AUTHOR=Ross Andrew C. , Stock Charles A. TITLE=Probabilistic extreme SST and marine heatwave forecasts in Chesapeake Bay: A forecast model, skill assessment, and potential value JOURNAL=Frontiers in Marine Science VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.896961 DOI=10.3389/fmars.2022.896961 ISSN=2296-7745 ABSTRACT=

We test whether skillful 35-day probabilistic forecasts of estuarine sea surface temperature (SST) are possible and whether these forecasts could potentially be used to reduce the economic damages associated with extreme SST events. Using an ensemble of 35-day retrospective forecasts of atmospheric temperature and a simple model that predicts daily mean SST from past SST and forecast atmospheric temperature, we create an equivalent ensemble of retrospective SST forecasts. We compare these SST forecasts with reference forecasts of climatology and damped persistence and find that the SST forecasts are skillful for up to two weeks in the summer. Then, we post-process the forecasts using nonhomogeneous Gaussian regression and assess whether the resulting calibrated probabilistic forecasts are more accurate than the probability implied by the raw model ensemble. Finally, we use an idealized framework to assess whether these probabilistic forecasts can valuably inform decisions to take protective action to mitigate the effects of extreme temperatures and heatwaves. We find that the probabilistic forecasts provide value relative to a naive climatological forecast for 1-2 weeks of lead time, and the value is particularly high in cases where the cost of protection is small relative to the preventable losses suffered when a heatwave occurs. In most cases, the calibrated probabilistic forecasts are also more valuable than deterministic forecasts based on the ensemble mean and naive probabilistic forecasts based on damped persistence. Probabilistic SST forecasts could provide substantial value if applied to adaptively manage the rapid impacts of extreme SSTs, including managing the risks of catch-and-release mortality in fish and Vibrio bacteria in oysters.