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Distribution of blue and sei
whale vocalizations, and
temperature - salinity
characteristics from glider
surveys in the Northern
Chilean Patagonia mega-
estuarine system
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Zonas Áridas (CEAZA), La Serena, Chile, 4Biology Department, Woods Hole Oceanographic Institution,
Woods Hole, MA, United States, 5Graduate Program in Oceanography, Departamento de Oceanografı́a,
Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile,
6Marine Mammal Institute, Oregon State University, Newport, OR, United States, 7Instituto Milenio de
Oceanografı́a, Universidad de Concepción, Concepción, Chile, 8Departamento de Geofı́sica, Facultad de
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Northern Chilean Patagonia is a mega-estuarine system where oceanic waters

mix with freshwater inputs in the coastal fjords, channels and gulfs. The aim of

this study was to examine the distribution of blue and sei whales with respect to

oceanographic conditions of the study area from the estuarine inner sea to the

outer ocean. Ocean gliders were used, mounted with a hydrophone to

determine acoustic presence of whales (Southeast Pacific and Antarctic blue

whale song calls, and blue whales D-calls; sei whale downsweeps and

upsweeps), and a temperature and salinity instrument. Four glider deployments

were carried out in April 2018 and April-June 2019 navigating a total of 2817

kilometers during 2110 hours. To examine interannual variation, the average

percentage of day with presence of calls was compared between years using the

adjusted p-values for one-way ANOVA and descriptive statistics. To examine

spatial variation between the hourly acoustic presence of blue whales and sei

whales and temperature and salinity conditions, Generalized Linear Models

(GLMs) were used. Salinities were higher in 2019 compared to 2018. Southeast

Pacific blue whales produced song calls throughout the study area in both years,

across estuarine and oceanic areas, but percentage of day with presence was

higher in 2019 vs 2018. Percentage of day with presence of D-calls was similar

between years, but higher in oceanic areas during both study periods. In contrast,

the spatial pattern of sei whale acoustic presence was ambiguous and

interannual variability was high, suggesting that sei whales preferred estuarine
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areas in 2018 and oceanic areas in 2019. We discuss possible explanations for

observed acoustic presence in relation to foraging behavior and prey distribution.
KEYWORDS

pelagic ecology, biological oceanography, baleen whales, passive acoustic monitoring,
Slocum glider
Introduction

Understanding the distribution of baleen whales on their

coastal feeding grounds and the oceanographic processes that

drive distribution is central to developing effective conservation

measures for the recovery of populations and for a better

understanding of pelagic ecology. Off the coast of southern

Chile baleen whales, predominantly blue (Balaenoptera

musculus) and sei (B. borealis) whales, forage on a seasonal

feeding ground in Northern Chilean Patagonia (NCP, Figure 1)

(e.g. (Hucke-Gaete et al., 2004; Buchan and Quiñones, 2016;

Vernazzani et al., 2017; Hucke-Gaete et al., 2018; Bedriñana-

Romano et al., 2021; Buchan et al., 2021a). In this area, blue

whales are known to forage on the euphausiid Euphausia

vallentini (Buchan and Quiñones, 2016) while sei whales

forage on lobster krill Munida gregaria (Buchan et al., 2021b).

The NCP is a mega-estuarine system where oceanic water

masses from the Pacific Ocean enter through open gulfs and

restricted channels and mix with freshwater inputs from high

levels of rainfall running off the mainland into coastal fjords and

channels. This mix of water masses contains nutrients necessary

for the high observed levels of primary and secondary

production (e.g. (Sievers and Silva, 2008; Iriarte et al., 2010;
02
Buchan and Quiñones, 2016). High primary production has

been particularly associated with the Modified Subantarctic

Water Mass (MSAAW) (Silva and Guzman, 2006; Torres

et al., 2014). Based on a study in the inner Corcovado Gulf

over two summer seasons, (Buchan and Quiñones, 2016) found

higher blue whale sightings in the summer where MSAAW was

the predominant water mass over the higher salinity

Subantarctic Water (SAAW). However, this study was

restricted to a very small area near the mainland and whales

are known to forage further out in oceanic areas as well,

including the northwest coast of Chiloe Island (Vernazzani

et al., 2012; Bedriñana-Romano et al., 2018; Bedriñana-

Romano et al., 2021).

