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Excessive nutrient and sediment inputs threaten ecological condition in many estuaries.
We describe a Bayesian Belief Network (BBN) that calculates an Estuary Trophic Index
(ETI) score ranging between 0 (no symptoms of eutrophication) to 1 (grossly eutrophic) for
estuaries in Aotearoa New Zealand (NZ). The ETI BBN includes estuary physiographic
characteristics (estuary type, flushing time, intertidal area, estuary closure state, water
column stratification) and nutrient and sediment loads available from existing geospatial
tools and databases, that drive responses of ‘primary’ indicators (macroalgae and
phytoplankton biomass) and ‘secondary’ indicators (or symptoms) of estuary ecological
impairment (sediment carbon, sediment apparent redox potential discontinuity depth,
water column oxygen, macrobenthos and seagrass condition). Relationships between the
BBN nodes are based primarily on observational and model-based information from NZ
and international studies rather than expert opinion. The model can be used in a purely
predictive manner under knowledge-poor situations, using only the physiographic drivers
and nutrient/sediment loads, or refined using field-derived observations of indicator values
to reduce the uncertainty associated with the probabilistic BBN score. It is designed for
shallow tidal lagoons, tidal river estuaries and coastal lakes; systems which are sensitive to
eutrophication and sedimentation pressure and are common in NZ and globally. Modelled
ETI BBN scores agreed well with ETI scores calculated from observed indicator values for
11 well-studied NZ estuaries. We predict ecological condition of 291 NZ estuaries, most of
which have no monitored information on trophic state. We illustrate capabilities of the ETI
BBN with two case studies: to evaluate improvements in estuary health arising from
diversion of wastewater from an estuary via an ocean outfall, and to estimate catchment
diffuse nutrient load reductions required to meet estuary health objectives. The ETI BBN
may serve as a template for other agencies wishing to develop similar tools.

Keywords: estuaries, ecological condition, eutrophication, sedimentation, macroalgae, phytoplankton,
macrobenthos, estuary trophic index
1 INTRODUCTION

The detrimental effects of excessive nutrient and sediment inputs on estuarine health are well
documented (Vitousek et al., 1997; Bricker et al., 1999; Howarth and Marino, 2006; Howarth, 2008;
Fowler et al., 2013). The problems arise because the nutrients cause eutrophication of estuaries by
promoting rapid growth of algae (often opportunistic macroalgae and/or phytoplankton), leading to
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poor chemical and physical conditions for estuary fauna and
flora (Bricker et al., 1999; NRC, 2000; Green et al., 2014; Sutula
et al., 2014; Barr et al., 2020). Anthropogenically increased inputs
of muddy sediments to estuaries can act to physically disturb
biotic habitat and exacerbate nutrient retention, often creating
synergistic effects with eutrophication (Engelsen et al., 2008;
Pratt et al., 2014; Robertson et al., 2015). In Aotearoa New
Zealand (NZ), excessive nutrient and sediment inputs threaten
ecological condition in many estuaries (Lohrer et al., 2006;
Morrison et al., 2009; Plew et al., 2020) but guidance on how
to assess nutrient and sediment impacts in NZ estuaries has been
lacking (Townsend and Lohrer, 2015; Plew et al., 2020). This has
made it difficult to gather a synoptic view of the current trophic
state of NZ estuaries, or to assess the impact of freshwater
nutrient and sediment loads on estuary health. Similarly, it has
been challenging to develop catchment nutrient and sediment
load limits that protect estuary health.

Various management-oriented approaches toward assessing
eutrophication impacts arising from land-based inputs have been
designed and implemented internationally (Borja et al., 2012),
including the Assessment of Estuarine Eutrophic Status (ASSETS)
approach for US estuaries (Bricker et al., 1999; Bricker et al., 2003),
its updates (Bricker et al., 2008), and its modification developed for
Spanish Basque Country Water Framework Directive (WFD-BC)
estuary evaluations (Garmendia et al., 2012). While various
strategies for scoring estuary health have been designed, these
typically require estuary-specific monitoring, and often lack
capability to predict ecological conditions in poorly or un-
monitored systems. The New Zealand National Policy Statement
for Freshwater Management 2020 (NPSFM) requires local
authorities to “manage freshwater, and land use development, in
catchments in an integrated and sustainable way to avoid, remedy
or mitigate adverse effects on the health and well-being of water
bodies”, including estuaries (NewZealandGovernment, 2020). The
NPSFM provides target levels for various water quality parameters
in freshwater bodies but does not do so for estuaries. Instead, it
requires local authorities to determine the nutrient limits needed to
achieve desired environmental outcomes for estuaries. Hence, tools
were required that assess estuary health, using quantifiable metrics,
in response to nutrient and sediment loading. Furthermore, the
tools needed to be tailored to reflect the varied physiographic
conditions presented by estuaries across the country. Capability
for scenario-testing and prediction across multiple estuaries, often
in knowledge-poor situations, was needed.

In NZ, local government (regional council) and consultant
scientists have worked together to develop the Estuary Trophic
Index (ETI) (Plew et al., 2020). The ETI was delivered in 2017 with
the purpose of providing ‘a nationally consistent approach to the
assessment and prediction of estuary eutrophication’. Three ETI
tools were built. ETI Tool 1 enables users to assess susceptibility of
estuaries to eutrophication based on their nutrient/sediment loads
and their flushing/dilution characteristics (Plew et al., 2020). ETI
Tool 2 scores an estuary along an ecological gradient fromminimal
tohigh eutrophicationusing values ofmonitored indicators derived
from field surveys (Robertson et al., 2016b). Criteria for selection of
indicators included: strong linkages to beneficial uses, well-vetted
Frontiers in Marine Science | www.frontiersin.org 2
means of measurement, ability to model the relationship between
the indicator and nutrient loads or management controls, and
acceptable signal to noise ratio for eutrophication assessment
(Sutula, 2011). Furthermore, indicators should be able to be easily
and routinely measured by agencies responsible for monitoring
estuary health, typically regional councils inNZ.While ETI Tools 1
and2use similar attributesand indicators toASSETsandWFD-BC,
the ETI includes an additional tool, ETI Tool 3 (the focus of this
article)which isapredictive tool for scoring estuaryhealth. ETITool
3 combines attributes of ETI Tools 1 and 2, to enable users to
determine estuary health in the absence of detailed knowledge of
indicator conditions, and to scenario-test effects of management
decisions (e.g., changed upstream loading or land use) on estuary
health. The ETI tools are web-based applications available at https://
shiny.niwa.co.nz/Estuaries-Screening-Tool-3/.

ETI Tool 3 is a Bayesian Belief Network (BBN) description of
estuary response to eutrophication and sedimentation pressure.
BBNs are a modelling approach that use probability distributions
to connect interacting parameters in systems (in this case,
estuaries), to predict outcomes of interest. The knowledge
required for constructing the relationships between parameters
can arise from observations, other models or expert opinion
(Uusitalo, 2007; Newton, 2009). BBNs are particularly useful for
identifying and resolving complex environmental problems
because they can incorporate the effects of multiple influences
on values (in this case, ecological values) while handling their
uncertainty (Uusitalo, 2007; Quinn et al., 2013). They have the
capacity to make predictions under data-poor situations, but also
to incorporate knowledge when available, to improve prediction.
Building a BBN requires developing a conceptual framework of
how the system operates, and its articulation in the form of a
model. They are often presented in graphical form, allowing
users and stakeholders to obtain an immediate visual grasp of the
system interactions and the question(s) being addressed. The ETI
Tool 3 BBN predicts estuary health scores using inputs (drivers)
derived from ETI Tool 1 (Zeldis et al., 2017a; Plew et al., 2020)
and a scoring algorithm like that of ETI Tool 2, to combine
estuary health indicator scores and produce an overall health
score (Zeldis et al., 2017b). It uses knowledge of the ecological
connections between drivers of estuary trophic condition (e.g.,
estuary type, nutrient and sediment loads, flushing rate, etc.) and
responses of indicators (e.g., macroalgal/phytoplankton biomass,
sediment carbon, macrobenthic and seagrass health, etc.) to
calculate ETI health scores. In this paper we describe how this
ecological knowledge was implemented in constructing the ETI
Tool 3 BBN.

All three ETI tools resolve their predictions based on estuary
morphological type (Plew et al., 2020). This accounts for the
variable influence of estuary physiography (e.g., flushing, intertidal
area, water column stratification, etc.) in determining the
expression of eutrophication or sensitivity to sedimentation
(Monbet, 1992; NRC, 2000; Cloern, 2001; Bricker et al., 2003;
Ferreira et al., 2005; Cloern and Jassby, 2008; Hughes et al., 2011).
Various typologies have been developed internationally for
estuaries (Borja et al., 2004; Hume et al., 2007; Buddemeier
et al., 2008). The ETI has adopted a simple four-category
June 2022 | Volume 9 | Article 898992
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typology suited to the assessment of estuary susceptibility in NZ:
coastal lake (normally closed to the sea), shallow intertidally-
dominated estuary (SIDE), shallow short residence-time tidal river
estuary (SSRTRE), and deep sub-tidally dominated estuary
(DSDE) (Hume, 2018; Plew et al., 2020). The online ETI Tools
use these acronyms, but in this article, we shorten these
descriptions to ‘coastal lake’, ‘tidal lagoon’, ‘tidal river’ and ‘deep
bay’, respectively. Some tidal lagoons and tidal rivers
intermittently close to the sea, and this behaviour is
incorporated into the ETI Tool 3 BBN. We implement the BBN
for predictions of coastal lakes, tidal lagoons and tidal rivers, but
not deep bays. Important relationships determining condition of
deep bays involving interactions between phytoplankton densities
and benthic health are not parameterised in the current BBN
version. Also, we use ETI Tool 1 to generate inputs for the BBN,
but important physical mechanisms driving the dynamics of deep
bays are not well parameterised in ETI Tool 1 (including wind-
driven circulations and non-tidal onshore-offshore exchange).

We describe how the ETI Tool 3 BBN models estuary response
to eutrophication and sedimentation pressure, and apply it to 291
of the ca. 400 classified estuaries in NZ (Hume et al., 2016).
Predictions of ETI score are compared with susceptibility
predictions from ETI Tool 1 for the 291 estuaries, as an example
of a national estuary eutrophication risk assessment screening.
Predicted scores are compared with scores obtained from field
observations for 11 well-studied NZ estuaries, for both overall ETI
score and for individual indicators, and we examine how BBN
predictions may be improved by inputting pre-existing knowledge
of indicator conditions. We also provide two case studies to
demonstrate how the BBN can be used to assess changes in
estuary health from nutrient reductions, and to estimate the
Frontiers in Marine Science | www.frontiersin.org 3
nutrient reductions required to bring about a desired change in
estuary health.
2 METHODS

2.1 ETI Tool 3 BBN Overview
The ETI project (including the ETI Tool 3 BBN) beganwith a series
of workshops involving NZ water quality and estuary science
consultants, and NZ regional council (local government) resource
management scientists. These workshops defined ecologically
relevant and measurable indicators for estuary condition and
developed techniques for combining them into scores of overall
estuaryhealth (Robertson et al., 2016a; Robertsonet al., 2016b; Plew
et al., 2020). The BBN was developed to link these indicators with
their drivers and resultant scores. It was created using the software
package NETICA (Norsys, 2005), in which dependencies among
the drivers, indicators and scores (which include the performance
nodes and primary and secondary scores in Figure 1) are depicted
graphically by arrows linking ‘parent’ and ‘child’ nodes (Uusitalo,
2007) (Figure 1). The dependencies are quantified by conditional
probability tables (CPTs) that estimate the probabilities of values of
child nodes based on values of their parent nodes, using Bayes
Theorem and the chain rule of probability theory.

