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The overlapping effect of anthropogenic activities and climate change are major drivers 
for a shift in coastal marine phytoplankton biomass. Linear regression analyses are not 
sufficient to detect the nonlinear relationship between complex environmental factors and 
phytoplankton shift. Here, an Artificial Neural Network (ANN) model is applied to quantify 
the relative contribution of pearl oyster farming, temperature and rainfall on phytoplankton 
increases in Cygnet Bay, Australia. The result shows that increased oyster farming ranks 
among the most important factors for phytoplankton increases, with a relative importance 
of 54% for diatoms and 74% for dinoflagellates; temperature plays a second important role 
with a positive impact on diatoms (relative importance of 25%) but a negative impact on 
dinoflagellates (relative importance of 19%); rainfall is the least important which enhances 
diatom biomass only (relative importance of 21%). Our ANN analysis provides a useful 
approach for quantifying the complex interrelationships affecting phytoplankton shift.

Keywords: paleoecology, diatom, dinoflagellates, sterols, pearl oyster farming, climate change, Northwest  Australia

INTRODUCTION
Over the past several decades, coastal phytoplankton has been facing strong and rapid changes 
forced by a combination of human activities and climate change (Boyce et al., 2010; Cloern and 
Jassby, 2010). Nutrient enrichment caused by aquaculture, coastal development and pollution are 
just a few of the many ways humans impact coastal seas altering phytoplankton dynamics (Liu 
et al., 2013; Glibert, 2020). Meanwhile, climate-driven changes in temperature, precipitation and 
large-scale climate patterns can have major consequences for phytoplankton through changes in 
hydrologic conditions or macronutrient concentrations (Lewandowska et al., 2014; Thompson et al., 
2015; Lin et al., 2020). In general, it is thought that climate change will result in a decrease in marine 
phytoplankton productivity as ocean warming enhances stratification, reducing nutrient supply to 
the upper ocean (Behrenfeld et al., 2006; Boyce et al., 2010). However, the situation tropical coastal 
seas may well be different with changes to rainfall patterns and cyclone frequency and intensity, 
coastal land use and even wildfires, resulting in increased nutrient inputs which enhance coastal 
phytoplankton productivity (Yuan et al., 2020; Liu et al., 2022). Understanding how these multiple 
environmental variables have influenced phytoplankton in the past is fundamental for the prediction 
of future changes, and to help develop policies for ecosystem health (Levin et al., 2015).

Paleoecological analysis of geochemical proxies in the sediments is increasingly being applied 
to investigate and interpret environmental changes, due to its high efficiency to acquire long-term 

doi: 10.3389/fmars.2022.904461

ORIGINAL RESEARCH
published: 18 July 2022

http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.904461&domain=pdf&date_stamp=2022-07-18
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#articles
mailto:dyliu@sklec.ecnu.edu.cn
https://doi.org/10.3389/fmars.2022.904461
https://www.frontiersin.org/articles/10.3389/fmars.2022.904461/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.904461/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.904461/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.904461/full
https://doi.org/10.3389/fmars.2022.904461
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
http://creativecommons.org/licenses/by/4.0/


Yuan et al. Multiple Factors Driving Phytoplankton Shift

2Frontiers in Marine Science | www.frontiersin.org July 2022 | Volume 9 | Article 904461