Blue whales produce loud song (sounds in repetitive

patterned phrases) and non-song calls throughout their

migratory range; therefore, acoustic detections can be used as

an indicator of their presence (e.g. (Stafford et al., 1999; Stafford

et al., 2009; Buchan et al., 2014; Romagosa et al., 2020). Silent

animals are not detected by this method. The Southeast Pacific

(SEP) blue whales present in NCP can be monitored acoustically

using their highly stereotyped regional song dialect, known as

“Southeast Pacific 2” or “SEP2” (Buchan et al., 2014; Buchan

et al., 2015). Antarctic blue whales are also known to be present
FIGURE 1

(A) Glider deployment tracks in 2018 and 2019 between the inner sea of Chiloe and Guafo Island. Red track: deployment 1, April 2018; green
track: deployment 2, April 2019; blue track: deployment 3, April 2019; yellow track: deployment 4, May 2019. Grey scale: bathymetry from
Instituto de Fomento Pesquero (IFOP; (Pinilla et al., 2020)), Chile with depths ranging from 0 to -4800 m (B) Map of deep layer salinity for 2019
deployments (d2, d3 and d4) throughout the study area. ES, Estuarine zone; ET, Estuarine Transition zone; OT, Oceanic Transition zone; OC,
Oceanic zone.
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in this area (Buchan et al., 2018) and are known to produce

stereotyped “Z-call” songs (Širović et al., 2004). In addition to

regional song calls, blue whales also produce non-regionally

distinct highly variable downswept calls or “D-calls” (Thompson

et al., 1996) (see Figure 2). In blue whales, long-range songs are

produced by males and are thought to serve some reproductive

function, while D-calls are produced by both males and females

and are thought to be short-range social calls between animals

that are in close proximity (Lewis et al., 2018). D-calls have been

reported during a range of behaviors including feeding (Oleson

et al., 2007; Lewis et al., 2018) and potential reproductive

behaviors (Schall et al., 2019).

Less is known of sei whale acoustic behavior. Sei whales can

produce both downsweep (Baumgartner et al., 2008) and

upsweep calls (Calderan et al., 2014) (Figure 2). The

downswept calls are distinct from blue whale D-calls as they

are less variable in bandwidth and are more stereotyped

(Figure 2). The function and behavioral context of sei whale

calls is unknown. As with blue whales, detections of these calls in

passive acoustic datasets collected by hydrophones indicate the

acoustic presence of each of this species.

Ocean gliders are autonomous vehicles now widely used to

increase the spatial and temporal coverage of ocean observation

(e.g. Webb et al., 2001; Testor et al., 2019). Gliders can be

equipped with oceanographic sensors, such as conductivity-

temperature-depth (CTD) sensors, but also hydrophones to

collect passive acoustic data for the duration of their

deployment e.g. (Klinck et al., 2012; Baumgartner et al., 2014;

Baumgartner et al., 2020; Cauchy et al., 2020; Johnson et al.,

2022). In this study, we examine the distribution of blue and sei

whales with respect to oceanographic conditions from the

estuarine pole (inner sea of Chiloe) to the oceanic pole (Guafo

Island) of the NCP mega-estuarine system (Figure 1). We used

ocean gliders mounted with a hydrophone to determine whale
Frontiers in Marine Science 03
acoustic presence, and a CTD instrument to determine

temperature and salinity along the glider route.
Materials and methods

Data collection

Two Slocum G1 gliders, one owned by the University of

Concepción (gladis) and one owned by Woods Hole

Oceanographic Institution (we04), surveyed between the inner

sea of Chiloe and Guafo Island through the Corcovado Gulf to

cover the range of estuarine to oceanic oceanographic conditions

(Figure 1). One deployment was conducted in 2018 and three

were conducted in 2019 of which two were simultaneous

(Table 1). Both gliders were deployed with a digital acoustic

monitoring instrument (DMON; (Johnson and Hurst, 2007)

(Baumgartner et al., 2013) which is a hydrophone and recording

device that recorded audio continuously at 2 kHz (for an

effective bandwidth of 5-1000 Hz) to.wav files of 1 hour

duration. The DMON has a total system sensitivity of -169.8

dB re V/µPa rms. The sample rate and system sensitivity was the

same across all deployments. A CTD instrument sampling at

1 Hz was deployed on both gliders. A Neil Brown Ocean Sensors,

Inc. CTD was deployed on the we04 glider and a Sea Bird

Electronics model 41CP was deployed on the gladis glider.
Data analysis

Passive acoustic data from the DMON were analyzed via

manual annotation in Raven Pro 1.6 (K. Lisa Yang Center for

Conservation Bioacoustics at the Cornell Lab of Ornithology.,

2022) for the following target signals: unit C of the four-unit
A B C

FIGURE 2

Spectrograms of (A) blue whale D-calls; (B) sei whale downsweep calls; (C) sei whale upsweep calls. Spectrogram parameters: FFT: 512 samples,
50% overlap, Hann Window.
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“SEP2” song calls of Chilean blue whales (as per Buchan et al.,

2021a), “Z” song calls of Antarctic blue whales (as per Buchan

et al., 2018), blue whale D-calls (e.g. Buchan et al., 2021a;

Figure 2), and upsweep and downsweep calls of sei whales (e.g.

