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Climate changes such as seawater acidification caused by rising atmospheric CO2 and
increased ultraviolet radiation (UVR) intensity resulting from shoaling of the upper mixed
layer may interact to influence the physiological performance of marine primary producers.
But few studies have investigated long-term (>30 days) effects of UVR under seawater
acidification conditions, along with less attention on the differential effects of long- and
short-wavelength UVA. In the present study, four spectral treatments (>280, >320, >360,
and >400 nm) under two pCO2 levels (400 and 1,000 matm) were set to investigate the
interactive effects of seawater acidification and UVR on the bloom-forming diatom
Skeletonema costatum. The results showed that UVR decreased growth and effective
quantum yield of Photosystem II (PSII) by 9%–16% and 11%–24%, respectively, but it
enhanced cell sizes significantly. Long- and short-wavelength UVA showed differential
effects on cell volume and the effective quantum yield of PSII, especially at the elevated
CO2 level. Generally, seawater acidification depressed the effective quantum yield of PSII
and cell volume by 6%–18% and 8%–39%, respectively. Additionally, the contents of key
PSII proteins (D1 and D2) decreased at the elevated CO2 level. Elevated CO2 significantly
increased the inhibition of UVR on growth in the >280 nm spectral treatment when
compared with ambient CO2, while it showed no effects in other spectral treatments.
Overall, the results indicate that the effects of seawater acidification on the ubiquitous
diatom are light wavelength-dependent.

Keywords: growth, photosynthetic performances, seawater acidification, Skeletonema costatum, UV radiation
INTRODUCTION

The oceans absorb about one-third of the atmospheric CO2 emitted by anthropogenic activities
since the industrial revolution, which leads to ocean acidification (OA) (Sabine et al., 2004). OA is
predicted to have significant effects on marine organisms at different trophic levels in the marine
ecosystem. Under the OA scenario, seawater pH and CO2−

3 concentration decrease, while
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concentrations of H+, HCO−
3 , and aqueous CO2 increase (Hurd

et al., 2019). It is supposed that OA, alongside ocean warming
and associated shoaling of the upper mixed layer and decline in
nutrient availability, would influence the marine ecosystem
dramatically (Bopp et al., 2013). For example, calcifying
organisms are considered to be more vulnerable to OA, with
decreased calcification rate (Gao et al., 2009; Albright et al., 2016;
Li et al., 2021), and varied results were found for non-calcifying
organisms due to the complexity of ocean dynamics (Gao and
Campbell, 2014). High CO2 could increase growth rates of some
centric diatom species (Wu et al., 2014), while OA could decrease
the growth of the oceanic diatom Thalassiosira oceanica (Li et al.,
2016), and no detectable effects of OA on growth and
photosynthesis of the coastal diatom Thalassiosira weissflogii
were found (Li et al., 2019). In some field studies, enhanced
diatom growth was observed in phytoplankton communities
when exposed to high CO2 (Tortell et al., 2008; Feng et al.,
2009). However, decreased abundance of microplanktonic
diatoms under OA scenario was also reported in an Antarctic
coastal community (Hancock et al., 2018). The region-specific
and species-specific responses of diatoms to OA documented in
previous studies may result from the trade-off between the
positive effects of elevated CO2 and the negative effects of
decreased pH (Gao and Campbell, 2014). Despite the varied
results, OA generally decreased the photosynthetic affinity for
inorganic carbon and thus led to the downregulation of CO2-
concentrating mechanisms (CCMs) in a range of diatoms (Raven
and Beardall, 2014). At the projected pCO2 level at the end of this
century (800–1,000 ppmv), the downregulation of CCMs is
expected to save 3%–6% of energy for carbon fixation in
diatoms (Hopkinson et al., 2011).