Within the ETI Tool 3 BBN, most of the values of the drivers
(Figure 1) are known in advance, from the outputs of ETI Tool 1.
The values of indicators are calculated by the BBN model and
combined to calculate the ETI score. ‘Intermediate calculation’
nodes are also included; these do not directly input to the scores
but are used to calculate some of the indicators. Nearly all the
relationships between these nodes are derived using observation
FIGURE 1 | Schematic of the ETI Tool 3 BBN. Information on ‘drivers’ (blue nodes) are input by the user and the BBN calculates values of primary and secondary
trophic indicators (yellow and pink ‘indicator’ nodes). Primary and secondary indicator values are used to produce ETI primary and secondary indicator scores, which
are then combined to give the final ETI ‘performance’ score and band (red nodes). To simplify the schematic, yellow and pink rectangles indicate ‘standardisation
nodes’ that normalise values of indicators prior to input to primary and secondary score nodes (see standardised indicator node section below).
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or model – based information, rather than with a strong reliance
on expert opinion. Although use of expert opinion is a
recognised and valid method of informing BBN models
(Uusitalo, 2007) we considered it preferable to rely, whenever
possible, on observed or modelled relationships. Sections 2.2 and
2.3 summarise information underpinning the relationships,
while detailed descriptions of the relationships, and the CPTs
describing probability distributions of the responses of parent
and child nodes, are given in the corresponding Supplementary
Material (S.M.) sections. The nomenclature used in the study is
provided at end of the article.

TheETITool 3BBNcombines the values of indicator nodes into
afinalETI score of estuaryhealth (its ‘performancenode’,Figure1).
Indicators are distinguished as ‘primary’ or ‘secondary’ indicators.
Primary indicators are potentially nuisance primary producers (i.e.,
macroalgae and phytoplankton) that commonly have
demonstrably increasing responses to nutrient enrichment.
Secondary indicators are ‘ecological symptoms’ of estuary health
impairment (e.g., impaired macrobenthic health, high sediment
carbon, reduced seagrass extent) arising as consequences of values
of primary indicators and drivers. This distinction determines how
primary and secondary indicator scores are combined into the final
ETI score,where the score of themost impairedprimary indicator is
combined with the average of the secondary indicator scores
(Robertson et al., 2016b). In NZ water quality policy statements
(e.g., the NPSFM; New Zealand Government (2020)), freshwater
water quality health variables are scored using a four-level banding
(A-D). The ETI follows this protocol and the BBN uses four bands
formost indicators and the overall ETI banding. The estuary health
conditions associatedwith the bandings (A-D) of theETIfinal score
(adapted from Robertson et al. (2016b)) are described in Table 1.

2.2 Deriving Driver Nodes
The information for each driver node (indicated by bold text,
below) in the ETI Tool 3 BBN (Figure 1) was derived from a
combination of pre-existing physiographic information on NZ
estuaries extracted from the NZ Coastal Explorer Database
Frontiers in Marine Science | www.frontiersin.org 4
(Hume et al., 2007; Hume et al., 2016), updated with more
recent survey data where available, and estuary dilution
modelling based on that information (Plew et al., 2018).
Methods used were those of Plew et al. (2020), where nutrient
loads were either calculated from a GIS land use model (Elliott
et al., 2016; Semadeni-Davies et al., 2020) updated using a land
cover layer from 2017 to calculate nutrient loads, or from
observed river flow and nutrient concentrations.

Estuary type was determined from the Coastal Explorer
database of Hume et al. (2007) and Hume et al. (2016), or
more recent surveys. This database also provided physiographic
information necessary for the dilution modelling (Plew et al.,
2018) used to estimate flushing time, salinity and potential
total nitrogen (TN) concentrations (mg m-3) in 291 tidal
lagoons, tidal rivers and coastal lakes across NZ.

Potential TN concentrations are defined as those that would
occur in the absenceofuptakebyalgae, or lossesorgainsdue tonon-
conservative processes such as denitrification (Plew et al., 2018).
The ETI Tool 3 BBN assumes that nitrogen (N) is the limiting
nutrient for macroalgal and phytoplankton growth and hence only
uses potential TN and not phosphorus. Macroalgae have high N
requirements compared to P (Atkinson and Smith, 1983), and
macroalgal growth ismore commonly limited byN rather than P in
NZ estuaries (Barr, 2007; Robertson and Savage, 2018). For
phytoplankton, Plew et al. (2020) predicted that 81% of the
estuaries in the ETI Tool 1 dataset were limited by N. This latter
result ismirrored by findings of dominantN limitation of estuarine
phytoplankton in North American estuaries (NRC, 2000). The
values of the potential TN driver node were more finely resolved at
lower concentrations than at higher concentrations reflecting the
need to distinguish TN at lower levels where macroalgal and
phytoplankton growth change rapidly with concentration (Eppley
et al., 1969; Barr, 2007; Dudley et al., 2022).

In the ETI Tool 3 BBN, the percent intertidal node and the
ETI primary score node are linked (Figure 1) because the
relative influence of phytoplankton and macroalgal
eutrophication depends on estuary morphology (see below).
TABLE 1 | Estuary health conditions associated with the bandings (A – D) of the ETI Tool 3 BBN final score (0 – 1) [adapted from Robertson et al. (2016b)].

Band A Band B Band C Band D

0 – 0.25 > 0.25 – 0.5 > 0.5 – 0.75 > 0.75 – 1

Ecological communities are healthy
and resilient.
Primary producers: dominated by
seagrasses and microalgae or in
coastal lakes, macrophytes.
Water column: high clarity, well-
oxygenated.
Sediment: well oxygenated, low
organic matter, low sulphides and
ammonium, diverse macrobenthic
community with low abundance of
enrichment tolerant species.

Ecological communities are slightly
impacted by additional algal
growth arising from nutrient levels
that are elevated.
Primary producers: seagrass/
microalgae/macrophytes still
present but increasing biomass of
opportunistic macroalgae.
Water column: moderate clarity,
can have moderate - poor DO
especially at depth.
Sediment: moderate oxygenation,
organic matter, and sulphides,
diverse macrobenthic community
with increasing abundance of
enrichment tolerant species.

Ecological communities are highly impacted
by macroalgal and/or phytoplankton
biomass elevated well above natural
conditions. Conditions likely to affect habitat
available for seagrass/macrophytes.
Primary producers: opportunistic
macroalgal biomass high, seagrass cover
low. Increasing phytoplankton where
residence time long.
Water column: reduced water clarity may
affect deep seagrass beds. Low DO,
especially at depth.
Sediment: poor oxygenation, high organic
matter and sulphides, macrobenthos
dominated by high abundance of
enrichment tolerant species.

Excessive macroalgal and/or phytoplankton
growth making ecological communities at high
risk of undergoing a regime shift to a
persistent, degraded state without
macrophyte/seagrass cover.
Excessive macroalgal growth making
ecological communities at high risk of
nuisance algal bloom situation. Primary
producers may be dominated by nuisance
phytoplankton (e.g., cyanobacteria,
picoplankton).
Water column: low clarity, deoxygenated at
depth.
Sediment: anoxic, very high organic matter
and sulphides, subsurface macrobenthos very
limited or absent.
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The main effects of phytoplankton eutrophication are oxygen
depletion and high light attenuation in deeper and often
stratified estuarine systems. Such estuaries generally have
little intertidal area suitable for nuisance macroalgae. In
contrast, estuaries with large intertidal area as a percentage of
total area are normally shallow and well mixed, and high
phytoplankton concentrations are unlikely to result in low
oxygen levels or significant light attenuation. However,
estuaries with large intertidal areas are more suspectable to
macroalgal blooms. The great majority of estuaries in the ETI
Tool 1 database with intertidal areas less than 20% are tidal
rivers, while the great majority of tidal lagoons have intertidal
areas greater than 40% (Plew et al., 2020). The BBN selects the
macroalgal primary indicator as the driver of the BBN primary
score node for estuaries with intertidal areas greater than 40%
to prevent the phytoplankton primary indicator having effect.
For estuaries with intertidal areas less than 5% the BBN selects
the phytoplankton primary indicator as the driver of the ETI
primary score node. If the intertidal area is between 5% and
40%, the ETI primary score node is scored using the worst of
the macroalgae and phytoplankton indicators.

The prevalence and ecological effects of phytoplankton
blooms (particularly deoxygenation in the water column)
usually are greater in summer when water column temperature
and stratification are higher. It is therefore most appropriate to
expose phytoplankton to potential TN concentrations that occur
in summer. To capture this pattern, the Seasonality driver node
is set as the ratio of potential TN calculated for summer to annual
potential TN. Summer potential TN for each estuary was
calculated using ratios of February (summer) to mean annual
river flows and river nutrient concentrations (Booker and
Woods, 2014; Whitehead et al., 2019). In most NZ estuaries,
summer potential TN is lower than annual TN, giving
seasonality factors less than 1. Flushing time is also calculated
using mean February flows because it is used to predict
phytoplankton biomass probabilities (Figure 1). If the user
believes that the seasonality factor for an estuary was not
appropriate (e.g., was set such that the importance of inputs
during other seasons were undervalued), the seasonality factor
can be set to a higher value.

Sediment load (g fine sediment m-2 day-1) were derived from
a raster-based (gridded) empirical model that, for each 1 ha grid
cell of NZ, relates the mean annual suspended sediment load to
the average slope, mean annual rainfall, land cover, and lithology
within that grid cell (Hicks et al., 2019). Sediment loads to each
estuary were determined by summing the loads from grid cells
within the catchment, and routing these loads down the stream
network, considering entrapment in lakes and reservoirs. The
sediment loading bands increase in size in an approximately
exponential manner to encompass the wide range occurring in
NZ estuaries (Hicks et al., 2019) while retaining sensitivity at the
lower end of the range.

Driver nodes describing estuary closure duration and water
column stratification are decided by the user, to examine
scenarios involving those conditions. Additional information
on these settings are given in relevant sections below.
Frontiers in Marine Science | www.frontiersin.org 5
2.3 Deriving Indicator Relationships and
Conditional Probability Tables
Here we provide rationale for selection of each primary and
secondary indicator in the ETI Tool 3 BBN, and then summarise
the derivations of the CPTs linking them with their parent nodes
(for additional detail, refer to corresponding sections of the
Supplementary Material).

2.3.1 Macroalgae
High abundance of opportunistic macroalgae is a primary
symptom of estuary eutrophication. Opportunistic macroalgae
are highly effective at utilizing excess nitrogen, enabling them to
out-compete other seaweed species. At nuisance levels, they can
form mats on the estuary surface which adversely impact
underlying sediments and other algae, macrobenthos, fish,
birds, seagrass, and salt marsh (Valiela et al., 1997; NRC,
2000). Decaying macroalgae can accumulate sub-tidally and on
shorelines causing oxygen depletion and nuisance odours. The
greater the macroalgal cover, biomass, persistence, and extent of
burial of algal material within sediments, the greater the
subsequent impacts (Green et al., 2014; Sutula et al., 2014). In
NZ, macroalgal biomass and spatial extent are key indicators of
degraded ecological health in coastal lake, tidal lagoon and tidal
river estuaries (Barr et al., 2013; Barr et al., 2020).