Calderan et al., 2014; Figure 2). The date and time of each

manual annotation of a call was compiled as a time series, and

from the time stamp of each annotation a latitude and

longitude was allocated to each annotation from the glider

track information based on interpolation between known

surface positions using MATLAB, 2020b (The Math

Works, 2020).

Temperature (°C) and salinity (psu) data from the CTD

instrument sampling on the downward portion of dives were

processed in MATLAB (The Math Works, 2020) using custom

routines and compiled as time series. Each data point was

allocated a latitude and longitude based on interpolation

between known surface positions along the glider track.

Temperature and salinity data were examined for surface and

deep layers given the stratified nature of estuarine environments.

From density profiles, the mixed layer depth (MLD) was

determined for each profile by determining the first depth

(starting from the surface) at which a gradient of 0.03 kg/m4

was found (Holte and Talley, 2009). All MLD values less than

2 m and greater than 50 m were eliminated as unrealistic. Based

on the MLD values, surface (above MLD) and deep layer (below

MLD) average temperature and salinity were calculated for each

profile to describe the spatial variation of these variables; where

no MLD was found (either because the water column was well-

mixed or because the method used did not detect MLD), the

average of MLD over the entire dataset was applied, i.e. 24.09 m

for the purposes of obtaining surface and deep layer temperature

and salinity values.

For a comparison of temperature and salinity conditions

between years, data from April 2018 and only April 2019 were

compared. All temperature and salinity data (April 2018 and

April-June 2019) were used in the statistical analyses

described below.
Frontiers in Marine Science 04
Statistical analyses

To examine spatial variation in the presence of whale calls

and temperature and salinity conditions, the study area was

divided into 4 large areas, which we refer to as oceanographic

zones, based on visual inspection of the deep layer salinity values

for the 2019 data (Figure 1B), which was the larger dataset with

greater spatial coverage compared to 2018. This resulted in the

following oceanographic zones which range from generally low

to high salinity conditions (Figure 1B): Estuarine zone (ES);

Estuarine Transition zone (ET); Oceanic Transition zone (OT);

and Oceanic zone (OC). Temperature and salinity trends per

oceanographic zone were overall similar between years (see

Results) so we are confident that this division of zones is

reasonably applied to the 2018 data.

Based on the whale call data, hourly presence/absence and

percentage of day with presence were calculated. Hourly

presence/absence of a call was determined where any hour

with 1 or more calls was assigned a score of 1; and hours with

no calls were assigned a score of 0. Percentage of day with

presence of a call type was determined by the number of hours

with 1+ calls/number of hours of recording per day. Percentage

of day with presence of blue whale song calls (SEP2 and

Antarctic), and D-calls were examined separately; for sei

whales, upsweep and downsweep calls were pooled together.

To examine interannual variation, the average percentage of

day with presence of calls was compared between years using the

adjusted p-values for one-way ANOVA with post-hoc Tukey

Honest Significant Differences test (Table 2). Boxplots of

temperature and salinity values and percentage of day with

calls present were used to examine temporal and spatial

variation between years (2018 vs 2019), study periods (April

2018, deployment 1; April 2019, deployments 2 and 3; and May

2019, deployment 4), and oceanographic zones (ES, ET,

OT, OC).

To examine the relationship between the hourly acoustic

presence of blue whales and sei whales and oceanographic
TABLE 1 Glider deployment metadata. Deployment date, time, location, total km and hours of survey effort.

Name of
glider

Deployment
number

Deployment date
and time

Recovery date
and time

Deployment
location

Recovery
location

Total nautical
kilometers

Total
hours

Gladis 1 2018 04 12 2018 04 28 43.530°S 43.318°S 575.59 381

15:13 13:43 73.408°W 73.370°W

we04 2 2019 04 08 2019 05 02 43.524°S 43.381°S 698.50 566

19:08 11:23 73.747°W 73.475°W

Gladis 3 2019 04 08 2019 04 25 43.537°S 43.509°S 533.61 398

19:16 7:01 73.766°W 73.718°W

we04 4 2019 05 05 2019 06 06 43.269°S 43.088°S 1009.24 765

16:13 14:13 73.476°W 73.375°W

Total 2816.94 2110
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conditions, Generalized Linear Models (GLMs) with a binomial