Phytoplankton cells are exposed to both photosynthetically
active radiation (PAR) and ultraviolet radiation (UVR, including
UVA and UVB). UVR is generally considered to have adverse
effects on the photosynthesis process of phytoplankton (Bais
et al., 2018). The influences would continue because of the long
existence of ozone-depleting substances in the atmosphere
(Williamson et al., 2014) and shoaling of the upper mixed
layer (Bopp et al., 2013). Under excessive PAR and UVR, the
reaction center of the PSII protein pigment complex in
phytoplankton cells would be damaged by reactive oxygen
species (ROS) (Salin, 1988). UVR could also damage
membrane proteins (Murphy, 1983), which are related to the
operation of CCMs and nutrient uptake. Limited studies have
focused on the effects of UVR on CCMs of phytoplankton.
Beardall et al. (2002) showed that CCM activity of Dunaliella
tertiolecta was enhanced by UVB, while UVB depressed the
activity of Na+-dependent bicarbonate transporters of the
cyanobacterium Microcystis (Song and Qiu, 2007). For nutrient
uptake, negative effects of UVB were generally reported, while
uptake stimulation was also observed (Aubriot et al., 2004).
Phytoplankton have a range of molecular mechanisms to
protect themselves from UVR damage. The diatom frustules
could attenuate UV radiation and protect cells from UV damage
(Ellegaard et al., 2016). Some benthic diatoms were found to
increase their antioxidant capacity to detoxify ROS in response to
Frontiers in Marine Science | www.frontiersin.org 2
chronic (several days) UV exposure and excessive PAR
(Rijstenbil et al., 2000). Some photoprotective pigments
accumulated and functioned as sunscreen (Ha et al., 2014),
and mycosporyne-like amino acids (MAAs) also accumulated
to cope with high light stress (Smith et al., 1992). Although
phytoplankton are equipped with these protective mechanisms,
significant negative effects caused by UVR have been observed in
numerous studies. The UVR tolerance of phytoplankton is
different from species to species (De Tommasi et al., 2018),
and this may be related to cell size (Wu et al., 2015). Additionally,
the UVR effects also depend on the intensity and fluctuation of
solar irradiance. Positive effects of UVA on photosynthetic
carbon fixation rate of coastal phytoplankton were reported
under reduced levels (Gao et al., 2007) or fast-fluctuating solar
irradiance (Helbling et al., 2003). UVA has also been shown to be
involved in the photorepair process of UVB-induced DNA
damage (Buma et al., 2003).

Phytoplankton dwelling in the upper mixed layer are
undergoing a series of variations caused by climate changes, such
as OA and enhanced UV radiation. As one of the key
photosynthetic phytoplankton groups and primary producers in
marine ecosystems, diatoms play a vital role in the transfer process
of particulate organic material (Tréguer et al., 2018). Independent
effects of OA or UVR on marine diatoms have been extensively
studied, and some studies have investigated the interactive effects of
OA and UV (Beardall et al., 2014). However, most previous studies
generally ignore the difference between long- and short-wavelength
UVA, which was suggested to have different effects on
phytoplankton (Harrison and Smith, 2011). In the present study,
we cultured Skeletonema costatum, a bloom-forming diatom
species, at two pCO2 levels (400 and 1,000 matm) to investigate
the effects of OA after chronic exposure to four spectral treatments
(>280, >320, >360, and >400 nm), with special focus on the
differential effects of long- and short-wavelength UVA.
MATERIALS AND METHODS

Culture Conditions
S. costatum was originally isolated from the coastal water of
Gaogong Island, Jiangsu province (34.7074°N, 119.4926°E). S.
costatum cells were precultured under natural solar irradiance,
and autoclaved natural seawater enriched with f/2 medium
(Guillard and Ryther, 1962) was used for cultures. Seawater
was collected from coastal regions of Haizhou Bay, and the mean
values of in situ nitrate and phosphate concentrations were 14
and 4 mmol l-1, respectively. Precultures were maintained in 500
ml polycarbonate bottles before cells were transferred to quartz
tubes in a water tank, and bottles were covered by two layers of
neutral-density screens to avoid high light stress and achieve a
more realistic light intensity, which was experienced by
phytoplankton in the upper mixed layer. Intensities of PAR
(400–700 nm), UVA (315–400 nm), and UVB (280–315 nm)
were recorded by a broadband solar radiometer (LoggerNet
CR3000, Campbell). The culture temperature was controlled at
20°C by a thermostat (HYH-2DR-B, Sunsun).
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Experimental Setup
Two pCO2 levels (400 and 1,000 matm) and four spectral treatments
(>280, >320, >360, and >400 nm) were set, and triplicate cultures
were used for each treatment. S. costatum was cultured at 20°C in
100-ml quartz tubes and was aerated with sterile ambient air (400
matm) or CO2-enriched air (1,000 matm). All the tubes were
cultured in a water tank with two layers of neutral-density
screens. The high pCO2 levels were achieved by a CO2 plant
incubator (HP 1000 G-D, Ruihua). Different light wavelength
treatments were realized by using ultraviolet filters that could
transmit light with wavelengths above 280, 320, 360, and 400 nm,
respectively (Figure 1). Cells were diluted with fresh medium every
3 days, and cell concentrations were controlled at less than 2 × 105

cells ml-1. The pH variation caused by cell metabolism was less than
0.05 units. After acclimation for at least 30 days, the following
physiological parameters were sampled and measured.