Plew et al. (2020) derived a relationship between potential TN
concentrations and macroalgae Ecological Quality Rating (EQR)
for 21 NZ estuaries. EQR is an estuarine macroalgal index that
combines biomass and spatial measures, derived using the
Opportunistic Macroalgal Blooming Tool (WFD-UKTAG, 2014),
modified for NZ (Plew et al., 2020) and calculated for the whole
estuary. To derive the macroalgae CPT (S.M. section 1), the
resulting relationship along with the predictor uncertainty for the
regression (Figure2) predictedpotentialTNcorresponding toEQR
thresholds of 0.8, 0.6 and 0.4, which are the thresholds betweenA-B
(minimal-moderate), B-C (moderate-high) and C-D (high-very
high) bands of macroalgal eutrophication, respectively (Robertson
et al., 2016b; Plewet al., 2020).WeusedannualTNloads and annual
mean flows to calculate potential TN concentrations, while EQR
observations were from peak growth (summer) periods. The
bandings therefore relate annual loads and flows to summer
macroalgal response.

We applied a high macroalgae EQR band (i.e., low biomass) if
the estuary salinity (calculated from the dilution modelling) was
less than 5 (practical salinity scale), because estuarine macroalgal
growth is inhibited by low salinity (Martins et al., 1999; Dudley
et al., 2022). This shifted the probability distributions for low
salinity estuaries towards the A band, becoming increasingly in
the B band with increasing potential TN. Tidal river estuaries,
particularly those with high river flows and low intertidal area,
often tolerate higher nutrient loads (in terms of expressing
relatively little macroalgal eutrophication) than other estuary
types (Robertson et al., 2016a). A combination of scour action,
low salinities, and limited intertidal area tend to restrict
macroalgal growth and accumulation in tidal river estuaries.
The relationship between potential TN and EQR was developed
using data mostly from tidal lagoons (Plew et al., 2020), and tidal
June 2022 | Volume 9 | Article 898992

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Zeldis and Plew Estuary Bayesian Belief Netwok
river estuaries are poorly studied in comparison. Based on the
few tidal river estuaries for which we have data, we estimated that
potential TN thresholds for tidal rivers are ~ 3 × higher than for
tidal lagoons and adjusted the macroalgae CPT for tidal rivers
accordingly (Supplementary Table 1).

2.3.2 Phytoplankton
Prolific growth of phytoplankton are another primary symptom
of eutrophication in estuaries (Bricker et al., 2003), which at
nuisance levels can cause secondary symptoms including
changes in water column and sediment chemistry, reductions
in water clarity and dissolved oxygen, with impacts on
macrophytes and higher trophic levels. High phytoplankton
concentrations are responses to high nutrient loads (Woodland
et al., 2015), and also estuary flushing time, being unlikely to
occur in estuaries that have flushing times less than the
phytoplankton doubling or turn-over times (Cloern, 1996;
Ferreira et al., 2005).

The Phytoplankton CPT (S.M. section 2; Supplementary
Table 2) was calculated from potential TN and flushing time
(Figure 1) using the analytical model developed by Plew et al.
(2020). This model predicts the highest likely phytoplankton
concentration (as chl-a) expected under summer conditons. The
model assumes a specific growth rate of 0.3 d-1 (Plew et al., 2020)
based on reported net growth rates for phytoplankton in NZ
estuaries of <0.2 – 0.4 d-1 (Vant and Budd, 1993; Gibbs and Vant,
1997). Flushing time values were chosen to range from those
below which phytoplankton does not accumulate (< ~3 d) to
Frontiers in Marine Science | www.frontiersin.org 6
those above which chlorophyll levels are determined solely by
nutrient concentration (> ~10 d). Intermediate bands were
chosen (3 to 6 d, and 6 to 10 d) to be spread between the
minimum and maximum flushing rates. As described above
(Driver Node section), the prevalence and ecological effects of
high phytoplankton concentrations are greater in summer, so
summer flushing times were used along with Potential TN
concentrations, adjusted with the Seasonality driver
node (Figure 1).

Different bandingswere applied to phytoplankton concentrations
based on salinity (Plew et al., 2020) (Supplementary Figure 2). This
was accommodated using the Salinity driver node which modified
Phytoplankton node values prior to their input to the ETI primary
score node (Supplementary Table 3). For freshwater or brackish
oligohaline (salinity < 5) systems, we applied bandings from the
NPSFM for the maximum chl-a concentrations in lakes (New
Zealand Government, 2020). Basque estuary thresholds (Borja
et al., 2004; Robertson et al., 2016b) were used for banding
mesohaline/polyhaline (salinity 5-30) systems and euhaline
(salinity > 30) systems. The Basque estuary bandings and the
NPSFM bands were developed for the 90th percentile of monthly
observations (to indicate the highest observed phytoplankton
concentrations). These bandings are applied to the predicted
summer maximum chl-a concentrations from the model.

2.3.3 Mud
Estuary sediment deposition is a major factor impacting estuary
conditions. High deposition of fine sediments leads to increased
muddiness (expressed as % grain size less than 63 µm by weight),
which can impair animal feeding, behavioural responses, larval
recruitment, and trophic interactions in coastal food-webs (Lohrer
et al., 2004; Lohrer et al., 2006; Jones et al., 2011; Pratt et al., 2014).
Less permeable, muddy sediments often retain more nutrients
(Huettel and Rusch, 2000; Engelsen et al., 2008), with associated
elevated organic content and sulphides, low sediment oxygenation
(i.e., shallow redox depth) and a depressed condition of sediment-
associated invertebrate communities (Robertson et al., 2015;
Robertson et al., 2017). NZ estuaries with less mud tend to be
more favourable for healthy macrobenthic communities
(Robertson et al., 2016c; Clark et al., 2019) and have been shown
to be resilient to nutrient-driven eutrophication once the nutrient
stressor is removed (Zeldis et al., 2020). There is often a positive
feedback between fine sediment and nutrient loading and
eutrophication, with muddy sediments and high nutrient loading
favouring nutrient retention andmacroalgal outgrowth (Robertson
and Savage, 2018), with macroalgae in turn trapping more mud
(Zeldis et al., 2019).

In the ETI Tool 3 BBN, muddiness interacts with other scored
indicators but does not contribute directly to the ETI score. This is
because eutrophic estuaries are not necessarily muddy, nor are
muddy estuaries necessarily eutrophic. The mud node of the BBN
was predicted from sediment deposition rates, which are in turn
predicted using estuary type and sediment loads. Estuary mud
deposition arises from fine sediment delivery (load) and trapping
efficiency in the estuary (Figure 1). S.M. section 3 details the
modelling of these processes by Hicks et al. (2019), used here.
Estuary type is also a factor, with coastal lakes found to have highest
FIGURE 2 | Observations of macroalgae Ecological Quality Rating (EQR)
plotted against potential total nitrogen (TN) concentrations for 21 NZ
estuaries. Data were from Robertson et al. (2016b); Plew et al. (2018) and
Plew et al. (2020). Horizontal dotted lines demark thresholds between EQR
bands (A–D) for macroalgae. Also shown are 95% prediction intervals
(dashed lines) used for calculating proportion of observations in each EQR
band at various potential TN levels (vertical lines).
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trapping efficiencies, followed by tidal lagoons, with tidal rivers
having lowest trapping efficiencies. Trapping efficiencies are further
modified by estuary mouth closure duration.

To accommodate these factors, the modelled sediment
deposition rate distributions were divided into seven bands
from low to high (<0.1, 0.1-0.5, 0.5-1, 1-2, 2-5, 5-10, 10-
20 mm y-1), to derive the CPT linking trapping efficiency
bands and load bands to deposition rate (Supplementary
Table 7). Choice of these bands was informed by a default
guideline value of 2 mm y-1 of sediment accumulation above the
natural annual sedimentation rate (Townsend and Lohrer, 2015).
While natural sedimentation rates in NZ estuaries are not well
known, the available information (Townsend and Lohrer, 2015)
suggests that natural rates are generally considerably less than
1 mm y-1. The deposition rate was then used to drive the
Sediment % mud node (Figure 1) which is defined as the
estuary - averaged value of % mud. Thresholds for estuary-
averaged % mud of 12%, 25% and 34% were selected based on
Robertson et al. (2016c) who showed these were important
thresholds for macrobenthic health in NZ estuaries (see
Macrobenthos node, below). We assumed that the default
guideline value of 2 mm y-1 above the natural annual
sedimentation rate causes detrimental effects similar to those at
34% mud content, shown by Robertson et al. (2016c) to be
associated with ‘transitional to pollution’ in terms of a locally
calibrated macrobenthic health index (see Macrobenthos node,
below). We thus equated a deposition of > 2 mm y-1 with a %
mud content of > 34% and, based on this approximation, the
CPT linking fine sediment deposition rate to sediment % mud
was created (Supplementary Table 8).

2.3.4 Sediment Total Organic Carbon
Estuarine sediments with high percent total organic carbon (%
TOC) are often associated with chronic macroalgal blooms
which, upon decomposition, contribute locally produced
(autochthonous) organic matter to sediments (Sutula et al.,
2014). The rate of autochthonous organic matter production
and its microbial respiration are thus key elements of the
estuarine eutrophication problem, associated with adverse
sedimentary environmental conditions including depleted
oxygen and excessive ammonium and hydrogen sulphide
concentrations (Gray et al., 2002; Hyland et al., 2005). High %
TOC is also commonly associated with muddy sediments
(Pelletier et al., 2011), which are less likely to be well irrigated
compared to more permeable, sandy sediments (Huettel and
Rusch, 2000; Engelsen et al., 2008; Zeldis et al., 2020).
Furthermore, allochthonous mud has significant organic
matter content in NZ rivers (Scott et al., 2004; Zeldis et al.,
2010). We therefore developed the Sediment % TOC node to
react to an interaction of the Macroalgae and Sediment % mud
nodes in the ETI Tool 3 BBN.

Relationships between macroalgal biomass and sediment %
TOC of Sutula et al. (2014) were used to derive a CPT estimating
effects of macroalgal accumulation on % TOC (S.M. Section 4,
Supplementary Table 9). We determined a four-band gradient
of % TOC from low to high impact by considering % TOC effects
on sediment apparent Redox Potential Discontinuity (aRPD)
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(Sutula et al., 2014) and macrobenthic condition (Robertson
et al., 2016c).

We used sediment % mud and sediment % TOC data from
five Southland (NZ) estuaries (New River, Jacobs River, Haldane,
Fortrose and Freshwater Estuaries (Robertson et al., 2017) (L.
Stevens, Salt Ecology Consultants, NZ, pers. comm) to derive a
CPT relating sediment % mud to sediment % TOC
(Supplementary Table 10; Supplementary Figure 4).

The final macroalgae/sediment %mud/sediment % TOC CPT
(Supplementary Table 11) was derived by cross-multiplying and
normalising Supplementary Tables 9, 10.