link function were fitted in R (R Core Team, 2019) with

presence/absence (0 or 1) as the response variable and the

following explanatory variables (one per GLM): surface

temperature, deep layer temperature, surface salinity and deep

layer salinity. For blue whales, only D-calls were used, based on

the findings by (Buchan et al., 2021a) and references therein, that

suggest that the production of D-calls is related to

environmental changes and/or may indicate whale

aggregation, whereas SEP2 song calls follow seasonal cycles

l ikely l inked to reproductive behavior rather than

environmental drivers. Statistical significance was corrected

with the Bonferroni adjustment.
Results

Four glider deployments were completed between 12 – 28

April 2018, and 8 April – 7 June 2019. Deployment tracks are

shown in Figure 1 and deployment details are summarized in

Table 1. A total of 2,110 hours of passive acoustic monitoring

(PAM) data were collected: 381 h in 2018 and 1,729 h in 2019

(Table 1). A total of 43,566 SEP2 song calls (unit C), 1,239

Antarctic blue whale Z calls, 5,656 blue whale D-calls, and 8,238

sei whale calls (6,500 upsweep calls, and 1,738 downsweep calls)

were annotated. Supplementary Material Figure 1 shows maps of

the spatial distribution of detections for the four calls types and

the three study periods. A total of 993 CTD vertical profiles

were collected.
Interannual variability

Between the 2018 and 2019 deployments, there was no

significant difference in the percentage of day with presence of

blue whales D-calls, but there was a significant difference

between higher percentage of day with presence of SEP2 song

calls in 2019 as compared to 2018. Percentage of day with

presence of Antarctic blue whales was also significantly higher
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in 2019. Percentage of day with presence of sei whales was

significantly higher (p < 0.001) in 2018 compared with

2019 (Table 2).

Salinity conditions displayed differences between years, with

2018 being a lower salinity year across all oceanographic zones

compared with 2019 (Figure 3). Based on the water mass

definitions for this area, there was greater influence of

Modified Subantarctic Water (MSAAW) during 2018

compared with 2019 in surface layers (Figures 3A, B), and

greater influence of Equatorial Subantarctic Water (ESSW),

especially in the oceanic (OT and OC) zones, in 2019

compared with 2018 (Figures 3E, F). No outstanding

difference between temperature conditions were apparent

between 2018 and 2019 (Figures 3C, D, G, H).
Spatial variability

The percentage of day with presence of blue whale SEP2

song calls was high over all study periods and zones, except for

the ES in 2018 (Figure 4, first row). Antarctic blue whale songs

were only present in 2019, with highest percentage of day with

presence in estuarine zones (ES and ET) especially in May 2019

(Figure 4, second row). For blue whale D-calls, the percentage of

day with presence was progressively higher from the estuarine

zone (ES) to the oceanic zone (OC) during all study periods

(Figure 4, third row). For sei whales the percentage of day with

presence was higher in estuarine zone (ES) in April 2018. In

contrast, in April 2019 percentage of day with presence was very

low throughout the study area, with slightly higher values in the

oceanic transition zone (OT). In May 2019, percentages of day

with call presence were variable although slightly higher in the

oceanic zone (OC) (Figure 4, fourth row).

Progressively, from the ES to the OC zones, deep layer

salinities increased in 2018 and 2019 and salinities were

higher in the deep layer compared to the surface layer in all

sectors; surface layer salinities only increased very slightly

from ES to OC in 2018 but appeared the same in all

oceanographic zones in 2019 (Figures 3A, B, E, F). Overall,

surface and deep layer temperatures were not coupled: surface
frontiersin.org
TABLE 2 Summary statistics for percentage of day with presence (Pd) (+/- s.d.) for blue whale song and D-calls, and sei whale calls (downsweeps
and upsweeps) per year.

Days
sampled

Pd blue whale SEP2
song calls

Pd blue whale Antarctic
song calls

Pd blue whale
D-calls

Pd sei whale
calls

2018 percentage of day with presence 17 0.72 +/- 0.34 0.00 +/- 0.00 0.28 +/- 0.29 0.49 +/- 0.25

2019 percentage of day with presence 58 0.92 +/- 0.18 0.11 +/- 0.18 0.29 +/- 0.25 0.22 +/- 0.23

p-adj percentage of day with presence
2018 vs 2019

0.0024** 0.0144* 0.9472 9.88e-05***
Percentage of day with presence based on hours with presence/total hours of recording that day. Results of comparisons between years are shown based on the adjusted p-values (p-adj) for
one-way ANOVA with post-hoc Tukey Honest Significant Differences test. Significance codes: *0.05 > p > 0.01; ** 0.01 > p > 0.001; ***p < 0.001.
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temperatures increased between the ES and the OC, and deep

layer temperatures decreased between the ES and the OC

(Figures 3C, D, G, H). Spatial differences between the

estuarine pole (ES and ET) and the oceanic pole (OT and

OC) were more marked in 2018 compared with 2019 in both

the surface and deep layers.
Frontiers in Marine Science 06
Generalized Linear Models