Growth and Cell Volume Measurements
Triplicate samples of all treatments were collected at 24 and 72 h
after dilution and were fixed with Lugol’s solution to estimate cell
density and volume. The plankton counting chamber (DSJ-01,
Xundeng) and optical microscope (DM500, Leica) were used to
count cells. Specific growth rates of cells were calculated as
follows: m = (LnNt-LnN0)/(t-t0), where Nt represents the cell
concentration at time t and N0 represents the cell concentration
at time t0; in this experiment, t – t0 = 2 d. Cells were
photographed with a digital camera (ToupCam, Toup Tek),
and the diameter and height of cells were measured by
ToupView software, and cell volume was calculated according
to the equation for a cylinder.

Chlorophyll a and Biogenic
Silica Measurements
Each sample of 80 ml for chlorophyll ameasurement was filtered
onto a GF/F filter, and then 4 ml of methanol was added.
Frontiers in Marine Science | www.frontiersin.org 3
Chlorophyll a was extracted at 4°C overnight in darkness.
Then, the absorption values of supernatants at 632, 665, and
750 nm were detected by an ultraviolet spectrophotometer
(Ultrospect 3300 pro, Amersham Bioscience). The chlorophyll
a concentration of S. costatum was calculated by the equation of
Ritchie (2006).

Each sample of 80 ml for biogenic silica (BSi) measurement
was filtered onto a polycarbonate filter (25 mm, Merck
Millipore). Filters were then dried at 80°C overnight. BSi on
each filter was digested by NaOH neutralized with HCl as
previously described (Li et al., 2021). After adding molybdate
soln and reducing agent into each tube, the absorption was
measured at 810 nm by an ultraviolet spectrophotometer
(Ultrospect 3300 pro, Amersham Bioscience) according to
Brzezinski and Nelson (1995).

Chlorophyll Fluorescence Measurement
The effective quantum yield of PSII (Fv’/Fm’) and rapid light
curves (RLCs) were measured by a handheld chlorophyll
fluorometer (AquaPen-C, AP-P 100). Cells were concentrated
by gentle vacuum filtration, and RLCs were measured at eight
light intensities (0, 10, 20, 50, 100, 200, 500, and 1,000 mmol
photons m-2 s-1) lasting for 10 s each. Samples were acclimated to
culture light condition before RLC measurements to avoid an
induction effect. Relative electron transport rates (rETR) were
estimated as follows: rETR = PAR × Fv’/Fm’ × 0.5, where PAR
represents the actinic light intensity (mmol photons m-2 s-1); Fv’/
Fm’ represents the effective quantum yield of PSII; 0.5 is based on
the assumption that PSII receives half of all absorbed quanta.
RLCs were fitted as follows: rETR = PAR/(a × PAR2 + b × PAR +
c), where a, b, and c are model parameters. Then, three
parameters were used to calculate the maximum relative
electron transport rate (rETRmax), apparent photon transfer
efficiency (a), and light saturation point (Ik) according to
Eilers and Peeters (1988).
FIGURE 1 | Transmittance spectra of different ultraviolet filters.
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Photosynthesis and Respiration
Measurements
Photosynthesis vs. light intensity (P-I) curves were measured at
20°C by a Clark-type oxygen electrode (Oxygraph+, Hansatech).
Cells were gently concentrated onto cellulose acetate membranes
(47 mm, Xinya) and then were resuspended in 5 ml Tris-buffered
medium. Respiration rates in darkness and net photosynthetic
oxygen evolution rates at eight light intensities (0, 10, 20, 50, 100,
200, 400, 600, and 1,000 mmol photons m-2 s-1) were identified. A
halogen lamp (QVF135, Philips) was used as the light source,
and the increasing light intensities were realized by adjusting the
distance between the lamp and the electrode. P-I curves were
fitted according to Henley (1993): P = Pm × tanh (a×PAR/Pm) +
Rd, where P represents photosynthetic rate, Pm represents light-
saturated photosynthetic rate, a is apparent photon transfer
efficiency, PAR is light intensity, and Rd is dark respiration
rate. Ik (light saturation point) and Ic (light compensation
point) were calculated as follows:Ik¼  Pm = a, Ic¼  Rd = a