2.3.5 Apparent Redox Potential Discontinuity Depth
The apparent Redox Potential Discontinuity (aRPD) depth marks
the depth of the boundary between oxic near-surface sediment and
the underlying suboxic or anoxic sediment. Shallowing of aRPD is
related to reduced benthic habitat quality and volume, deleterious
alterations in macrobenthic community structure (Green et al.,
2014) and undesirable changes in sedimentary biogeochemical
cycling (Eyre and Ferguson, 2009; Sutula, 2011). Shallow aRPD is
often associated with excessive organic matter additions from
macroalgae (Macroalgal EQR section, above; Sutula et al. (2014)),
in estuary types that support appropriate conditions formacroalgal
blooms (most commonly tidal lagoons in NZ). As described above
(SedimentTOCsection), excessiveTOCassociatedwithmuddiness
can lead to depleted oxygen, and excessive ammonium and
hydrogen sulphide concentrations in sediments.

The aRPD CPT therefore considers the interacting effects of
macroalgal eutrophication and % TOC bands on aRPD (Figure 1)
(S.M. section 5). A regression between sediment % TOC and aRPD
was derived using Sutula et al. (2014) and combined with a
regression between macroalgal EQR and % TOC using Sutula
et al. (2014) and Green et al. (2014). This resulted in bands of
aRPD ranging from a low impact ‘reference threshold’ of > 4 cm to
an ‘exhaustion threshold’ of < 1 cm, with intermediate thresholds at
2.5 to 4 cmand1 to2.5 cmconditionedby the 4bandsofEQRand%
TOC. The probability of aRPD falling in each of the four aRPD
bands was then calculated for each of the 16 combinations of %
TOC and EQR bands (Supplementary Table 13).

2.3.6 Macrobenthos
Excessive macroalgal biomass, high % TOC in sediments, and
excessive muddiness can act synergistically to affect the health of
macrobenthos, by smothering their habitats and by creating
anoxic and sulphidic conditions in their sedimentary
environments (Green et al., 2014; Pratt et al., 2014; Robertson
et al., 2015; Robertson et al., 2016c). The macrobenthic CPT was
therefore constructed to incorporate interacting effects of
macroalgal biomass, % TOC and muddiness.

Robertson et al. (2016c) developed regression trees that
identified threshold values of % mud and % TOC delimiting
macrobenthic taxon abundance and richness at 21 NZ tidal
lagoon and tidal river estuaries. These were expressed in terms
of AMBI (AZTI Marine Benthic Index) (Borja et al., 2000) Biotic
Coefficients, which ranged from ‘Normal’ (1.2 – 3.3) to
‘Transitional to pollution’ (3.3 – 4.3), to ‘Polluted’ (> 4.3), with
increasing % mud. % TOC values were only important as a
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criterion for abundance and richness indices if % mud was very
high (> ~34% for abundance-weighted AMBI), indicating
organic enrichment rather than muddiness was the primary
stressor for that split. Robertson et al. (2016c) concluded that
the locally (NZ) calibrated AMBI (‘NZ AMBI’) provided a robust
proxy of stress, relating % mud and % TOC to macrobenthic
community health.

Green et al. (2014) described macroalgal eutrophication
effects on macrobenthic health, indicating that macroalgal
biomasses below 15 g dm (dry mass) m-2 had no negative
effects on macrobenthos, while a value of 110 g dm m-2 was an
approximate midpoint between ‘no effect’ and an ‘exhaustion
threshold’ occurring at ~185 g dm m-2. The latter value
corresponded well with the value of 175 g dm m-2 found by
Sutula et al. (2014) for an exhaustion threshold for aRPD. These
values were converted to EQR equivalents (S.M. section 5).

The macroalgal EQR, % mud and % TOC thresholds were
combined to derive the macrobenthic CPT, in terms of NZ
AMBI Biotic Coefficients (S.M. section 6, Supplementary
Table 14). We set % TOC to have increasing influence only
after % mud exceeded 34% and after macroalgal EQR was < 0.4.
Macroalgal biomass had no influence at high EQR (≥ 0.8) and
had increasing influence at EQR < 0.8, where it corresponded to
values exceeding reference conditions of Green et al. (2014).

2.3.7 Oxygen
Oxygen is essential for aquatic ecosystems because it enables
organisms to extract energy from organic matter (Lehninger,
1975). When respiratory consumption of estuarine water column
oxygen becomes greater than replenishment by photosynthesis
or hydrodynamic and atmospheric exchange, oxygen
concentrations are decreased and can become stressful for
biota (hypoxia) (Gray et al., 2002; Vaquer-Sunyer and Duarte,
2008). In extreme cases, hypoxia can be catastrophic for biota
and normal biogeochemical functioning of coastal ecosystems
(Conley et al., 2009).

Estuarine water column hypoxia can arise from seasonal
decomposition of organic matter by microbial respiration
(Wallace et al., 2014; Zeldis and Swaney, 2018; Zeldis et al.,
2022), meaning that the extent of oxygen depletion can be a
positive function of nutrient inputs and phytoplankton biomass
during the production season (NRC, 2000; Harding et al., 2014;
Wallace et al., 2014). For regulatory purposes, achievement of
desired levels of water column oxygen have therefore been tied to
limits of phytoplankton biomass (often measured as chl-a; e.g.,
Harding et al. (2014)). Physical processes also affect estuary
hypoxic susceptibility (Scully, 2016) if the water column
becomes density-stratified, acting to isolate the deeper layers
from atmospheric exchange. If the water column is shallow or
regularly vertically mixed, atmospheric exchange is maintained
and hypoxic conditions generally will not form. Residence time
also governs oxygen levels, with longer flushing times more likely
to sustain low oxygen waters. Observations in NZ have shown
that shallow tidal lagoons and tidal rivers with short residence
times are normally well mixed and are unlikely to exhibit low
water column-average oxygen concentrations (Dudley et al.,
2017). Some tidal rivers may, however, include deep areas
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which support saline stratification, and coastal lakes are non-
tidal so may be more susceptible to stratification and low oxygen.

The water column oxygen CPT in the ETI Tool 3 BBN was
therefore driven by interactions of phytoplankton biomass,
flushing and stratification (Figure 1; S.M. section 7). Its
bandings (Supplementary Table 15) were set using the 7 day
mean minimum thresholds given in Robertson et al. (2016b)
(their Table 7), which were based on NZ National Objective
Framework (NOF) criteria for rivers (Davies-Colley et al., 2013)
and California estuary criteria (Sutula et al., 2012). These
thresholds identified oxygen levels ranging from no stress/
minor stress on aquatic organisms at oxygen levels ≥ 7 mg L-1,
to significant, persistent stress with likelihood of local extinctions
and loss of ecological integrity at < 5.0 mg L-1.

Because we were unable to predict the stratification strength
of estuaries in the ETI Tool 3 BBN, it was included as a user-
input driver (Figure 1; Supplementary Table 16) that prescribes
whether estuaries are stratified or not. The linkages of
stratification, flushing and phytoplankton nodes were
determined using field-derived oxygen utilisation rates, chl-a
and physical data from Firth of Thames, a NZ North Island
estuary (Zeldis et al., 2022). These yielded a chl-a - specific rate of
oxygen drawdown (detailed in S.M. section 7) for both stratified
and non-stratified states in the estuaries.

2.3.8 Seagrass
Seagrass (Zostera muelleri) is a vascular, rooted estuarine
macrophyte that is a keystone ecological component of many
NZ estuaries (Robertson et al., 2016b). Seagrass provides high
value habitat for a wide range of biota in NZ (Morrison et al.,
2009) and important ecosystem services including wave
attenuation, increased water clarity, denitrification and carbon
sequestration (Reynolds et al., 2016; Duarte and Krause-Jensen,
2018). The presence of seagrass beds in good condition is
generally considered to indicate low/moderate nutrient and
mud inputs and good water quality, while large scale seagrass
losses have been documented where these conditions have not
been met (Inglis, 2003; Morrison et al., 2009).

Increased N loads have been associated with 80% to 94%
reductions in dense seagrass in southern South Island NZ
estuaries (Zeldis et al. (2019); reviewed in S.M section 8), often
associated with excessive macroalgal cover and muddiness.
Recent work in Porirua Harbour (southern North Island, NZ)
(Zabarte-Maeztu et al., 2019) has found a threshold of 23% mud,
above which NZ seagrass does not occur. Nutrient toxicity effects
on seagrass are also important at high concentrations (~25
µmol L-1 NH+

4 -N; Katwijk et al. (1997) and 6-12 µmol L-1

NO−
3 N; Burkholder et al. (1994)).
Considering this information, the seagrass CPT (S.M. section

8; Supplementary Table 18) in the ETI Tool 3 BBN was
constructed assuming that potential TN concentration and %
mud are key drivers of seagrass condition (Figure 1). We
considered that potential TN ≥ 150-200 mg m-3 (~10 – 14
µmol L-1) were likely to elicit macroalgal growths at the B/C
EQR band threshold (Macroalgal EQR section, above), that
would correspond to poor conditions for seagrass arising from
both eutrophication and nitrate and/or ammonium toxicity.
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Further, we assumed that % mud ≥ 25-34% would elicit
deleterious effects. The metric employed for assessing seagrass
health was extent of seagrass cover as percentage of estimated
natural state cover (ENSC: Robertson et al. (2016b)), with values
from 95% to 85% ENSC signifying moderate stress (C band) and
< 85% significant, persistent stress (D band).

2.3.9 Standardised Indicators
The full ETI Tool 3 BBN NETICA structure (Figure 3) includes
the distribution of values for each primary and secondary node
and their means and standard deviations. The values in each
primary and secondary node were expressed in their original
units and over various ranges (Figure 3). To linearise and
normalise these values prior to input to the primary and
secondary scoring nodes, ‘standardised nodes’ are used to
convert the values to a range of zero to one, using four equal-
sized bands (Figure 3).

2.3.10 ETI Primary Score
The ETI primary score CPT is calculated from the standardised
primary indicator values for macroalgae and phytoplankton. The
ETI primary score is discretised into 10 bands to improve
precision of the estimate as it combines multiple indicators.
The calculation uses an equation that includes the percent
intertidal area driver node (Figure 1), to determine which of
the two primary indicators (macroalgae or phytoplankton) to use
in the primary indicator scoring (Driver Nodes section, above). If
intertidal area is < 5%, phytoplankton is selected, if > 40%
macroalgae is selected and if between 5 and 40% the larger of
the two is selected.
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ETIpri =

Phytostd Intertidal < 5%

max Phytostd ,Macrostdð Þ 5 ≤ Intertidal ≤ 40%

Macrostd Intertidal > 40%

8>><
>>:

The ETI primary score node table which incorporates these
settings and maps them to the various combinations of
standardised macroalgae and phytoplankton scores is very
large and is not shown in Supplementary Material. However, it
may be examined by opening that node using the ETI Tool 3
BBN application and opening the ‘Table’ tab. This is also true for
the ETI secondary score CPT, and the ETI final score CPT,
described below.

2.3.11 ETI Secondary Score
The ETI secondary score CPT is calculated using an equation
that selects the average of standardised secondary indicator node
scores using the equation:

ETIsec = average aRPDstd ,Macrobenthosstd ,TOCstd , Seagrassstd ,Oxygenstdð Þ
Like the primary score, the secondary score is discretised into

10 bands. For shallow, well mixed tidal lagoon estuaries, where
significant water column oxygen depletion is typically absent, the
ETI secondary score is calculated without the oxygen term.