ecological records (Smittenberg et  al., 2004; Xing et  al., 2016; 
Yuan et  al., 2018). Most of these studies have assumed a 
simple linear relationship between environmental factors and 
phytoplankton, and attributed to the most relevant factor via 
straightforward visual inspection or linear regression analyses. 
However, the complex nature of phytoplankton dynamics, 
in particular multivariate (Irwin et  al., 2012; Mutshinda 
et  al., 2013) and nonlinearity (Jochimsen et  al., 2012; Feng 
et  al., 2021), make traditional statistical tools such as Pearson 
correlation analysis and Principal component analysis (PCA) 
difficult to explain all the complex interrelationships affecting 
phytoplankton dynamics. There is an imperative to apply more 
elaborate methods to better understand the complex relationship 
between the environmental forces and phytoplankton response. 
Artificial Neural Network (ANN) is a type of machine learning 
algorithm inspired by the functioning of the brain and nervous 
system (Rumelhart et al., 1986). The capability of approximating 
nonlinear multivariate functions with high accuracy and stability 
makes them particularly suitable to solve complex ecological 
problems (Gevrey et al., 2003). This approach has been proved to 
attain better performance than traditional linear statistical tools 
(Maravelias et al., 2003) and successfully applied to solve a range 
of relation recognition problems from landscape (Buckland et al., 
2019) to microbial community (Santos et al., 2014). Specifically 
for phytoplankton research, ANNs have been applied in different 
aquatic environments such as rivers (Jeong et al., 2006), lakes (Li 
et  al., 2007), estuaries (Coutinho et  al., 2019), and open ocean 
(Mattei & Scardi, 2020) to understand the influence of different 
environmental factors on phytoplankton.

The Kimberley coast, tropical Australia (Figure 1), is a remote 
region with a small population living in small townships spread 
of a very large area, but is undergoing increasing pressures from 
anthropogenic activities and climate variability (Lough, 2008; 
O’Donnell et  al., 2015). Field observations and paleoecological 
data suggested that significant increases in phytoplankton 
productivity have occurred over the past several decades 
(Furnas & Carpenter, 2016; Liu et al., 2016; Yuan et al., 2018). 
Most evidence demonstrated that climate-induced changes in 
temperature and rainfall were the dominant drivers because 
warming directly affected phytoplankton metabolic rates, and 
rainfall associated with increased tropical cyclones can enhance 
nutrient supply (Yuan et al., 2018; Yuan et al., 2020). In addition, 
nutrient enrichment from mariculture (Liu et al., 2016), seasonal 
urban runoff and contaminated groundwater inputs (Estrella 
et  al., 2011; Gunaratne et  al., 2017) can elevate phytoplankton 
production significantly at the local scale. It is acknowledged that 
multiple factors may jointly increase phytoplankton biomasses 
in this region, however, the effects of each driver still lack 
quantitative assessment. The climatic factors, temperature and 
rainfall, and anthropogenic history are significantly correlated 
and so estimated effects will also be correlated. Ideally, a process-
based ecological model would be used to simulate phytoplankton 
responses to climatic and anthropogenic stressors. However, 
these mechanistic models are not yet established in the Kimberley 
coast. Therefore, the data-driven empirical approach of ANN 
analysis would be highly useful, considering its strong capability 
to unravel the complex relationships between ecological variables.

In this study, we explored the potential for novel applications 
of machine learning techniques (ANN) to improve our 
understanding of the relationship between climatic and 
anthropogenic disturbances and long-term phytoplankton 
changes. Firstly, we analyzed four biomarker proxies (TEX86

H 
index, long-chain n-alkanes, brassicasterol, and dinosterol) in 
the sediment core obtained from Cygnet Bay by Liu et al. (2016) 
to reconstruct the records of Sea Surface Temperature (SST), 
rainfall, and the diatom and dinoflagellate biomasses, respectively. 
The applications of these biomarker proxies in coastal waters of 
north-western Australia have been validated by previous studies 
(Burns et  al., 2003; Yuan et  al., 2018). Then, an ANN model 
was built with the paleoecological data and collected historical 
archives. This ANN model was carefully validated to ensure that 
it could provide accurate results without biases or overfitting. We 
demonstrate the use of the ANN model to quantify the relative 
importance of pearl oyster farming, SST and rainfall for diatom 
and dinoflagellate changes during the past century.