Protein Measurement
The abundance of PsbA (D1), PsbD (D2), PsbB (CP47), and
RbcL proteins of cells in different treatments was quantified as
previously described (Li et al., 2021). Briefly, protein samples
were separated by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) (12%) and were transferred onto
polyvinylidene difluoride (PVDF) membranes that were then
immersed in blocking solution with antibodies (D1, D2, CP47,
Rubisco L; Agrisera) for 1 h, and then goat anti-rabbit
secondary antibodies were used. Blots were developed by
using an enhanced chemiluminescence (ECL) reagent and
were quantified with a chemiluminescence detection system
(Tanon 5500, Tanon).

Data Analyses
Data were presented as mean ± SD (standard deviation). Data of
specific growth rate were analyzed by a repeated-measures ANOVA.
One-wayANOVAwas used to detect differences in other parameters
among solar spectral irradiance treatments. Tukey test was used for
post-hoc analysis when P values were <0.05. The independent-
samples t-test was applied to compare differences between two
pCO2 levels. The general linear model was used to assess the
interactive effects of CO2 level and spectral treatment on parameters.
RESULTS

Solar Irradiance
The experiment was conducted in summer time and lasted for
about 1 month. During the experimental period, the average
solar irradiance at noon in a day could reach 238.41 W m-2

(Figure 2A), and the maximal total daily doses were found in day
6 (PAR: 10.61 MJ m-2, UVA: 1.17 MJ m-2, UVB: 0.05 MJ m-2),
while the minimum values were observed in day 4 (PAR: 1.77 MJ
m-2, UVA: 0. 20 MJ m-2, UVB: 0.01 MJ m-2; Figure 2B). Two
layers of neutral-density screens filtered out about 60% of
solar irradiance.
Frontiers in Marine Science | www.frontiersin.org 4
Growth Rate and Cell Volume
The specific growth rates in different treatments ranged from 1.50 ±
0.12 to 1.94 ± 0.10 d-1. The growth rate of cells in the PAR treatment
(>400 nm) was significantly higher than that in other treatments
regardless of CO2 treatments, except for no significant difference
between >360 and >400 nm spectral treatments at the elevated CO2

level (Figure 3). Compared with cells in the >400 nm spectral
treatment, cells exposed to UVR showed 9%–16% lower growth
rate. In the same spectral treatment, high CO2 always showed no
effects on growth of S. costatum cells. However, HC cells in the >280
nm spectral treatment showed 12% lower growth rate than LC ones
(P = 0.007).

UVR significantly increased the cell volume of S. costatum at both
CO2 levels (Figure 4). At ambient CO2 levels, cells in the >360 nm
spectral treatmenthadmuch smaller volumes than those of the>320-
and >280 nm spectral treatments (P < 0.05), and cells in the PAR
treatmenthad the smallest volume.Cells at thehighCO2 level showed
a similar trend as those at ambient CO2 levels, except for no
significant difference between >360 and >400 nm spectral
treatments. Elevated CO2 decreased cell sizes in all treatments
except for the >400 nm spectral treatment (P = 0.001, P = 0.002,
P = 0.009 for the >280, >320, and >360 nm spectral treatments,
respectively). CO2 level and spectral treatment had a notable
interaction on cell volume (P = 0.002).

Chlorophyll a and Biogenic Silica Contents
At ambient CO2 levels, chl a content of cells in the >280 nm
spectral treatment was significantly lower than that in other
treatments (P < 0.05), while there were no significant differences
among the four spectral treatments at the elevated CO2 level
(Figure 5A). Elevated CO2 resulted in higher chl a content in all
spectral treatments (P < 0.05). The CO2 level and spectral
treatment had a notable interaction on chl a content (P = 0.025).

The BSi contents were unaltered by the spectral treatments,
except for the lower content in cells treated by the >280 nm
spectral treatment than that of >400 nm spectral treatment at the
elevated CO2 level (Figure 5B). Elevated CO2 had no significant
effect on BSi contents for the same spectral treatment.

Chlorophyll Fluorescence
The effective quantum yield of PSII (Fv’/Fm’) significantly
increased when short wavelengths were cut off (Figure 6) at
both CO2 levels, and the highest value was observed in the >400
nm spectral treatment (LC = 0.70 ± 0.01, HC = 0.66 ± 0.01). For
the same spectral treatment, high CO2 significantly reduced
Fv’/Fm’ by 6%–18% (P < 0.001). The CO2 level and spectral
treatment had a notable interaction on Fv’/Fm’ (P < 0.001).