2.3.12 ETI Score and ETI Band
The ETI score CPT is calculated using an equation that selects
the average of the primary and secondary scores, using the
equation:

ETI  =   ETIpri + ETIsec
� �

=2
FIGURE 3 | ETI Tool 3 BBN NETICA structure. Blue boxes are driver nodes with values input from ETI Tool 1, yellow and pink nodes are primary and secondary
indicator nodes and the red nodes are the final ETI score and bands. Grey nodes are intermediate calculation nodes. Indicator nodes have accompanying
standardising nodes that normalise their respective scores prior to input to the primary and secondary scoring nodes. This BBN run shows results for Jacob River Estuary
(Southland region, NZ) in its present state.
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The ETI score is discretised into 10 bands. As an additional
step, the ETI score could be recast as four bands (A-D) if it were
needed to make comparison with the 4-state banding used within
the NPSFM. This is the ETI band shown in Figures 1, 3. In this
study, we use the ETI score calculated from the 10 banded node
when comparing with ETI Tool 1 (Plew et al., 2020) and ETI
Tool 2 scores (Zeldis et al., 2017b).
2.4 Comparisons With Estuary
Observations
The ETI Tool 3 BBN was tested against observations from 11 NZ
estuaries. The 11 estuaries and their associated Driver node
inputs to the BBN, obtained by running ETI Tool 1, are
described in Table 2. Observations of estuary eutrophication
indicators were collected in a manner that allowed an ETI score
Frontiers in Marine Science | www.frontiersin.org 10
to be calculated following the ETI Tool 2 protocol described by
Robertson et al. (2016b) and available via https://shiny.niwa.co.
nz/Estuaries-Screening-Tool-2/. Indicators measured in each
estuary included macroalgal EQR, sediment redox potential
(SRP) at 1 cm depth, sediment total organic carbon, sediment
total nitrogen, NZ AMBI and area-weighted estuary
mud content. These data were extracted from monitoring
reports prepared for NZ regional councils (Table 3). Note
that it was not necessary to have measurements for all
secondary indicators to calculate an ETI Tool 2 score for an
individual estuary.

The ETI Tool 3 BBN uses aRPD, whereas the measured
indicator in monitoring reports was SRP. In comparing ETI
Tool 3 BBN predicted scores and ETI Tool 2 observed scores, we
assumed that these metrics measure similar characteristics of
sediment health, as also found by Gerwing et al. (2018).
TABLE 2 | Properties of 11 New Zealand (NZ) estuaries, used as Driver node input values to test the ETI Tool 3 BBN.

Estuary Year Location Area
(km2)

Type Intertidal
area (%)

Flushing
time (days)

Salinity Potential TN
(mg m-3)

Seasonality Stratification Closure Sediment load
(g m-2 d-1)

Pounawea
(Catlins) Estuary

2017 46.481°S
169.693°E

8.129 Tidal
lagoon

65.47 3.9 26.7 232 0.587 No Open 5.3

Jacobs River
Estuary

2018 46.343°S
168.005°E

6.697 Tidal
lagoon

66.06 3.6 21.7 666 0.630 No Open 27.6

New River
Estuary

2013 46.469°S
168.330°E

39.824 Tidal
lagoon

41.92 3.8 25.2 659 0.577 No Open 12.9

Te Awarua-o-
Porirua Harbour

2015 41.104°S
174.864°E

7.469 Tidal
lagoon

10.76 5.3 28.9 165 0.483 No Open 8.5

Rangitikei
Estuary

2018 40.296°S
175.233°E

0.394 Tidal
river

3.59 0.3 0 709 0.631 Yes Open 5750

Ruataniwha Inlet 2016 40.657°S
172.671°E

7.560 Tidal
lagoon

88.46 0.9 19.8 145 0.713 No Open 50.9

Shag River
Estuary

2017 45.480°S
170.813°E

1.226 Tidal
lagoon

67.5 1.6 31.1 125 0.599 No Open 126

Toetoes
(Fortrose)
Estuary

2018 46.570°S
168.789°E

4.278 Tidal
river

30.84 0.6 15.8 648 0.709 Yes Open 170

Tokomairiro
Estuary

2018 46.216°S
170.044°E

1.077 Tidal
river

51.05 1.2 20.1 705 0.620 Yes Open 88.4

Waimea Inlet 2014 41.305°S
173.198

33.445 Tidal
lagoon

58.87 9.7 29.2 130 0.439 No Open 8.8

Whanganui Inlet 2016 40.589°S
172.556°E

27.41 Tidal
lagoon

79.15 7.6 33.2 26.5 0.531 No Open 0.8
June 2022 |
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Flushing times, salinity and potential TN concentrations were predicted using ETI Tool 1 (Plew et al., 2020). Seasonality is the ratio of summer to annual mean potential TN concentrations.
TABLE 3 | Observed estuary health indicator values from 11 NZ estuaries and resulting ETI Tool 2 score.

Estuary Mud (%) NZ AMBI TOC (%) EQR ETI Tool 2 score Source for estuary health indicator values

Pounawea (Catlins) Estuary 11.6 4.4 0.27 0.62 0.66 Stevens and Robertson (2017a)
Jacobs River Estuary 16.4 4.74 1.3 0.245 0.88 Stevens (2018b)
New River Estuary 20.5 4.3 3.5 0.284 0.95 Stevens (2018c)
Te Awarua-o-Porirua Harbour 19.2 1.45 0.37 0.71 0.42 Stevens and Forrest (2020a); Stevens and Forrest (2020b)
Rangitikei Estuary 64 – – 0.9 0.22 Stevens (2018d)
Ruataniwha Inlet – 3.2 0.8 0.91 0.35 Stevens and Rayes (2018)
Shag River Estuary 11.7 4.3 0.35 0.9 0.36 Stevens and Robertson (2017b)
Toetoes (Fortrose) Estuary 15.3 – – 0.453 0.84 Stevens (2018a)
Tokomairiro Estuary 17 3.5 1.55 0.62 0.59 Stevens (2018e)
Waimea Inlet – 2.2 0.6 0.55 0.50 Stevens and Rayes (2018)
Whanganui Inlet – 1.314 0.49 0.67 0.42 Stevens and Rayes (2018)
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In many of the monitoring reports the “percent of estuary
area with > 25% mud content (< 63µm)” was used as a secondary
indicator, contributing directly to the observed ETI Tool 2 score.
In the ETI Tool 3 BBN, %mud does not contribute directly to the
ETI score but influences other secondary indicators that do
(Figures 1, 3). To be consistent with the BBN scoring,
observed mud content was not included when calculating the
observed ETI Tool 2 score (Table 3). The BBN uses estuary –
average % mud, rather than “percent of estuary area with > 25%
mud content (< 63µm)”. To make the observed (ETI Tool 2) mud
metric comparable to the predicted (BBN) metric prior to its
input to the BBN, we estimated area-weighted, average % mud
content for each estuary using the mapping of sediment types
and % mud content of each sediment type provided in the
monitoring reports.

Dissolved oxygen, phytoplankton and sea grass cover were
seldom measured in the observations, so for consistency these
were excluded from the ETI Tool 3 BBN scores.

ETI Tool 2 scores calculated from the observations were first
compared to ETI Tool 3 BBN scores using only Driver node data
obtained from ETI Tool 1. We also compared observed and
predicted indicator values, individually. Finally, observed values
of indicators were used to set their respective nodes in the BBN,
to determine which observations provided the most benefit in
refining BBN predictions of ETI score.

2.5 Comparison With ETI Tool 1
Susceptibility
Predicted primary scores and ETI Tool 3 BBN scores were
compared with susceptibility values from ETI Tool 1 (Plew
et al., 2020). While ETI Tool 1 gives susceptibility as a band
(A-D), the calculations for macroalgae and phytoplankton
susceptibility each produce a continuous value for either EQR
or chl-a. Those values were normalised between 0 and 1 using
their respective band thresholds and used to predict a continuous
susceptibility score, equivalent to the ETI primary score in the
BBN. This susceptibility score was then compared to the BBN
primary score and overall ETI score. In this analysis we assumed
that tidal lagoons were not stratified. Stratification conditions in
coastal lakes and tidal rivers were not simple to predict, therefore
we did not set the stratification driver node in the BBN in those
cases. By not setting the stratification driver node, an equal
probability of the estuary being stratified or not was ascribed. For
comparison with ETI Tool 1 susceptibility scores we included
oxygen and seagrass indicators in the predicted ETI score.
3 RESULTS

3.1 Correspondence With Observed
ETI Tool 2 Scores
Comparisons of ETI Tool 3 BBN predicted scores with ETI Tool
2 observed scores for the 11 estuaries are given in Figure 4.
When the BBN was driven only with inputs generated by ETI
Tool 1, the predicted ETI scores were generally consistent with
observed scores, with a root-mean-squared-error (rmse) of 0.121
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(Figure 4A). Error bars on these estimates show the standard
deviation of prediction based on the probability distributions of
child nodes calculated by the BBN. Predicted scores for two of
the estuaries (Whanganui Estuary and New River Estuary) lie
more than one standard deviation below the 1:1 line. Standard
deviations of the predicted scores were between 0.089 and 0.159
(averaging 0.129).

Observed macroalgae EQR values were available for all 11
estuaries. When observed EQR scores were included as an input
to the ETI Tool 3 BBN (Figures 4B, F), the standard deviation of
each prediction reduced to between 0.075 and 0.099 (average
0.086). This reflected the strong influence that the macroalgae
EQR node had on secondary indicator nodes in the BBN. While
the rmse reduced to 0.092, more (five) of the predicted ETI scores
were more than one standard deviation below the 1:1 line. This
was particularly the case for tidal river estuaries (red symbols in
Figure 4B) with two of the three tidal river estuaries more than
one standard deviation below the observed ETI Tool 2 score. The
BBN predicted score was also substantially reduced in the Catlins
Estuary where the addition of EQR reduced the predicted score
from 0.609 to 0.445. These estuaries were systems where high
macroalgae EQR was observed relative to nutrient loading.

% TOC observations were available for nine of the 11
estuaries. If % TOC was provided along with ETI Tool 1
inputs, rmse increased from the default scenario to 0.131, but
the standard deviation of each prediction reduced to between
0.066 and 0.132 with a mean of 0.102 (Figure 4C).

Using observed NZ AMBI (available for nine estuaries) as an
input to the ETI Tool 3 BBN resulted in the highest rmse of 0.160
(Figure 4D), although the standard deviation of each prediction
reduced to between 0.068 and 0.130 (average 0.101). Much of the
increased rmse was caused by the higher predicted ETI score for
Shag River Estuary, with predicted ETI scores for other estuaries
changed by only small amounts.

% mud content is not scored as a secondary indicator in the
ETI Tool 3 BBN, but directly influences secondary indicators of
% TOC and NZ AMBI (as well as seagrass which is not scored in
this comparison). Percent mud content calculated as an area
weighted average was estimated for eight of the estuaries. Adding
% mud to the BBN resulted in the lowest rmse of 0.087, although
predicted ETI scores were biased low compared to observations
(Figure 4E). Standard deviations of each prediction were
between 0.088 and 0.159 (average 0.125).

When all the available observations of indicators were used as
inputs to the ETI Tool 3 BBN (Figure 4F), the rmse was 0.098.
The standard deviations for each prediction were in the range
0.063 to 0.081 (average 0.070). Predicted BBN scores were within
one standard deviation of ETI Tool 2 observed scores for six of
the 11 estuaries, and within two standard deviations for another
three estuaries. The exceptions were the Catlins Estuary and
Toetoes Estuary. The BBN score for Toetoes Estuary was
underpredicted mostly because the estuary has low % mud and
EQR (the only two observed indicators available as inputs for the
BBN) due to strong currents over large portions of the estuary
that scour macroalgae and restrict mud accumulation (Stevens,
2018a). Poor sediment oxygenation has been reported over large
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areas of the estuary (Stevens and Robertson, 2017c; Stevens,
2018a), and a low SRP at 1 cm depth (-400 mV) is included in the
input to the observed score. Adding an aRPD score of < 1 cm to
the BBN increases the predicted ETI score from 0.54 ± 0.07 to
0.59 ± 0.07, closer to, but still lower than, the observed value
of 0.84.