MATERIALS AND METHODS

Core Information
The core used in this study was from Liu et al. (2016) collected 
by SCUBA divers in 2011. Liu et al. (2016) chose two sites, with 
one site under the direct influence of pearl oyster farming and the 
other a reference site 1.5 km away from pearl oyster farming and 
aimed to understand the impact of pearl oyster farming on the 
sediment quality in Cygnet Bay. Chronology and geochemical 
parameters including total organic matter, carbon and nitrogen 
isotopes, and C/N were analyzed in both sites (Liu et al., 2016). 
A subsequent study by Yuan et al. (2018) chose the reference site 
and analyzed biomarker proxies including TEX86, long-chain 

FIGURE 1 |   A schematic map showing the sampling sites * Core CB1) 
along the Kimberley coastline in North-Western Australia.
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n-alkanes, brassicasterol, and dinosterol. They aimed to verify 
the applicability of the biomarker proxies and to investigate the 
climate effects on phytoplankton in Cygnet Bay. Here, we used 
the unpublished biomarker data from the pearl oyster farming 
site (Core CB1, 16° 28’ S, 123° 02’ E, depth: 11.5 m; Figure 1) to 
further understand the different role of pearl oyster farming and 
climate factors driving phytoplankton changes. The chronology 
of Core CB1 was cited from Liu et al. (2016), which generated 
a sedimentation rate of 1.11  cm yr-1, covering a time span of 
approximately 1910-2011.

Biomarker Analysis
The core was sectioned at 1 cm intervals. Then, the subsamples 
were extracted with dichloromethane/MeOH, and the neutral 
lipids were extracted with hexane and separated into two 
fractions using silica gel chromatography. The nonpolar lipid 
fraction was eluted with hexane, and the polar lipid fraction 
was eluted with dichloromethane/methanol. Subsequently, the 
polar fraction was divided into two parts, one derivatized using 
N, O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) and the 
other filtered by PTFE membrane (0.45 μm). The long-chain 
n-alkanes, brassicasterol, and dinosterol were quantified by GC 
(Agilent 6890N) with an FID detector. Glycerol Dialkyl Glycerol 
Tetraethers (GDGTs) analysis was performed by HPLC-MS 
(Agilent 1200/Waters Micromass-Quattro UltimaTM Pt) with 
APCI probe and Prevail Cyano Column.

The TEX86
H index was calculated based on the relative 

abundance of GDGTs defined by Kim et al. (2010) (Eq. 1) and 
converted into SST according to the global equation (Eq. 2) (Kim 
et al., 2010).
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where H stood for high temperature regions, the numbers 1-3 
indicated the number of cyclopentane rings in GDGTs and Cren’ was 
the regioisomer of crenarchaeol.

The long-chain n-alkanes (C27 + C29 + C31), specific to higher 
land plants, were widely used to access the impact of terrestrial 
input in marine sediments in terms of changes in rainfall, river 
discharge or dust input (Eglinton & Hamilton, 1967; Seki et al., 
2003). A previous paper in Cygnet Bay have compared the down-
core variations of long-chain n-alkanes with rainfall as well as the 
river discharge, and they found very similar increasing patterns 
(Yuan et al., 2018). The increasing trend of long-chain n-alkane 
in Core CB1 also matched well with the instrumental rainfall 
observations (Figure S1). Thus, we used long-chain n-alkanes to 
represent rainfall (terrestrial influence) in this study.

A B D EC

FIGURE 2 | Profiles of TOC normalized brassicasterol and dinosterol contents (A, B), TEX86
H temperature (C), long chain n-alkane contents (D), and total pearl 