Different spectral treatments had no significant effects on Ik
(light saturation point), a (apparent photon transfer efficiency),
and rETRmax (the maximum relative electron rate) at both CO2

levels (Figure 7 and Table 1), except for the lower Ik in the >400
nm spectral treatment compared with the >320 nm spectral
treatment at the high CO2 level. High CO2 significantly
decreased the a value in the >320 nm spectral treatment
(P = 0.04) and decreased rETRmax and Ik in the >400 nm
treatment (P = 0.020, P = 0.023, respectively).
June 2022 | Volume 9 | Article 905255

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Li et al. Acidification Exacerbates Effects of UVR
FIGURE 3 | Specific growth rate of S. costatum acclimated to ambient (LC) and elevated CO2 (HC) in different spectral treatments.
A

B

FIGURE 2 | Average irradiance levels (A) and daily doses of (B) of PAR, UVA, and UVB during the experiment period. PAR, photosynthetically active radiation; UVA,
ultraviolet A; UVB, ultraviolet B.
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Photosynthesis and Respiration
According to P-I curves, the maximum photosynthetic rate (Pm),
dark respiration rate (Rd), and other parameters were calculated
(Figure 8). At ambient CO2 levels, the highest Pm was observed
in cells treated by the >400 nm spectral treatment and was
Frontiers in Marine Science | www.frontiersin.org 6
significantly higher than that in the >320 nm spectral treatment
(P < 0.05, Table 1). The lowest Rd was also observed in cells
treated by the >400 nm spectral treatment, which was
significantly lower than that of >280 and >360 nm spectral
treatments (P < 0.05). The highest values of Ik and Ic were
A

B

FIGURE 5 | Chla (A) and BSi contents (B) of S. costatum acclimated to ambient (LC, blackbars) and elevated CO2 (HC, whitebars) in different spectral treatments. The
different uppercase and lowercase letters represent significant differences between different spectral treatments under LC and HC conditions, respectively.
FIGURE 4 | Cell volume of S. costatum acclimated to ambient (LC, black bars) and elevated CO2 (HC, white bars) in different spectral treatments. The different
uppercase and lowercase letters represent significant differences between different spectral treatments under LC and HC conditions, respectively.
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both detected in the >360 nm spectral treatment. At elevated
CO2 levels, there were no significant differences in all of these
parameters among the four spectral treatments. Elevated CO2

significantly decreased Pm by 9% in the >280 nm spectral
treatment (P = 0.01). Elevated CO2 significantly enhanced Rd

in all spectral treatments except for the >400 nm spectral
treatment. Similarly, the Ic was also enhanced in all spectral
treatments (P < 0.05).
Frontiers in Marine Science | www.frontiersin.org 7
Protein Concentrations
Generally, spectral treatment showed no significant effect on
the abundance of these key proteins. Elevated CO2 decreased
the D1 and D2 protein contents, while it did not change the
contents of CP47 and RbcL, with the exception that cells
grown at elevated CO2 levels had lower CP47 contents than
those at ambient CO2 levels for the >360 nm spectral
treatment (Figure 9).
FIGURE 6 | The effective quantum yield of PSII (Fv’/Fm’) of S. costatum acclimated to ambient (LC, black bars) and elevated CO2 (HC, white bars) in different
spectral treatments. The different uppercase and lowercase letters represent significant differences between different spectral treatments under LC and HC
conditions, respectively.
FIGURE 7 | The RLCs of S. costatum acclimated to ambient (LC, black bars) and elevated CO2 (HC, white bars) in different spectral treatments.
June 2022 | Volume 9 | Article 905255
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TABLE 1 | Photosynthetic parameters of P-I and rapid light curves for S. costatum acclimated to ambient and elevated CO2 in different spectral treatments.

