (B) pGBKT7-AP2N2. (C) PGBKT7. Yeast strains containing plasmids
pGBKT7-AP2N3 and pGBKT7 could grow without significant differences in the colony size and number, which suggested that plasmid pGBKT7-AP2N3 had no
effect on yeast growth and no toxicity to yeast.
A B C

FIGURE 12 | Screening of positive colonies. The positive colonies were restreaked for three times on SD/-Ade/-His/-Leu/-Trp/X-a-Gal/AbA plates. (A) The initial
screening. (B) The second screening. (C) The third screening.
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parva also lives in the brackish environment. Perhaps protein 1
(alpha-D-phosphohexomutase) is related to the halophilic
characteristic in D. parva. However, a detailed understanding of
its function is lacking in D. parva.

The interacting protein 2 of DpAP2 with protein serine/
threonine kinase activity was also identified. The serine/threonine
kinase Akt is a key factor regulating glucose and lipid energy
metabolism, which is activated in response to various stimuli such
as cell stress and various hormones and drugs (Miao et al., 2022).
The eukaryotic-like serine/threonine protein kinases play
important roles in cell growth and signal transduction in
Mycobacterium tuberculosis (Burastero et al., 2022). Protein
kinase G regulates the carbon and nitrogen metabolism by the
phosphorylation of the glycogen accumulation regulator (GarA) at
Thr21 (Burastero et al., 2022). Protein kinase B is related to the
formation of the cell shape, cell wall synthesis, and phosphorylation
of GarA at Thr22 (Burastero et al., 2022). In a word, protein serine/
threonine kinase plays an important role in cell metabolism.
However, the function of protein 2 remains unclear in D. parva.

The analysis of interacting protein 3 by NetGO 2.0 software
indicated that protein 3 had a DNA-binding transcription factor
activity. Transcription factors are proteins that help turn specific
target genes “on” or “off” by binding to the nearby DNA. The
previous studies have suggested that the AP2/ERF transcription
factor could interact with other transcription factors, which was
consistent with our study (Kim et al., 2018; Chen et al., 2022).
However, the function and interacting target genes of protein 3
remain unclear in D. parva. ChIP and ChIP-Seq will be used to
identify the target genes of protein 3 in the future.
CONCLUSION

DpAP2 is a key regulator of carotenoid biosynthesis. The DpAP2
encoding TF DpAP2 has been identified in our former study.
Frontiers in Marine Science | www.frontiersin.org 10
However, the target proteins of DpAP2 remain unknown. The
interacting proteins of DpAP2 were identified by the yeast two-
hybrid system in order to further demonstrate the function of
DpAP2 in this study. The results showed that three target proteins
were identified. This study laid a good foundation for the further
understanding of the regulatory mechanism of carotenoid
biosynthesis related to DpAP2.
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Protein No. Annotation

Protein 1 Alpha-D-phosphohexomutase
Protein 2 Protein kinase activity
Protein 3 DNA-binding transcription factor activity
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Supplementary Figure 1 | Full-length cDNA sequence of DpAP2 gene. The
initiation and termination codons were ATG and TAG, respectively. The ORF of
DpAP2 was 2,331 bp
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Supplementary Figure 2 | Full-length cDNA encoding three interacting proteins
of DpAP2. The initiation and termination codons were underlined. (A) Interacting
protein of DpAP2 (alpha-D-phosphohexomutase activity). (B) Interacting protein of
DpAP2 (protein kinase activity). (C) Interacting protein of DpAP2 (DNA-binding
transcription factor activity).

Supplementary Figure 3 | Function prediction of three interacting proteins of
DpAP2 by NetGO 2.0 software. (A) Interacting protein of DpAP2 (alpha-D-
phosphohexomutase activity). (B) Interacting protein of DpAP2 (protein kinase
activity). (C) Interacting protein of DpAP2 (DNA-binding transcription factor activity).
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