oyster catch (E). The solid lines show shift trends assessed by sequential t test analysis of regime shift and numbers are regime shift index. Significant level is set to 
p< 0.05. The dashed line in total pearl oyster catch is calculated by assuming an average weight of 1 kg for each pearl oyster.
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Data Source and Statistical Analysis
The practice of the pearl industry in Western Australia has 
typically involved two steps: first, wild pearl oysters Pinctada 
maxima with appropriate sizes were collected by fishing vessels 
in shallow coastal waters; second, the collected pearl oysters 
were cultured to produce pearls in pearl farms. The pearl 
production and pearl farm size were closely related to the 
annual caught numbers of wild pearl oyster shells (Fletcher 
et al., 2006). The Brown family, who own and manage Cygnet 
Bay Pearls, started farming in 1960 at low density; the farm 
size and stock level expanded rapidly since modern long-line 
culture established in the 1980s (www.cygnetbaypearlfarm.
com.au/; also see Liu et  al., 2016). These changes show an 
excellent coincidence with the total pearl oyster catch in the 
Broome area from 1960 to 2011 (Figure  2E; data obtained 
from the Department of Primary Industries and Regional 
Development; www.fish.wa.gov.au). Despite being a quota 
managed fishery, generally, pearl oyster catch is regarded as 
a good indicator the scale of pearl farming activity despite 
some fluctuations in demand for wild shell driven by hatchery 
produced shell supplementing wild caught shell from the mid-
1990s to 2006 (when disease affected hatchery production) 
and the 2008 global financial crisis affecting demand for pearls 
(James Brown, Cygnet Bay Pearls, personal communication). 
Thus, we used pearl oyster catch numbers in the Broome area 
to represent the farming intensity in Cygnet Bay. The data from 
1960 to 1978 was collected with catch weight (tonne). To keep 
consistency, we calculated the catch number for this period by 
assuming an average weight of 1 kg per pearl oyster.

Interpolation analysis used Origin 8.0 software (mathematics: 
interpolate) to reduce asynchronous errors between sediment 
records and collected historical archives. Pearson correlation 
analysis and principle component analysis (PCA) used SPSS 
16 (Statistical Package for the Social Sciences Inc.) to detect 
linear correlations between phytoplankton biomass and 
environmental variables. The sequential t test analysis of regime 
shifts (STARS; www.BeringClimate.noaa.gov) (Rodionov, 
2004; Rodionov and Overland, 2005) was written in VBA for 
Microsoft Excel to detect the timing and magnitude of the shift 
changes in each record. The cutoff length (l) was set to 10 with 
a significant level of 5%.

Artificial Neural Network (ANN) Model
A typical ANN’s structure consists of 3 interconnected layers: an 
input layer, one or more hidden layers, and an output layer, with 
each layer containing one or more neurons (Supplementary 
Figure S2). The neurons are connected with the next layer 
neurons with adjustable weights and each connection represents 
one computation. During training, the weights are adjusted 
over each iteration towards values that can minimize the errors 
between calculated output and actual output. This procedure is 
repeated until the errors become small enough. A more detailed 
description can be found in Coutinho et al. (2019) and Krogh 
and Anders (2008).

We carried out ANN analyses in the R environment version 
4.1.1 (R Core Team, 2021). The ‘nnet’ function from package 
‘nnet’ (Ripley et al., 2016) was used to train networks. The ‘garson’ 
and ‘olden’ functions from package ‘NeuralNetTools’ (Beck, 2018) 
were used for importance analysis. The ‘lek profile’ function from 
package ‘NeuralNetTools’ was used for sensitivity analysis. A 
three-layer ANN was built with three input neurons (pearl oyster 
farming, SST and rainfall), one hidden neuron and two output 
neurons (diatom and dinoflagellate abundances) (Supplementary 
Figure S2). We chose pearl oyster farming, SST and rainfall as the 
input variables in the ANN model because they were explicitly 
suggested as the main drivers for phytoplankton changes in this 
region (Liu et al., 2016; Yuan et al., 2018; Yuan et al., 2020). The 
pearl oyster farming activities were assumed zero before it was 
established in 1960. All input and output data during the period 
from 1910 to 2011 were normalized by scaling it into the [0, 1] 
interval and randomly divided into the training and validation 
samples prior to training. ANN performance was evaluated by 
calculating the Pearson Correlation Coefficients for training 
(PCCt) and validation (PCCv) samples and the Root Mean Square 
Errors for training (RMSEt) and validation samples (RMSEv). 
High PCC (>0.5) and low RMSE values (<1) for both training 
and validation samples indicated that networks were considered 
valid. To achieve the best performance of ANN networks without 
overfitting, these networks were carefully validated following 
Coutinho et  al. (2019). Briefly, ANN was tested with different 
numbers of hidden neurons (from 1 to 10), training iterations 
(from 2 to 1024) and percentage of samples used for training 
(from 5% to 95%). One hundred networks were trained for 
each combination of parameters. We found no evidence that the 
changing hidden neurons and percentage of samples used for 
training will influence the network performance (Supplementary 
Figures S3, S4). The networks with training iterations above 32 
produced comparable PCCt and RMSEt as well as PCCv and 
RMSEv values (Supplementary Figure S5). Thus, we built the 
final ANN using the parameters as follows: hidden neuron was set 
to 1; samples were randomly and evenly divided into training and 
validation sets; maximum number of iterations was set to 1000; 
reltol was set to 0.01; and weight decay was set to 0.001. Then, 
we proceeded to put all data (n = 91) for training and selected 
the network with the lowest RMSEt as the best network. Finally, 
the relative importance of the input variables was estimated in the 
best network based on the ‘Olden’ method (Olden et al., 2004). 
This approach calculated the summed product of connection 
weights between each input-hidden neuron connection and 
hidden-output neuron connection. The positive values indicated 
that the input variable had a positive association with the output 
variable, and the negative values indicated the input variable had a 
negative association with the output variable. A sensitivity test was 
also performed in the best network to understand how each input 
variable individually influenced the output variables. The output 
variables were modelled with changing one input variable at a 
time, while all the other input variables were held constant at their 
10th, 30th, 50th, 70th and 90th percentile values (Supplementary 
Figure S6).
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RESULTS