For the Catlins Estuary, adding observed macroalgae EQR, %
mud and % TOC all reduced the ETI Tool 3 BBN score. The
observed ETI Tool 2 score included sediment SRP at 1 cm depth
(-241 mV), which indicates anoxic conditions. Observations
report widespread areas with low aRPD (Stevens and
Robertson, 2017a) and including an aRPD of < 1 cm as input
to the BBN raised the predicted ETI score from 0.44 ± 0.07 to
0.52 ± 0.06, closer to the ETI Tool 2 observed value (0.62).
Another contributing factor to the low predicted BBN values is
that the macroalgae EQR value of 0.62 is just above the lower end
of the 0.6 to 0.8 band. If the observed EQR were slightly lower (in
Frontiers in Marine Science | www.frontiersin.org 12
the 0.4 to 0.6 EQR band) then the BBN score would increase to
0.65 ± 0.07. This reflects one disadvantage of using only four
bands for indicator nodes as, while having few bands is
preferable to keep the CPTs manageable, small changes in
observed indicator values that cross band thresholds can have
large impacts on BBN scores. The observed ETI Tool 2 score uses
a 10-level discretisation for indicators, which reduces this effect.

3.2 Comparing Predicted and Observed
Indicator Values
Predictions of indicator values from the ETI Tool 3 BBN,
supplied with only driver node inputs, were compared with
indicator values derived from estuary observations (Figure 5).
Predicted macroalgae EQR and NZ AMBI values (Figures 5A, E)
were positively and significantly (p < 0.01) correlated with
observations. Predicted aRPD and observed SRP at 1 cm depth
were also positively and significantly (p < 0.05) correlated
A B

D

E F

C

FIGURE 4 | Comparison of ETI Tool 2 scores from observations and scores predicted by the ETI Tool 3 BBN using (A) only driver node data (predicted by ETI Tool
1), and with the addition of observed (B) macroalgal EQR, (C) sediment % TOC, (D) NZ AMBI, (E) average % mud content, and (F) EQR + % TOC + % mud + NZ
AMBI. Shown are the root mean squared error (rmse) and error bars showing the standard deviation of the predicted BBN score. Estuaries were not shown in (C–E) when
their additional secondary indicator observations were not available.
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(Figure 5C) as were predicted and observed % TOC (Figure 5D).
Observed and predicted % mud were not correlated (Figure 5B).

For the analyses of Figures 4, 5, errors were not available for
observed ETI Tool 2 score or for individual indicators,
respectively. This stems from the fact that multiple
observations were available only for some of the observed
indicators, in some of the estuaries, in original data reports.

3.3 National Scale ETI Tool 3 BBN Results
and Correspondence With ETI Tool 1
Susceptibility
At the national scale, ETI Tool 1 susceptibility (Figure 6A) and
ETI Tool 3 BBN score (Figure 6B) showed broadly
corresponding patterns. The west coast of South Island had
both lower susceptibility and BBN score than on the east coast.
On the southeast South Island coast, susceptibility scores were
higher (worse) than those from the BBN. In the North Island,
correspondence between the two ETI tools was more variable.
On the southeast coast of the North Island, ETI Tool 1
predictions tended to be lower than those of the BBN. For the
North Island generally, regional patterns were less evident for
both tools.

Compared to ETI Tool 1 susceptibility scores (Figure 6A), the
ETI Tool 3 BBN-predicted scores (Figure 6B) were compressed
Frontiers in Marine Science | www.frontiersin.org 13
with fewer values in the ranges 0-0.25 (A band), and 0.75-1 (D
band) (cf. Table 1). Many of the low susceptibility scores occur in
tidal river estuaries which have both low salinity (which inhibited
macroalgal growth), and short flushing times (which did not
support phytoplankton blooms). These estuaries have a zero-
susceptibility score (Figures 6C, D). With the BBN, these
estuaries receive non-zero values (Figures 6C, D), which
commonly map to the A or B band.
4 DISCUSSION

4.1 Performance of the ETI Tool 3 BBN
The ETI scores predicted by the ETI Tool 3 BBN, using only
driver node data obtained from ETI Tool 1, showed good
agreement with ETI Tool 2 scores calculated from observations
(Figure 4A). Figure 4 suggests that the ETI scores of tidal
lagoons and tidal rivers are predicted with similar accuracy;
however, the validation dataset is small (11 systems), particularly
for tidal rivers (3 systems). Our validation dataset did not include
any coastal lakes thus we cannot assess the accuracy of the BBN
for those systems.

Adding all observed indicator values (Figure 4F) improved
the agreement between predicted and observed ETI scores,
A B

D

E

C

FIGURE 5 | Comparison of observed estuary eutrophication indicator values with values predicted by the ETI Tool 3 BBN for (A) macroalgal EQR, (B) average %
mud, (C) SRP at 1 cm depth and aRPD depth, (D) % TOC, and (E) NZ AMBI.
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although addition of individual indicators did not always do so.
Adding % mud or macroalgae EQR indicators improved the fit,
while adding % TOC or NZ AMBI did not. Correlations between
individual predicted and observed indicators were not as strong
(Figure 5). Within an individual estuary, the values of indicators
can be highly variable in space and time and can indicate
disparate levels of trophic condition amongst themselves
(Green et al., 2014; Sutula et al., 2014). It is therefore beneficial
to use multiple indicators to assess estuary health, as achieved by
the overall ETI Tool 3 BBN score. The correlations between
observed and predicted indicator values were also affected by the
discretisation of most of the indicators within the BBN into four
relatively broad bands over their respective ranges (Figure 3).
Mean values were calculated from the midpoints of each band
weighted by the probability predicted for each band by the BBN.
Confidence intervals were calculated in a similar manner. The
consequence of this is that confidence intervals were wide
(Figure 5) due, in part, to the discretised structure of BBNs,
generally. Furthermore, there was uncertainty in the
observations, which was often unspecified in original data
reports (often only one value was provided in the underlying
reports). Uncertainties in those values would contribute to the
Frontiers in Marine Science | www.frontiersin.org 14
overall errors between predicted and observed values of
indicators. Also, we lacked data to test the BBN predictions for
dissolved oxygen, seagrass and phytoplankton. Plew et al. (2020)
compared the phytoplankton model to observations but found
that available data seldom provided an unbiased estimate of
volume-averaged chl-a concentrations and were of limited use
for calibrating or validating the model.

ETI Tool 3 BBN-predicted values of % mud were the most
poorly correlated with observations (Figure 5B). Percent mud is
difficult to predict because the processes by which fine sediments
are transported to and through estuaries, and how they settle,
consolidate, or are resuspended by currents or waves, are
complex. These can, at best, only be approximated using
simple basin-averaged models such as used here (Hicks et al.,
2019). Deposition is spatially and temporally variable and
influenced by particle size, density, and flocculation processes,
adding variability among observations. The BBN also relied on
an assumed relationship between sediment accumulation rate
and muddiness of 2 mm y-1 ≈ 34% mud content which was
poorly constrained. Consequently, our ability to predict % mud
from annual fine sediment load is currently poor. While we did
not use % mud as a scored secondary indicator when calculating
A B

DC

FIGURE 6 | (A) Predicted eutrophication susceptibility from ETI Tool 1 (Plew et al., 2020), (B) Predicted ETI Tool 3 BBN score, (C) Comparison of ETI Tool 1
susceptibilities and BBN-predicted primary scores, and (D) ETI Tool 1 susceptibilities and BBN-predicted ETI scores.
June 2022 | Volume 9 | Article 898992

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Zeldis and Plew Estuary Bayesian Belief Netwok
the ETI secondary score, it has at times been used as an indicator
in ETI Tool 2 scores (Robertson et al., 2016b). To compare our
predicted % mud metric with observations (Figure 5B), we
converted the ‘area of estuary with > 25% mud content’ of
Robertson et al. (2016b) to ‘estuary averaged % mud content’.
Our conversion between these metrics probably introduced
further error.

The ETI Tool 3 BBN provides an overall score that represents
the whole of an estuary, which is the same approach as that of
ETI Tool 2. This is useful for management purposes for
screening and scenario testing at the estuary-wide scale. While
it doesn’t explicitly resolve within-estuary spatial or seasonal
behaviours, it does use some indicators that use spatially-
distributed sampling to measure a whole estuary response, for
example EQR (WFD-UKTAG, 2014), or measure worst-case
seasonal scenarios, for example chl-a (90th percentile of
observations: Plew et al. (2020)). We therefore regard the BBN
characterizations as having reasonable skill in describing
estuarine trophic conditions and likely responses to changes in
forcing (e.g., nutrient loadings) at the estuary-wide, annual scale,
while acknowledging that spatially localised or temporal
responses may be inaccurately characterized.

Comparison of ETI Tool 1 susceptibility scores with ETI Tool
3 BBN primary scores showed ‘stepping’ (Figure 6C) due to the
way the primary indicators (macroalgae EQR and
phytoplankton) were discretised and combined within the BBN
to obtain the primary indicator scores. ETI scores from the BBN
showed less stepping, due to the averaging effect of inclusion of
secondary indicators (Figure 6D).

Three other features were apparent when comparing the ETI
Tool 3 BBN scores to ETI Tool 1 susceptibility scores. Firstly, as
noted in Results, there were several estuaries (particularly tidal
river estuaries and coastal lakes) where ETI Tool 1 predicted a
zero susceptibility, because they may have either low salinity or
low intertidal area, and therefore no macroalgae, or a short
flushing time, so therefore no phytoplankton blooms. The BBN
provided a non-zero predicted ETI score in these cases, due to
both the inclusion of secondary indicators and because the
probability distributions within the BBN’s CPTs allowed for
non-zero outcomes. Secondly, a different relationship was seen
between ETI Tool 1 and the BBN for tidal river estuaries than
other estuary types (Figures 6C, D). This arose because ETI Tool
1 did not treat the estuary types differently, unlike the BBN,
where the macroalgal response and sediment trapping efficiency
were conditioned by estuary type. Finally, the distribution of ETI
scores predicted by the BBN, and to a lesser extent predicted
primary indicator scores, were compressed at the upper and
lower limits, with maximum and minimum values of ~0.9 and
0.2. This is an artifact of the probability distributions built into
BBN CPTs, which can spread predictions for indicators, and
their resulting scores, over several bands (Uusitalo, 2007). Mean
values for each indicator and the ETI score were calculated from
those probability distributions (using the centre of each band
weighted by the probability distribution across each band),
tending to bring the ETI scores away from the limits of 0 or 1.
Adding observed values of indicators (in particular EQR;
Frontiers in Marine Science | www.frontiersin.org 15
Figure 4) would likely reduce the uncertainties within the BBN
and could extend the range of its ETI scores toward the limits.