Generalized Linear Models for blue whales D-calls

performed better compared with sei whale calls, with higher

percentages of deviance explained (maximum 26.1%), lower AIC

values and statistically significant adjusted p-values. All GLMs
FIGURE 4

Boxplots of percentage of day with presence of SEP2 and Antarctic blue whale songs, blue whales D-calls and sei whale calls, per study period
and per oceanographic zone. First column: April 2018 (deployment 1); Second column: April 2019 (deployment 2 and 3); Third column: May
2019 (deployment 4). ES, Estuarine zone; ET, Estuarine Transition zone; OT, Oceanic Transition zone; OC, Oceanic zone. For each zone, the
number of hours that the glider was in the zone in indicated in the x-axis labels.
A B D

E F G H

C

FIGURE 3

Boxplots of surface salinity (A, B), surface temperature (C, D), deep layer salinity (E, F), and deep layer temperature (G, H) for April 2018 and April
2019, and per oceanographic zone. ES, Estuarine zone; ET, Estuarine Transition zone; OT, Oceanic Transition zone; OC, Oceanic zone. Dashed
lines show salinity-based water mass definitions according to (Pérez-Santos et al., 2014) for this area. ESSW, Equatorial Subsurface Water; SAAW,
Subantarctic Water; MSAAW, Modified Subantarctic Water.
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for sei whale presence had percentages of deviance explained

below 10% (Supplementary Image 1).

For blue whales, GLMs indicated that D-call presence was

significantly associated with higher salinities in both the surface

and deep layers, except for surface layer salinity during

deployments 2 and 3, (Figure 5). GLM performance was better

for deep layer salinity, which showed an increase in presence

with increasing salinity levels (models 1 and 3, Table 3). During

the study period, call presence increased significantly with

decreasing temperature in the deep layer, but results were

more ambiguous for surface temperature with the only

significant relationship between call presence and increasing

surface temperature found during April 2018, but not April or

May 2019. Overall, GLMs for deep layer conditions performed

generally better than surface layer conditions.

GLMs performed poorly for sei whales (Table 3) and

statistically significant relationships only occurred for three

GLMs (Table 3; Figure 6) during the May 2019 study period,

revealing increased call presence with increasing surface and

deep layer salinity, and increasing surface temperature. These

conditions are characteristic of oceanic areas. This is interesting

given that during the low-salinity year 2018, presence of sei

whale calls was overall higher in the study area compared with

2019, but none of the GLMs for the 2018 study period showed

statistically significant relationships.
Frontiers in Marine Science 07
Discussion

Blue whales were detected throughout the study area, with a

preference for oceanic areas and little interannual variation,

based on D-calls detections. Sei whale detections were highly

variable from one year to another, with an ambiguous spatial

pattern. Below we discuss possible causes of interannual and

spatial variability for both species, based on deployments during

approximately two weeks in April 2018 and approximately two

months April-June 2019.
Interannual variation

No interannual variation was detected for blue whale D-call

detections, but the percentage of day with presence of Antarctic

and SEP2 blue whale song calls was higher in 2019. This suggests

that the interannual variation in the presence of Antarctic blue

whales is high, and in effect this species has only been previously

found to occasionally visit the NCP feeding ground (Buchan

et al., 2018). For Chilean blue whales, the explanation for this is

less evident. Possibly, during the study periods, blue whales

exploited the area for feeding with similar intensity (assuming

D-calls are indicative of whale aggregation around feeding
FIGURE 5

Generalized Linear Model response curves for blue whale D-call presence and deep layer salinity (SalD), surface layer salinity (SalS), deep layer
temperature (TempD) and surface layer temperature (TempS). Salinity in psu and temperature in °C. Study periods: April 2019 (deployment 1),
April 2019 (deployments 2 and 3), May 2019 (deployment 4). Bonferroni adjusted significance codes: *0.00416 > p > 0.00083; **0.00083 > p >
0.000083; *** p < 0.000083.
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patches), but song might have varied due to interannual changes

in monthly song production as reported by (Oestreich et al.,

2020). This may also be due to a much shorter study period in

2018 that introduced bias in percentage of day with presence of

song but not for D-calls.