Temporal Patterns of Biomarker Proxies
The brassicasterol contents, representing diatom biomass in this 
study, varied from 7.7 to 57.7 μg g-1 TOC. They remained steady 
until the late-1970s and then showed two increasing shifts in 
1978 and 1995 according to the STARS analysis (RSI: 0.6 and 1.3; 
Figure 2A). The dinosterol contents, representing dinoflagellate 
biomass, varied from 15.8 to 85.0 μg g-1 TOC. They displayed a 
gradual increasing pattern with three increasing shifts in 1935, 
1978 and 1998 (RSI: 0.4, 0.2 and 0.2; Figure 2B).

A previous study validated the application of TEX86
H index 

for SST reconstruction in Cygnet Bay (Yuan et  al., 2018). In 
Core CB1, TEX86

H temperature ranged from 25.3 to 29.4°C and 
displayed three different periods (Figure 2C): a low temperature 
period of 1900-1957 (average of 26.5°C), a warming period of 
1957-1986 with three increasing shifts (RSI: 1.1, 1.0 and 0.2), 
and a high temperature period of 1986-2011 (average of 28.5°C). 
The contents of long-chain n-alkanes ranged from 36.5 to 135.5 
ng g-1. They showed an increasing trend over time with three 
increasing shifts in 1961, 1983 and 2003 (RSI: 0.5, 0.9 and 1.5; 
Figure 2D). The historical archives showed that the pearl oyster 
farming industry in Cygnet Bay was first started in 1960 and 
intensified in the 1980s, which can be reflected in the total pearl 
oyster catch in the Broome area (Figure 2E).

Pearson correlation analysis showed that SST, rainfall and 
pearl oyster farming were significantly correlated with diatom and 
dinoflagellate biomasses (Table 1). Due to their close associations, 
PCA analysis failed to further distinguish the difference between 
each environmental factors and phytoplankton biomasses. Only 
one meaningful principal component, which accounted for 77.5% 
of the total variance, was extracted in the dataset containing the 
four biomarker proxies and pearl oyster farming history.

Relative Importance of  
Environmental Variable
The ANN model was successful in predicting the responses of 
diatoms and dinoflagellates. The best network displayed a PCC 
value of 0.86 and RMSE value of 0.11 for diatoms, and a PCC 
value of 0.75 and RMSE value of 0.15 for dinoflagellates. For both 
diatoms and dinoflagellates, pearl oyster farming consistently 
ranked as the most important factor, followed by SST, with 
rainfall the least important (Figures 3B, C). Pearl oyster farming 
was positively associated with diatoms and dinoflagellates 
with a relative importance of 54% for diatoms and 74% for 
dinoflagellates (Figure  3). SST had a positive association for 
diatoms with a relative importance of 25%, while had a negative 
association for dinoflagellates with a relative importance of 19% 

(Figure  3). Rainfall had a positive association with diatoms 
with a relative importance of 21% but was not as relevant with 
dinoflagellates (Figure 3).