Treatments Ik (rETR) (mmol photons
m-2 s-1)

a (rETR) rETRmax Pm (pmol O2 cell
-1

h-1)
a*100 Rd (pmol O2 cell

-1

h-1)
Ik (mmol photonsm-2

s-1)
Ic (mmol photonsm-2

s-1)

280LC 381 ± 102A 0.21 ±
0.05A

75 ± 4A 0.78 ± 0.02AB* 0.6 ±
0.1A

0.09 ± 0.02A* 133 ± 13A 15 ± 3AC*

280HC 399 ± 11ab 0.20 ±
0.01a

79 ± 2a 0.71 ± 0.02a 0.5 ±
0.1a

0.20 ± 0.02a 131 ± 17a 37 ± 3a

320LC 372 ± 40A 0.21 ±
0.01A*

77 ±
11A

0.56 ± 0.18A 0.4 ±
0.1A

0.04 ± 0.02BC* 147 ± 12A 9 ± 2BC*

320HC 413 ± 34a 0.18 ±
0.02a

73 ± 5a 0.94 ± 0.24a 0.5 ±
0.2a

0.29 ± 0.14a 174 ± 16a 51 ± 12a

360LC 419 ± 66A 0.18 ±
0.03A

73 ± 4A 0.84 ± 0.11AB 0.4 ±
0.1A

0.07 ± 0.03AC* 213 ± 25B 17 ± 4A*

360HC 370 ± 27ab 0.19 ±
0.02a

70 ± 5a 1.01 ± 0.10a 0.6 ±
0.2a

0.28 ± 0.11a 192 ± 68a 49 ± 3a

400LC 419 ± 37A* 0.20 ±
0.02A

81 ± 1A* 0.92 ± 0.13B 0.5 ±
0.1A

0.01 ± 0.01B 186 ± 30AB 2 ± 2B*

400HC 340 ± 10b 0.20 ±
0.01a

68 ± 6a 0.98 ± 0.32a 0.7 ±
0.4a

0.30 ± 0.19a 150 ± 36a 39 ± 17a

Ik (rETR) is light saturation point obtained from RLCs, a (rETR) is apparent photon transfer efficiency obtained from RLCs, rETRmax is maximum relative electron transport rate, Pm is light-
saturated photosynthetic rate, a is apparent photon transfer efficiency, Rd is dark respiration rate, Ik is light saturation point, Ic is light compensation point. Asterisks represent significant
differences (P < 0.05) between two CO2 levels under the same spectral treatment (t-test). Different letters represent significant differences (P < 0.05) between different spectral treatments at
the same CO2 level (Uppercase letters for LC treatment, lowercase letters for HC treatment).

Li et al. Acidification Exacerbates Effects of UVR
DISCUSSION

Effects of UVR on Growth and
Photosynthesis of S. costatum
In the present study, UVR decreased the specific growth rate of
S. costatum by 9%–16%. At ambient CO2 levels, no significant
differences were observed among the spectral treatments with
wavelengths shorter than 400 nm. It means that UVB did not
exacerbate the negative effects of short- and long-wavelength
UVA at ambient CO2 levels. This may be caused by the low
UVB dose in the present study, as we added two layers of
neutral-density screens. Effects of UVR (specially UVA) are
Frontiers in Marine Science | www.frontiersin.org 8
supposed to be dose-dependent (Gao et al., 2007). For coastal
phytoplankton assemblages of the South China Sea, the
irradiance thresholds at which the effects of UVR shift from
positive to negative are reported in the ranges of 37.2–50.1 W
m-2 and 1.76–2.33 W m-2 for UVA and UVB, respectively (Gao
et al., 2007). In the present study, the mean UVA (6.4 W m-2)
and UVB (0.28 W m-2) irradiances were under the lower
limited values. However, no positive effects of UVR were
observed in the present study. This may be related to the
species-specific tolerance to high light (Key et al., 2010) and
UVR (Wu et al., 2015). The reduced growth rate was
accompanied by the increased cell volume in cells exposed to
FIGURE 8 | Photosynthesis-light curves (P-I curves) of S. costatum acclimated to ambient (LC, black bars) and elevated CO2 (HC, white bars) in different spectral treatments.
June 2022 | Volume 9 | Article 905255

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Li et al. Acidification Exacerbates Effects of UVR
UVR treatments. Nahon et al. (2010) also found that the S.
costatum cells exposed to UVR were about twice the biovolume
of the control cells. This means that, in the presence of UVR,
the thickness of silicified cell wall became thinner given the
unaltered BSi content per cell and markedly increased
cell volume.