Percentage of day with presence of sei whale calls showed

interannual variation. Low salinities in 2018 in the study area

may explain significantly higher sei whale acoustic presence in

2018 compared to 2019. From sei whale fecal plume sampling

conducted at the same time as the glider surveys in this study, sei

whales were found to feed on Munida gregaria (Buchan et al.,

2021a), also known as squat lobster or lobster krill. This

crustacean has been linked to freshwater inputs in this study

area (Meerhoff et al., 2013) and has only be studied in the

estuarine areas, i.e. in the NCP inner sea and fjords (Castro et al.,

2011; Meerhoff et al., 2014a; Meerhoff et al., 2014b; Betti et al.,

2020). A low-salinity year may favor increased abundance and

spatial distribution of lobster krill in the study area and therefore

attract foraging sei whales. This is not the case for the known

prey item of blue whales in this area, E. vallentini (Buchan and
Frontiers in Marine Science 08
Quiñones, 2016), which is the dominant species of meso-

zooplankton throughout the study area (González et al., 2011)

which may explain why no interannual variation was found in

blue whale percentage of day with presence.
Spatial variation

SEP2 and Antarctic blue whale song calls
Percentage of day with presence was high for blue whale

SEP2 song calls throughout all study periods and oceanographic

zones (except for ES during April 2018). D-calls were more

strongly associated with oceanic areas. The prevalence of SEP2

song calls vs. D-calls may be due to the large detection range of

SEP2 song calls. In effect, (Buchan et al., 2021a) found that the

maximum detection range of SEP2 song calls (up to 15.3 km)

from a bottom-mounted hydrophone in this area was over twice

the maximum detection range of D-calls.

Detection ranges on the glider have not been assessed in this

study for any call types, and will be the focus of future work.
TABLE 3 Generalized Linear Models for percentage of day with presence of blue whale D-calls or sei whale calls (downsweeps and upsweeps)
with temperature and salinity as explanatory variables, sorted by species and ranked by highest to lowest percentage deviance explained.

GLM Study Period Deployment GLM Response
variable

GLM Explanatory
Variable

% DevExp AIC p-value BF-adj significance codes

1 April 2018 1 Dcalls SalD 24.7 186.09 7.20E-11 ***

2 April 2019 2&3 Dcalls SalD 13.1 248.25 6.64E-08 ***

3 May 2019 4 Dcalls SalD 3.7 434.55 9.81E-05 **

4 April 2018 1 Dcalls SalS 12.5 180.6 6.34E-05 ***

5 April 2019 2&3 Dcalls SalS 12.5 233.83 0.374

6 May 2019 4 Dcalls SalS 3.2 375.86 1.48E-03 *

7 April 2018 1 Dcalls TempD 15.3 208.9 4.70E-08 ***

8 April 2019 2&3 Dcalls TempD 8.2 259.58 5.51E-06 ***

9 May 2019 4 Dcalls TempD 3.4 436.05 1.61E-04 **

10 April 2018 1 Dcalls TempS 17.7 169.95 7.28E-08 ***

11 April 2019 2&3 Dcalls TempS 3.2 227.31 0.006

12 May 2019 4 Dcalls TempS 0 388.16 0.967

13 April 2018 1 Sei SalD 2.2 299.4 0.0108

14 April 2019 2&3 Sei SalD 1.7 175.04 0.256

15 May 2019 4 Sei SalD 3.9 457.94 4.22E-05 **

16 April 2018 1 Sei SalS 1.3 266.71 0.0712

17 April 2019 2&3 Sei SalS 1.7 150.82 0.0935

18 May 2019 4 Sei SalS 4.2 385.96 2.64E-04 **

19 April 2018 1 Sei TempD 1.8 300.79 0.0238

20 April 2019 2&3 Sei TempD 0.6 175.29 0.313

21 May 2019 4 Sei TempD 1.1 471.09 0.0225

22 April 2018 1 Sei TempS 0.3 269.22 0.338

23 April 2019 2&3 Sei TempS 0.2 153.52 0.643

24 May 2019 4 Sei TempS 4.5 384.6 3.18E-05 ***
DevExp, percentage deviance explained; AIC, Aikaike’s Information Criteria. Bonferroni adjusted (BF p-adj) significance codes: *0.00416 > p > 0.00083; **0.00083 > p > 0.000083; *** p <
0.000083. SalD, deep layer salinity; SalS, surface layer salinity; TempD, deep layer temperature; TempS, surface layer temperature. Study periods: April 2019 (deployment 1), April 2019
(deployments 2 and 3), May 2019 (deployment 4).
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Detection ranges are likely to change as the glider moves through

the water column, i.e. changes in receiver depth; and through the

study area, i.e. changes in temperature and salinity conditions

which lead to changes in sound speed profile. Sound speed

profiles for each oceanographic zone can be found in

Supplementary Material Figure 2 and show that profiles are

more stratified in oceanic zones compared with estuarine zones,

which could lead to difference in detection ranges between areas.