DISCUSSION

Environmental Factors  
Influence Phytoplankton
In this study, diatom and dinoflagellate biomasses show 
significant increases in the 1970s and the 1990s (Figures  2A, 
B). The main drivers modulating phytoplankton can be 
approximately evaluated by linear statistical methods. Both 
Pearson correlation analysis and PCA analysis suggest that 
SST, rainfall and pearl oyster farming could contribute to the 
phytoplankton increases, but their separate effects cannot 
be distinguished. The ‘Olden’ method in the ANN enables 
visualization of the relative importance of each input variable 
and generates a number of new observations (Figure  3). 
The estimated relative importance shows that pearl oyster 
farming overwhelms SST and rainfall controls on diatom 
and dinoflagellate increases, which is consistent with current 
understanding. According to the total organic carbon and 
nitrogen records from the same site, there is a significant 
increase since the pearl oyster farming established in the 1960s; 
the δ13C, C/N and δ15N records indicate that the increased 
organic matter and nitrogen are mainly contributed by 
autochthonous sources, suggesting a more significant influence 
from pearl oyster farming than terrestrial input (Liu et al., 2016). 
A direct comparison of diatom records (biogenic silica) inside 
and outside the farming area also indicates that the impact of 
pearl oyster farming on diatom abundance is much greater than 
that of climate change (Liu et al., 2016). These lines of evidence 
are in agreement supporting that pearl oyster farming plays a 
dominant role in phytoplankton increases in Cygnet Bay.

Bivalve farming affects phytoplankton primarily through 
two distinct mechanisms (Forrest et  al., 2009): bottom-up 
control of stimulating phytoplankton growth caused by 
nutrient remineralization in pseudofeces and feces (Sarà et al., 
2011; Gallardi, 2014; Liang et al., 2019) and top-down control 
of depleting phytoplankton caused by bivalve grazing (Petersen 
et al., 2008; Jiang et al., 2019). The effect of bivalve grazing on 
phytoplankton may be most significant with a high stocking 
density of bivalve farming (Smaal et al., 2013) when decreasing 
bivalve biomass reaches a point at which the bottom-up effect 
begins to increase phytoplankton production. This process 
has been demonstrated in mesocosm (Prins et  al., 1995) and 
field studies (Trottet et al., 2008; Sarà et al., 2011), both reveal 
enhanced phytoplankton abundances at low stocking density. 
The stocking density of pearl oysters in Cygnet Bay and other 
parts of north-western Australia is a very small size (<16 250 
shells per square nautical mile) compared with other bivalve 
farming (Jelbart et  al., 2011), hence, it can create a mutually 
beneficial environment for both phytoplankton and bivalve. 
The modern long-line culture in Cygnet Bay since the 1980s 
uses long line cages to suspend pearl oysters in waters. This 
culture method can reduce current speed significantly (Plew 

TABLE 1 | Pearson correlation coefficients.

  Pearl oyster farming SST Rainfall

Brassicasterol (diatoms) 0.84* 0.72* 0.61*
Dinosterol (dinoflagellates) 0.70* 0.59* 0.44*

*Correlation is significant at p< 0.01.
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et  al., 2005), which induces nutrient accumulation within the 
farming area and could also favor phytoplankton growth.

Temperature and rainfall are important determinants, 
but their influence markedly varies between diatoms and 
dinoflagellates (Figure 3A). Tropical phytoplankton used to have 
their optimum temperatures close to annual mean temperatures 
(Thomas et al., 2012). A small amount of warming can therefore 
easily exceed their optimum temperatures and lead to sharp 
declines in growth rate (Thomas et al., 2012). However, culture 
experiments demonstrate that evolutionary thermal adaptation 
can help phytoplankton to avoid the negative effect of warming, 
but this ability differs across phytoplankton species (Padfield 
et al., 2016; Thomas et al., 2016; Jin and Agustí, 2018). Several 
diatoms, particularly tropical species, can adapt to the warming 
environment rapidly by increasing their optimal temperature 
and maximum growth rate (Jin and Agustí, 2018; Schaum et al., 
2018). Thus, the different adaptation capacities of diatoms and 
dinoflagellates could result in their opposite response to warming 
SST in Cygnet Bay. In common with previous studies (Yuan 
et  al., 2018; Yuan et  al., 2020), the ANN results also indicate 
that diatoms obtain greater benefits from increasing rainfall 