The effective quantum yield of PSII of S. costatum cells was
depressed by UVR by 11%. However, this did not indicate the
irreversible damage of PSII system by UVR, as shown by the
unaltered rETRmax and D1 and D2 protein abundance. Similarly,
there were no differences in the light-saturated photosynthetic rate
(determined under PAR) between cells exposed to >280 and >400
nm spectral treatments. As mentioned above, this may be partly
related to the low UVB used during the experimental period.
Additionally, the stimulated activity of extracellular carbonic
anhydrase of S. costatum cells may also play a part (Wu and
Gao, 2009).

Long- and short-wavelength UVA showed differential effects
on cell volume and the effective quantum yield of PSII of S.
costatum, especially at elevated CO2 levels. Cells treated by short-
wavelength UVA had lower effective quantum yield and larger
cell sizes than cells in the long-wavelength UVA treatment. The
differential effects of long- and short-wavelength UVA were also
reported in both marine (Mengelt and Prézelin, 2005) and
freshwater phytoplankton communities (Harrison and Smith,
2011). It is reasonable to assume that the difference in inhibition
effects between long- and short-wavelength UVA will be
enlarged with the UVR irradiance increases. As the short-
wavelength UVR attenuates more rapidly with depth in most
water bodies, and dissolved organic matter influences the
attenuation coefficient of UVR (Kirk, 1994), the effects of UVR
could be depth-dependent and be related to the concentration of
organic matter in water columns. Thus, it is important to
investigate the effects of long-wavelength UVR and consider
Frontiers in Marine Science | www.frontiersin.org 9
the distinct light environment at different water depths in
further studies.

Interactive Effects of Ocean Acidification
and Spectral Exposure
Cells grown in HC treatment always showed lower growth rates
than those of LC population, with increasing respiration but
smaller cell size. This might be related to the high energy cost for
cells to maintain intracellular acid–base homeostasis (Raven,
2011). In all spectral treatments, elevated CO2 significantly
decreased the contents of D1 and D2 protein, which includes
both photochemically active PSII and PSII that is inactivated but
retains D1 and D2 subunits. This was in line with the lower
effective quantum yield of PSII at higher CO2. Along with the
faster removal of PsbA from a pool of photoinactivated PSII
centers (Gao et al., 2018), elevated CO2 could alter the dynamic
balance of photoinactivation and repair of PSII.

The impacts of elevated CO2 on S. costatum depended on
light wavelengths, as shown by the changes in specific growth
rate. Elevated CO2 significantly exacerbated the inhibition of
UVR on growth in the >280 nm spectral treatment when
compared with ambient CO2, while it showed no effects in
other spectral treatments. This indicates that elevated CO2

exacerbates the negative effects of UVB on the growth of S.
costatum. Similarly, the diatom Thalassiosira pseudonana was
more sensitive to UVR (UVA: 6.91 W m-2; UVB: 0.44 W m-2)
after being acclimated to elevated CO2 for 7–10 days (Sobrino
et al., 2008). However, increased CO2 partly counteracted the
UVB (1.2 W m-2)-induced damage on Phaeodactylum
tricornutum (Li et al., 2012). The inconsistency seems to be
related to the UVR dose used and CCM efficiency of species
tested in studies. UVB was shown to have species-specific effects
on CCMs of different phytoplankton (Beardall et al., 2002; Song
and Qiu, 2007), which could influence the energy budget of cells.
FIGURE 9 | Quantitative analysis of proteins of S. costatum acclimated to ambient (LC, black bars) and elevated CO2 (HC, white bars) in different spectral treatments. The
different uppercase and lowercase letters represent significant differences between different spectral treatments under LC and HC conditions, respectively.
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The negative effects of increased CO2 on growth of S.
costatum were found when light intensity was higher than 178
mmol photons m-2 s-1 (Gao et al., 2012). In the present study, the
effective quantum yield of PSII was 6% lower at elevated CO2

levels compared with ambient CO2 levels, while no effects of CO2

on growth were detected in this spectral treatment due to the
large variations. Dynamic light could impose extra stress on the
photosynthetic apparatus, resulting in decreased growth and
carbon fixation rates compared with constant light (Hoppe
et al., 2015). Thus, it should be worth noting that the results
obtained under constant light condition cannot be simply
extrapolated to real oceans. Additionally, the effects of elevated
CO2 were shown to be modulated by other factors, such as
nutrient availability (Hong et al., 2017), temperature (Taucher
et al., 2015), competition with other photoautotrophs (Gao et al.,
2019), and combination of temperature and photoperiod (Li
et al., 2021). It is crucial to clarify the interactions of the main
environmental factors to make accurate predictions about the
effects of climate changes on marine primary producers.
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