Changes in ambient noise between years and areas could also

modify detection range (e.g. Fregosi et al., 2020). However, if for

arguments sake, we were to assume that detection ranges for

song calls and D-calls were similar to the bottom-mounted

hydrophone in (Buchan et al., 2021a), these remain much

smaller than the total distance covered by the glider in the

study area, i.e. 150 km between the estuarine pole and

oceanographic pole, with Chiloe Island largely intervening

(Figure 1). Thus, although detection ranges must be assessed

for the glider, we have confidence that the spatial variations in

call presence observed in this study are due to differences in

whale acoustic presence and not simply due to differences in

detection range.
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In contrast to SEP2 song calls, the percentage of day with

presence of Antarctic blue whale songs was low throughout the

study area and periods. This is not surprising given that NCP is

not their primary feeding ground and Antarctic blue whales have

only been heard occasionally in this area (Buchan et al., 2018).

Interestingly however, Antarctic blue whales were detected in

both oceanic and estuarine areas. Although the detection range

of Antarctic blue whale song calls in this area was not assessed,

these findings suggest that Antarctic blue whales that visit NCP,

possibly to forage, do not exclusively remain in oceanic area but

do enter the Patagonian inner sea.

Blue whale D-calls
D-calls are thought to be short-range social calls produced

by males and females when individuals are in close proximity

(Lewis et al., 2018) and have been reported during a range of

behaviors including feeding (Oleson et al., 2007; Lewis et al.,

2018) and possible reproductive behaviors (Schall et al., 2019).

D-calls appear to respond to short-term (days to weeks)

environmental changes much more than song calls (Szesciorka

et al., 2020; Buchan et al., 2021a). Based on the results of this
FIGURE 6

Generalized Linear Model response curves for probability of sei whale detection (downsweeps and upsweeps) and deep layer salinity (SalD),
surface layer salinity (SalS), deep layer temperature (TempD) and surface layer temperature (TempS). Salinity in psu and temperature in °C. Study
periods: April 2019 (deployment 1), April 2019 (deployments 2 and 3), May 2019 (deployment 4). Bonferroni adjusted significance codes:
*0.00416 > p > 0.00083; **0.00083 > p > 0.000083; *** p < 0.000083.
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study, although blue whales were producing song calls

throughout the study area, D-calls were more abundant in

oceanic areas.

Presence of blue whale D-calls was consistently higher in

oceanic areas across all study periods, with statistically

significant relationships found with increasing surface and

deep layer salinity, and decreased deep layer temperature. The

apparent preference of blue whales for higher salinity, lower

deep layer temperature oceanic areas may be because their only

prey, Euphausia vallentini (Buchan and Quiñones, 2016), is a

subantarctic oceanic species that has colonized the NCP inner

sea system (Hamame and Antezana, 2010). This preference does

not mean that blue whales do not enter the inner sea, as SEP2

song calls were detected in estuarine areas, but it may mean that

if D-calls are associated with foraging activity, oceanic areas may

be preferred foraging areas. This spatial pattern is no doubt

overlaid by temporal variation at submonthly scales possibly

linked to patch depletion and/or aggregation effects, driven by

tidal amplitude or wind stress, as suggested by findings by

(Buchan et al., 2021a). Conclusions regarding spatial

distribution and preference for oceanic areas should be drawn

with caution given the short time periods in this study; more

extensive temporal and spatial coverage is certainly needed to

confirm this pattern.
Sei whale calls
For sei whales, the overall NCP spatial pattern is harder to

understand. If we assume that lobster krill prefers low-salinity

areas, which is supported by results in (Meerhoff et al., 2013) but

has not been studied over the entire study area including oceanic

zones, and sei whales were feeding exclusively on lobster krill

during the entire study period, we would have expected sei

whales to prefer estuarine areas. However, sei whales did not

only prefer estuarine areas. In April 2018, when the probability

of sei whale detection was highest, sei whales preferred estuarine

zones (Figure 4), however the GLM analysis revealed no

statistically significant relationship between sei whale presence

and temperature or salinity variables (Figure 6). Sei whale

acoustic presence was very low overall during April 2019, but

in May 2019 sei whales appeared to prefer oceanic areas with

higher deep and surface layer salinities and higher surface

temperatures, similar to blue whales during the same

time period.