than dinoflagellates. This is because increasing rainfall not only 
brings rich silicate nutrients through river discharge but also 
creates turbulent conditions, both are better for diatom growth 
(Margalef, 1978; Irwin et al., 2012).

ANN Model for Palaeoecological Research
The application of palaeoecological data in ANN modeling 
allows us to combine the strength of both approaches. The 
palaeoecological approach is uniquely valuable in acquiring 
ecological data and assessing the impacts of environmental 
changes at supra-decadal timescales. As the raw data accumulate, 
the use of statistical models to advance our understanding of 
ecological dynamics is becoming increasingly important. Several 
conventional statistical approaches, including multiple linear 
regression (MLR) (Liu et al., 2022), principal component analysis 
(PCA) (Yuan et  al., 2020), canonical correspondence analysis 
(CCA) (Liu et  al., 2018) have been widely applied for a long 
time in palaeoecological studies. However, increasing evidence 
indicates that many ecological issues possess the characteristics 
of nonlinearity, time variation, and multiple forcing mechanisms 

A

B C

FIGURE 3 | Bar (A) and pie plots (B, C) representing the relative importance of environmental factors for diatoms and dinoflagellates estimated from ANN weights 
through the ‘Olden’ method. The pie plots are calculated by the absolute values of the relative importance of environmental factors.
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(Andersen et  al., 2009), and these conventional approaches 
to data analysis have presented limitations in revealing inner 
relationships and providing results prediction. The ANN 
methodology is capable to handle big data and complex 
nonlinear relationships; thus, it can make up for the inadequate 
understanding of mechanisms by using palaeoecological and 
conventional statistical approaches. The present study illustrates 
the feasibility and usefulness of neural networks in the field of 
palaeoecology; and it may prove promising to be applied to 
similar palaeoecological datasets from other ecosystems.

Despite the clear advantages, limitations of our ANN model 
still exist. For example, both sediment records and collected 
historical archives (pearl oyster catch numbers) are used as input 
data in our ANN model. There are asynchronous errors between 
the two different datasets, which could have hampered the ANN 
performance. Finding a pearl farming indicator in the sediment 
would be helpful to reduce this error. The model also did not 
incorporate some factors that likely influence phytoplankton 
dynamics such as nutrient structure (the ratio of macronutrients) 
(Burford et al., 2012; Armbrecht et al., 2015), tidal mixing and 
light variability (Mclaughlin et al., 2019; Mclaughlin et al., 2020). 
These factors are regarded as important drivers determining 
phytoplankton abundance in the modern Kimberley coast, but 
lack for an understanding of their historical changes as well as 
their impacts on phytoplankton in the past. In addition, the ANN 
model cannot be used to predict the values outside the range of 
training data. The model presented in this example is trained 
based on the palaeoecological data during the past century and 
is unable to predict how future phytoplankton under higher sea 
temperatures will change. Thus, the training dataset in the ANN 
model should cover as wide a range as possible to improve the 
predictable capabilities.

CONCLUSIONS

We have shown the capacity to use an ANN model coupled 
with paleoecological datasets to improve our understanding 
of anthropogenic and climatic factors driving long-term 
phytoplankton changes. The results in Cygnet Bay highlight that 
pearl oyster farming plays a dominant role for both diatoms and 
dinoflagellates increases, while climatic factors exert different 
influences between diatoms and dinoflagellates determined 

by their ecophysiological traits. Our ANN analysis may prove 
promising in solving complex paleoecological issues. Possible 
elaborations of this approach in future work will introduce 
more related environmental factors and incorporate more 
paleoecological data.
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