4.2 Applying the ETI Tool 3 BBN to Inform
Estuary Management
We illustrate how the ETI Tool 3 BBN can be used to test or
develop management strategies with two case study examples.
First, we show how the BBN can be used to evaluate the efficacy
(in terms of estuary health improvement) of wastewater
diversion from an urban estuary via construction of an ocean
outfall. The Avon-Heathcote Estuary (AHE) at Christchurch,
South Island, is a small (7 km2) tidal lagoon estuary that received
all of Christchurch’s (present population 330,000) wastewater,
until the commissioning of a $NZ 80 M ocean outfall in March
2010 diverted its tertiary-treated wastewater offshore to the
adjacent ocean (Zeldis et al., 2020). Prior to the diversion, the
wastewater (ca. 170,000 m3 d−1 in 2005) contributed ca. 88% of
the AHE’s NH+

4 -N load at 5500 kg d−1 (Bolton-Ritchie and
Main, 2005), resulting in heavy macroalgal eutrophication (Barr
et al., 2020). In contrast, most of its NO−

3 N load (ca. 94%, 470 kg
d−1) came from the Avon and Heathcote Rivers and municipal
drains (Burge, 2007).

Monitoring data (Barr et al., 2020; Zeldis et al., 2020)
showed that the wastewater diversion resulted in a dissolved
inorganic nitrogen load reduction of ca. 90% to the estuary.
There were rapid, large decreases in water column and
porewater nutrient concentrations, microphytobenthic
biomasses, and enrichment-affiliated macroalgae and
macrobenthos within one to two years of the diversion, along
with improved denitrification efficiency of the estuary N load
(Barr et al., 2020; Zeldis et al., 2020). These rapid responses
stemmed from the estuary’s high tidal exchange and coarse,
sandy, well-irrigated sediments (Zeldis et al., 2020) which had
not stored a legacy of eutrophication, as indicated by their very
low sediment % TOC both before and after the wastewater
diversion. However, macroalgal eutrophication was likely to
remain an issue in the AHE, because ongoing NO−

3 N loading
from rivers and drains was still sufficient to elicit outgrowths
(Barr et al., 2020; Gadd et al., 2020), albeit at considerably lower
levels than prior to the wastewater diversion.

When the ETI Tool 3 BBN was run with potential TN values
corresponding to AHE pre- and post-diversion TN loads, the
ETI score was substantially improved, from 0.76 (straddling the
ETI band C-D threshold: Figure 7A) to 0.57 (straddling the band
B-C threshold: Figure 7B). Macroalgae EQR, aRPD and NZ
AMBI were the most improved indicators, while seagrass extent
was slightly improved. The BBN indicated that further
improvements would require more reductions in AHE TN
load, necessarily from its rivers and drains, consistent with
conclusions of Barr et al. (2020) and Gadd et al. (2020).

To illustrate the effects of incorporating prior knowledge of
indicator values, we input field-observed, low % TOC values for
the AHE (Zeldis et al., 2020) to the ETI Tool 3 BBN, for pre- and
post-wastewater diversion cases (Figures 7C, D). This improved
indicator scores, changing pre-diversion ETI score from
predominately band D to band C, and post-diversion score
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from predominately band C to B. Secondary indicators were also
substantially improved, particularly aRPD and NZ AMBI, for
both pre- and post-diversion scenarios. This showed the capacity
for the BBN to describe interactions of nutrient vs sediment
effects, in this case an estuary which was eutrophic (arising from
TN loading effects on macroalgae) but had ‘naturally’ low
sediment organic content.

In the second case study example, the ETI Tool 3 BBN was
used to estimate the nutrient load reduction required to obtain a
desired (lower) ETI score. Jacobs River Estuary at Riverton,
South Island, is a small (6.7 km2) shallow (mean depth ~2.2
m) mesotidal tidal lagoon which currently has high potential TN
concentration (666 mg m-3) driven by heavy agricultural diffuse
loading (cf. Figure 3). Its BBN-predicted ETI score was 0.84
(Figure 8A), in good agreement with its observed ETI Tool 2
score of 0.85 (Table 3). This placed the estuary in band D
(Table 1) indicating highly eutrophic conditions. The BBN
predicted that all the secondary indicators (% TOC, aRPD, NZ
AMBI, sea grass) were likely to be in poor condition.

The threshold to reach ETI band B is a score of ≤ 0.5. The
potential TN concentration required to obtain an ETI Tool 3
BBN score of 0.5 or less can be determined in two ways: by
Frontiers in Marine Science | www.frontiersin.org 16
iteratively changing the potential TN input node, or by setting
the TN input node to an unspecified or unknown value and
setting the ETI score to the desired value, allowing the BBN to
‘back calculate’ the required potential TN value. Figure 9A
shows the response of ETI score to variation of potential TN
concentration, obtained by stepping through each potential TN
band in turn. The ETI score increased linearly with increasing
potential TN until the highest TN band was reached (450 – 1000
mg m-3). The non-linear response beyond 400 mg m-3 occurred
due to a combination of the ETI score having a maximum value
of 1.0, and because the highest potential TN band encompasses a
much wider range of potential TN concentrations than prior
bands. From Figure 9A, we infer that a reduction to around 150
mg m-3 TN (~80% reduction from current potential TN
concentrations) would be required to obtain a B band. To
confirm this estimate, we then set the probabilities of the
potential TN bands for 100-150 and 150-200 mg m-3 each to
50% (giving a mean potential TN concentration of 150 mg m-3)
and estimated the likely effect on the primary and secondary
indicators (Figure 8B). The resulting ETI score was 0.48 ± 0.17.
Compared to the present-day scenario, all secondary indicators
were substantially improved.
A

B

D

C

FIGURE 7 | Avon Heathcote Estuary ETI Tool 3 BBN results for (A) pre-wastewater diversion, (B) post-wastewater diversion, (C) pre-wastewater diversion with
observed % TOC, and (D) post-wastewater diversion with observed % TOC. Black bars indicate where values have been input for each scenario, and grey bars are
the distributions calculated by the BBN.
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Figure 9B shows the potential TN concentrations predicted by
the ETI Tool 3 BBN if this node is left unset, and a desired ETI
score is applied for the Jacobs River case. For example, by setting
the ETI score node to 0.4-0.5, the BBN predicted that a potential
TN concentration of 136 mg m-3 ( ± 83 mgm-3) was required. It is
straightforward to translate these changes in potential TN to TN
load reductions, using methods of Plew et al. (2018) and as shown
in Snelder et al. (2020). This load reduction was estimated to be
~85%. The probability distribution of the potential TN band can
Frontiers in Marine Science | www.frontiersin.org 17
be used to infer that there is an 86% probability that the potential
TN concentration will need to be reduced to below 200 mg m-3 to
obtain a B band (Figure 8C). Figure 9B also shows potential TN
concentrations at which there is a 10%, 20%, 50%, 80% or 90%
probability that the desired ETI score will not be exceeded for
Jacobs River Estuary. For example, there is only a 10% probability
of an ETI score ≤ 0.5 at a potential concentration of 264 mg m-3.

This case study shows the use of the BBN for informing
upstream limit setting for nutrients with respect to health of
A

B

C

FIGURE 8 | Jacobs River Estuary ETI Tool 3 BBN results under (A) current nutrient loading, (B) an 80% reduction in nutrient load, and (C) when setting the desired
ETI score to a B band. Black bars indicate where values have been input for each scenario, and grey bars are the distributions calculated by the BBN.
A B

FIGURE 9 | (A) Predicted ETI Tool 3 BBN score with increasing potential TN concentration in Jacobs River Estuary. Error bars show the standard deviation of the
predicted BBN score and the potential TN concentration based on the TN band width. (B) Potential TN concentrations predicted by specifying a desired ETI score. The
lines show the probability that the desired ETI score (or lower) will be obtained by a potential TN concentration, where lower ETI scores mean less eutrophication.
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estuarine receiving environments. While not demonstrated here,
effects of altered sediment loads may be assessed independently
or in conjunction with changed nutrient loads.

4.3 International Applicability and
Comparisons With Other Estuary BBNs
Eutrophication and sedimentation in estuaries are global problems
(Bricker et al., 2008), with characteristic effects on estuary health.
While the ETITool 3BBNwasdeveloped forNZ, it has features and
attributes which could enable its use elsewhere. The BBN considers
a set of estuary types which are common globally, although
elsewhere they may constitute differing proportions of system
types than in NZ. For example, the USA southwestern coast has
many lagoon-type systems, with similarities to the tidal lagoons of
our study, while the USA east coast has primarily river-mouth
systems in the north, with potential similarity to NZ tidal river
estuaries, and lagoonal systems in the south (Bricker et al., 2008).
Typologies developed for other countries (e.g., Borja et al., 2004;
Bricker et al., 2008; Buddemeier et al., 2008) will be useful for
understanding the applicability of this NZ estuary BBN elsewhere.

Relationships between the nodes in the ETI Tool 3 BBN were
developed from studies made elsewhere, as well as in NZ,
supporting its potential for application more widely. For
example, the macroalgae EQR method used for evaluating
macroalgal responses was based on its development within the
Water Framework Directive (Borja et al., 2004; WFD-UKTAG,
2014) but, based on knowledge from California and NZ estuaries,
its biomass thresholds were adjusted for the NZ context (Sutula
et al., 2014; Robertson et al., 2016b; Plew et al., 2020).
Phytoplankton thresholds used in the NZ context were
unmodified from the Basque estuary thresholds (Revilla et al.,
2010) with the exception of addition of bandings for coastal
lakes. Borja et al. (2012), considering phytoplankton thresholds
developed among different countries, noted that thresholds
separating small from large impacts were roughly consistent.
This suggested there was consistency among similar types of
water bodies globally in their response to nutrient loads, as well
as a global understanding of undesirable levels of phytoplankton.

There appear tobe fewpublishedBayesianmodels for predicting
estuary health. ABayesian approachwas developed forNeuse River
Estuary in eastern USA (Arhonditsis et al., 2007), targeting
spatiotemporal phytoplankton dynamics in a single estuary
system rather than an estuary health assessment applicable to
multiple estuaries, as done here. Graham et al. (2019) applied a
Bayesian modelling approach to three Queensland, Australia
estuaries to predict water quality (dissolved oxygen and chl-a)
and benthic biodiversity that has similarities to the ETITool 3 BBN,
albeit developed for a small number of estuaries with a focus on
predicting individual indicators rather than an overall health index.
Graham et al. (2019) trained their BBN using an expectation-
maximisation algorithm and case files (observations of model
inputs and outputs), as they had monthly monitoring data for 5
years for each estuary.Wedid not have sufficient observational data
spanning the range of inputs (e.g. estuary type, potential TN
concentrations, flushing times), indicator values and ETI score
that we employ, to use that approach. Therefore, we developed the
Frontiers in Marine Science | www.frontiersin.org 18
CPTs linking the nodes using local and international studies and
tested the ETI Tool 3 BBN against data available for 11 estuaries
(sections 3.1 and 3.2). Bulmer et al. (2019) developed a BBN for NZ
estuaries that included awider range of indicators than theETITool
3BBN.However, relationships betweennodeswere based on expert
opinion rather than thequantitativeobservational andmodel-based
approach used here. It was not typologically resolved, included
indicators not commonly or easily measured, and did not generate
an overall estuary health score.