The spatial pattern in sei whale acoustic presence may be

confounded because sei whales are known to feed on a range of

prey types, including copepods, euphausiids, lobster krill and

small schooling fish (Matthews, 1932; Kawamura, 1974)

(Burkhardt-Holm and N’Guyen, 2019) (Buchan et al., 2021b).

Although sei whales were definitely feeding on lobster krill in the

inner sea area (ES and ET zones) at the time of the 2018 glider

survey (Buchan et al., 2021b), no fecal samples were collected

from the other study periods or oceanographic regions, so it is
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possible that sei whales were feeding on other prey type(s), e.g.

euphausiids, similar to the blue whales foraging in oceanic areas

during May 2019. It is also possible that lobster krill aggregations

may have extended out to the OT and OC zones in May 2019.

Lobster krill has only been studied in inner sea estuarine areas so

little is known about its distribution in oceanic areas and its

tolerance for higher salinity conditions.

In polar latitudes (>60°) sei whales have been associated with

warmer waters (Kapel, 1985; Heide-Jorgensen and Simon, 2007),

but a more recent study in the Fram Strait found no relationship

between sei whale acoustic presence and water temperature time

series (Nieukirk et al., 2020). Given that the site in this study is in

mid-latitudes, the association with warmer water may not

necessarily apply here and/or this association may apply over a

broader spatial scale.

Sei whales have been called the “forgotten whale” and there

is little information about their diet and distribution, the latter of

which appears to be highly variable between the two years. There

have been documented “sei whale invasions” or “sei whale years”

and other years where sei whales are largely absent (Prieto et al.,

2012). Clearly, more information is needed on the dietary

plasticity of sei whales and the distribution of lobster krill in

NCP to better understand the drivers of sei whale distribution in

this area.
Conclusion

Oceanographic conditions were different between 2018 and

2019 in the NCP area making broad conclusions about the

physical drivers of baleen whales in the area difficult to

encapsulate. Salinity conditions were highly variable between

the two years in the NCP estuarine system, with 2018 being a

lower-salinity year and 2019 being a higher-salinity year.

Blue whales were producing song calls throughout the study

area in both years, across estuarine and oceanic areas, and overall

presence was higher in 2019 compared with 2018. Presence of D-

calls was similar between years, but higher in oceanic areas during

both study periods, possibly indicating aggregation of animals

and/or foraging behavior in oceanic areas. Higher D-call presence

during all study periods in higher-salinity oceanic areas may have

been driven by higher prey density in these areas, given that E.

vallentini is an oceanic species. In contrast, the spatial pattern of

sei whale acoustic presence was ambiguous and interannual

variability was high, suggesting that sei whales preferred

estuarine areas in 2018 and oceanic areas in 2019. In 2018, sei

whales were certainly feeding on lobster krill,M. gregaria, which is

known to be associated with freshwater input in NCP, explaining

the high acoustic presence in estuarine areas. In 2019, we have no

dietary information for sei whales, so we do not know if they were

feeding on lobster krill aggregations that may have extended

further offshore or if they switched prey type to feed on

euphausiids in oceanic areas. Future studies in this area should
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focus on (1) acquiring glider-based zooplankton backscatter data

during glider-based acoustic surveys, (2) increasing the spatial and

temporal coverage of glider surveys, (3) understanding lobster krill

and E. vallentini distributions, and other zooplankton distribution

between the estuarine and oceanic poles of NCP, and (4)

improving knowledge of sei whale diet plasticity.
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SUPPLEMENTARY FIGURE 1

Maps of spatial distribution of detections of all four call types (Southeast
Pacific blue whales Sep2 song, blue whale D-calls, sei whale upcalls and

downsweep calls, and Antarctic blue whale song) per study period. Study
periods: April 2019 (d1, deployment 1), April 2019 (d2 & d3, deployments 2

and 3), May 2019 (d4 = deployment 4). ES, Estuarine zone; ET, Estuarine

Transition zone; OT, Oceanic Transition zone; OC, Oceanic zone.

SUPPLEMENTARY FIGURE 2

Sound speed profiles per year (2018: top row; 2019: bottom row) per

oceanographic zone, ES=Estuarine zone; ET= Estuarine Transition zone;
OT=Oceanic Transition zone; OC=Oceanic zone. Black line indicates

average and green line indicates the standard deviation.
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Prieto, R., Janiger, D., Silva, M. A., Waring, G. T., and Goncalves, J. M. (2012).
The forgotten whale: a bibliometric analysis and literature review of the north
Atlantic sei whale balaenoptera borealis. Mamm. Rev. 42, 235–272. doi: 10.1111/
j.1365-2907.2011.00195.x
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