In the ETI Tool 3 BBN, we introduce capacity to provide
regional or national estimates by employing geospatial tools. To
apply this approach elsewhere, agencies will need to have access
to these underlying resources, potentially including statistical or
mechanistic catchment land-use models (Preston et al., 2011; G.
Arnold et al., 2012; Elliott et al., 2016; Snelder et al., 2017).
Physiographic properties of estuaries are also required,
particularly estuary volume, tidal prism and intertidal area, and
ideally salinity data to tune dilution models that convert the
nutrient loads to potential nutrient concentrations (Plew et al.,
2018). While other agencies could use our model as a starting
point (https://shiny.niwa.co.nz/Estuaries-Screening-Tool-3/),
other agencies should focus on ensuring that the relationships
among indicators and drivers within the BBN are appropriate for
their local conditions, for example relationships between
potential TN and local nuisance algal species.

The ETI Tool 3 BBN is complementary to the pressure/
influencing factors assessment of the ASSETS and WFD-BC
approaches. Both ASSETS and WFD-BC assess the nutrient load
pressure on estuaries using bandings of nutrient load modified by
simple characterizations of dilution and flushing potential (Bricker
et al., 1999;Garmendia et al., 2012).ASSETSwasdeveloped for large
sub-tidally dominated estuaries, but over half of NZ estuaries have
volumes too small tofit within theASSETS bandings for calculating
dilution potential (Plew et al., 2018). The BBN focuses on smaller
estuaries, particularly tidal lagoons and tidal river estuaries. A
similar issue regarding small estuary volume in the Basque region
was addressed by considering a simple characterisation of mixing
conditions rather than a volume-based dilution potential
(Garmendia et al., 2012). The BBN uses potential nutrient
concentrations (which are calculated using ETI Tool 1), which is
an alternative approachof accounting for themixing characteristics
of estuaries (Plew et al., 2018).

ASSETS and WFD-BC can score an estuary’s health if
observations are available. In contrast, the ETI Tool 3 BBN
makes predictions of the state of individual ecological indicators
as well as overall condition, from nutrient and sediment loading,
without requiring observations. Observed indicator values can be
added to the BBN, and we consider this most useful where only
some of the indicators have been observed.

4.4 Future Development
The validationdatasetwehaveused is small and ismainly fromtidal
lagoons. Future work should includemore extensive surveillance of
estuary health indicators, particularly for tidal rivers and coastal
lakes. These data will improve parameterisations of relationships
between drivers and responses to eutrophication, better accounting
June 2022 | Volume 9 | Article 898992

https://shiny.niwa.co.nz/Estuaries-Screening-Tool-3/
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Zeldis and Plew Estuary Bayesian Belief Netwok
for estuary type, leading tomore precise and accurate predictions of
trophic state.

The current ETI Tool 3 BBN provides a framework to which
other indicators couldbeadded, suchasmetals,microphytobenthos
(Berthelsen et al., 2018; Berthelsen et al., 2020; Mangan et al., 2020;
Zeldis et al., 2020). The inclusion of macrophytes (in addition to
seagrass) and the effects of epiphytes and phytoplankton shading
(Burkholder et al., 2007) may improve the usefulness of the BBN,
particularly for coastal lakes which transition frommacrophyte- to
phytoplankton-dominatedwith increasing eutrophication (Phillips
et al., 2016; Schallenberg et al., 2017). The BBN considers nitrogen
loading but not phosphorus because N limitation is more common
in estuarine waters (NRC, 2000; Barr, 2007; Robertson and Savage,
2018) and estuarine macroalgae have high N:P requirements
(Dudley et al., 2022). However, reducing phosphorus loads is
commonly a successful strategy for mitigating eutrophication in
freshwater lakes (Schindler et al., 2016), and including phosphorus
may further improve the BBN for coastal lakes and phytoplankton
dominated estuaries.

As noted (Introduction), our approach with the ETI Tool 3
BBN was to use indicators which are commonly and relatively
easily measured in NZ eutrophication assessments (Robertson
et al., 2016b; Robertson et al., 2017), but it could be extended to
consider ecological components such as shellfish or fish (Bulmer
et al., 2019; Parsons et al., 2021) or climatic effects such as marine
heatwaves (Roberts et al., 2019; Straub et al., 2019; Tait et al.,
2022), assuming their relationships with other BBN indicators
can be adequately described. Relationships between nodes in the
BBN could be further refined as data become available, either via
improved empirical or mechanistic models, or by training the
BBN using case learning (Graham et al., 2019).

While we describe capability to evaluate ~75% of NZ
estuaries, we did not include deep bay estuaries (Introduction).
Plew et al. (2020) predicted that most NZ deep bay estuaries have
low or moderate susceptibility to eutrophication, particularly the
large, deep systems in Fiordland (southwestern South Island)
and many large coastal bays. However, some deep bays backed by
catchments with higher degrees of land-use intensification
require attention. This includes the Firth of Thames in
northern North Island, which is susceptible to phytoplankton
eutrophication and exhibits phytoplankton-driven hypoxia and
pH depression (Zeldis and Swaney, 2018; Zeldis et al., 2022),
arising from poor water quality of its contributing rivers.
However, generating input data for deep bays, such as flushing
time and potential nutrient concentration, will require more
complex models than the simple dilution models in ETI Tool 1.
Also, our knowledge of the interactions of phytoplankton with
secondary indicators in deep bays are not presently sufficient,
and would need further work.
5 CONCLUSION

The validations and case studies presented here demonstrate the
utility of the ETI Tool 3 BBN. First, they show that multiple
ecological indicators, as well as the final integrated BBN estuary
Frontiers in Marine Science | www.frontiersin.org 19
health score, may be predicted solely based on the values of the
drivers, which are readily available from ETI Tool 1 output. This
means that estuary health status may be predicted from nutrient
load data and estuary characteristics in the absence of within-
estuary indicator values, should these not be available. The BBN
has the feature of allowing the user to update indicator nodes,
should such data be available, which may improve the accuracy
of other indicator predictions and the final BBN health score.
The case studies showed how scenarios may be tested, including
how changed upstream nutrient loads from point or diffuse
sources affect estuary health indices.

The ETI Tool 3 BBNhas value for resourcemanagers in that it
allows users to evaluate trophic conditions across a great
majority of NZ’s estuaries, particularly its small-to medium-
size estuaries. Large, deep bay estuaries are currently not
evaluated, and likely will require more complex, bespoke
biophysical model developments. However, the current focus
of the BBN on lagoon, riverine and coastal lake estuaries is
beneficial , because of their often high sensitivity to
eutrophication pressure, particularly for macroalgal-driven
eutrophication (Plew et al., 2020).

The ETI Tool 3 BBN uses observation and model-derived data
for commonlymeasured indicators,whichquantify stressor-impact
relationships. By its focus on providing overall estuary trophic
scores, theBBNallows comparisonof relative impact across systems
within and between physiographic types, regionally or nationally,
and has capacity to score absolute levels of trophic health. It has
potential to be used across time, for both forecasting and
retrospectively, as demonstrated by our case studies of Jacobs
River and Avon-Heathcote estuaries. It can also be applied
nationwide, to assess changes in estuary health accruing from
land-use changes (e.g., Bricker et al., 2008). It could be used to
informestuarinemanagementobjectivesandevaluatemanagement
actions tomeet those objectives, such as is currently required under
the NPSFM (New Zealand Government, 2020). The BBNmay also
serve as a template for other agencies internationally, whomaywish
to develop similar tools. This will depend on the availability of
underlying resources, including geospatially - distributed land use/
water quality models and databases of estuary physiographic
parameters. The ETI Tool 3 BBN may therefore provide other
agencies with both an incentive and a model for assembling such
resources in a unified estuary and water quality management tool.
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GLOSSARY

Bayesian Belief Network (BBN): A way of determining the
probability of outcome X from decision Y, given knowledge and
beliefs about the systems (in this case, estuaries). BBNs use
probability distributions to connect linked parameters in
systems (parent and child nodes), to predict outcomes
of interest.

Conditional probability table (CPT): The probability of a
state of a child node occurring when the state of a linked parent
node is known. Estimated from known relationships or
expert opinion.

Driver nodes: Nodes in the BBN that are set by the user,
based on known physical and chemical states of an estuary and
largely derived from ETI Tool 1.

Estuary type: the ETI toolset has adopted a simple typology
specifically suited to the assessment of estuarine ecological health
in New Zealand:

• Shallow intertidal dominated estuary (SIDE) (shortened to
‘tidal lagoon’ in this study),

• Shallow, short residence time tidal river and tidal river with
adjoining lagoon estuary (SSRTRE) (shortened to ‘tidal river’
in this study),

• Deeper subtidal dominated, longer residence time estuary
(DSDE) (shortened to ‘deep bay’ in this study),

• Freshwater dominated system (coastal lake) that is closed to
the sea most of the time.

• Intermittently closed/open estuary (ICOE) is a subtype of
tidal lagoon or tidal river which may open and close on a
regular basis but is normally open. Differentiated from a
coastal lake which is normally closed.

Estuary Trophic Index (ETI): A score of overall estuary
health, determined using the ETI tools, ranging between 0 and 1
(low to high eutrophication).

ETI Tool 1: Enables users to assess susceptibility of estuaries
to eutrophication based on their nutrient loads and their
flushing/dilution characteristics.

ETI Tool 2: Provides an ETI score using values of monitored
indicators derived from field surveys.

ETI Tool 3: Provides an ETI score via a BBN, using Tool 1
inputs and predicted values of ecological indicators identical to
or like those of Tool 2. Enables users to determine estuary health
in the absence of detailed knowledge of indicator states, and to
scenario-test effects of management decisions.
Frontiers in Marine Science | www.frontiersin.org 24
Intermediate calculation nodes: Nodes which provide inputs
to secondary indicator nodes, arising from driver nodes. Their
values may also be set based on prior knowledge of their states.

Performance indicator nodes: Nodes which calculate
outcome, or score, based on driver, primary and secondary
indicator node outputs.

Primary indicator nodes: Nodes which calculate responses of
potentially nuisance primary producers (macroalgae,
phytoplankton) to the drivers. Their values may also be set
based on prior knowledge of their states.

Secondary indicator nodes: Nodes which calculate estuary
health ‘symptoms’, in response to inputs from primary producers
or the drivers. Their values may also be set based on prior
knowledge of their states.

Primary and secondary indicator score nodes: Nodes which
calculate combined scores arising from values of primary and
secondary indicators.

Standardised indicator nodes: Nodes which convert values
resulting from each primary and secondary indicator node to a
value between 0 and 1 using four equal-sized bands. This
linearizes and normalises each indicator score prior to input to
the primary and secondary score nodes.

Potential Nutrient Concentrations: Volume-averaged
estuary nutrient concentrations that would occur in the
absence of uptake by algae, or losses or gains due to non-
conservative processes such as denitrification

Macroalgal EQR: an estuarine macroalgal index that
combines biomass and spatial measures, derived using the
Opportunistic Macroalgal Blooming Tool, modified for NZ,
and calculated for the whole estuary. EQR is calculated from
observations of % cover of available intertidal habitat, affected
area with > 5% macroalgae cover, average biomass (wet weight),
and % cover with algae > 3 cm deep

NZ AMBI: a marine benthic index to score macrobenthic health,
incorporating responses to anthropogenic disturbance and ranging
from very sensitive to very insensitive. It is based on theAZTIMarine
Benthic Indicator (AMBI), locally calibrated for New Zealand.

% TOC: percentage of Total Organic Carbon, by weight,
in sediments.

% mud: percentage of % sediment grain size less than 63 µm,
by weight.

NPSFM:National Policy Statement for FreshwaterManagement
that sets out the objectives and policies for freshwater management
in New Zealand. It provides local authorities with direction on how
they should manage freshwater.
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