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Probabilistic extreme SST and
marine heatwave forecasts in
Chesapeake Bay: A forecast
model, skill assessment, and
potential value

Andrew C. Ross* and Charles A. Stock

NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United States
We test whether skillful 35-day probabilistic forecasts of estuarine sea surface

temperature (SST) are possible and whether these forecasts could potentially

be used to reduce the economic damages associated with extreme SST events.

Using an ensemble of 35-day retrospective forecasts of atmospheric

temperature and a simple model that predicts daily mean SST from past SST

and forecast atmospheric temperature, we create an equivalent ensemble of

retrospective SST forecasts. We compare these SST forecasts with reference

forecasts of climatology and damped persistence and find that the SST

forecasts are skillful for up to two weeks in the summer. Then, we post-

process the forecasts using nonhomogeneous Gaussian regression and assess

whether the resulting calibrated probabilistic forecasts are more accurate than

the probability implied by the raw model ensemble. Finally, we use an idealized

framework to assess whether these probabilistic forecasts can valuably inform

decisions to take protective action to mitigate the effects of extreme

temperatures and heatwaves. We find that the probabilistic forecasts provide

value relative to a naive climatological forecast for 1-2 weeks of lead time, and

the value is particularly high in cases where the cost of protection is small

relative to the preventable losses suffered when a heatwave occurs. In most

cases, the calibrated probabilistic forecasts are also more valuable than

deterministic forecasts based on the ensemble mean and naive probabilistic

forecasts based on damped persistence. Probabilistic SST forecasts could

provide substantial value if applied to adaptively manage the rapid impacts of

extreme SSTs, including managing the risks of catch-and-release mortality in

fish and Vibrio bacteria in oysters.
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Introduction

Extreme ocean temperatures have extensive negative

impacts on ocean and estuarine ecosystems. Extended periods

of warm extremes, or marine heatwaves, can cause coral

bleaching (Liu et al., 2018), the growth of pathogenic Vibrio

bacteria (Baker-Austin et al., 2017; Green et al., 2019) and

harmful cyanobacterial blooms (Jöhnk et al., 2008; Paerl and

Huisman, 2008), shifts in the distribution of many species

(Sanford et al., 2019), and increased fish mortality from

stresses such as disease (Groner et al., 2018) and catch-and-

release fishing (Gale et al., 2013). As anthropogenic climate

change continues to progress, warm temperature extremes are

occurring more often (Laufkötter et al., 2020; Mazzini and

Pianca, 2022) and are likely to continue to become more

common in the future (Frölicher et al., 2018; Oliver et al., 2019).

Forecasts of ocean temperature variability and extremes can

be useful to inform decisions to mitigate some of these negative

impacts. Studies of a wide range of different large ocean regions

and marine ecosystems have found potential skill at predicting

monthly mean sea surface temperatures (SSTs) and heatwave

probabilities several months in advance (Stock et al., 2015; Jacox

et al., 2019; Smith and Spillman, 2019; Jacox et al., 2020). These

temperature forecasts can be combined with adaptive

management strategies to mitigate some of the impacts of

climate variability and extremes on ocean ecosystems

(Tommasi et al., 2017; Lindegren and Brander, 2018). For

example, forecasts of coral reef heat stress and bleaching have

been used to inform management and monitoring actions (Liu

et al., 2018). However, many important fish habitats, water uses,

and management decisions are found in small-scale estuarine

and coastal regions, and few studies have assessed whether

skillful temperature and heatwave forecasts are possible in

these regions. Recently, in a study of Chesapeake Bay, we

found that numerical model forecasts of summer surface and

bottom temperature were skillful up to two weeks in advance

and also found the potential for skill in a heatwave case study

(Ross et al., 2020).

Management decisions benefit not only from accurate

forecasts of local and regional conditions, but also from

accurate information about forecast probability and

uncertainty. Decision makers armed with probabilistic

forecasts make better decisions than those given only

deterministic forecasts (Roulston et al., 2006; Ramos et al.,

2013). Probabilistic forecasts may be particularly useful for the

forecasting of extreme events, as these events are by definition

rare and unlikely and may not be meaningfully predicted by

binary or categorical forecasts (Murphy, 1991). Although

information about forecast probability and uncertainty is often

provided in weather and climate forecasts, probabilistic forecasts

are less frequently encountered in the burgeoning field of

ocean forecasting.
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Probabilistic forecasts can be produced by running an

ensemble of model simulations that use different models,

initial conditions, and/or parameterizations to account for

uncertainty and determining the distribution and spread of the

resulting ensemble of model predictions. At the simplest level, a

probabilistic forecast of an event happening can be calculated as

the fraction of ensemble members in which the event happens.

However, ensembles of earth system models are often

underdispersive—the distribution of model predictions tends

to be too narrow, resulting in overconfident forecasts (Palmer

et al., 2005). Biases in forecast uncertainty can be corrected using

post-processing methods that account for the ensemble spread

as well as historical forecast errors to produce calibrated

probabilistic forecasts that provide reliable information about

forecast probability and uncertainty.

In this study, we first develop a simple model for producing

deterministic and probabilistic forecasts of sea surface

temperature in Chesapeake Bay, USA (Section 2). This model

predicts future SST from past SST and the future air temperature

forecast by an atmospheric model ensemble, which enables the

thousands of model simulations needed for an extensive ensemble

of retrospective forecasts to be run nearly instantly and allows an

assessment of the role of air temperature predictability in driving

water temperature predictability. We compare 18 years of

retrospective forecasts from this model with observations to

assess the forecast accuracy and determine whether a post-

processing method improves probabilistic forecast skill (Section

3). Then, we examine forecast skill specifically for the case of

temperature extremes and assess the potential economic value of

several variations of deterministic and probabilistic forecasts.

Finally, we consider drivers of SST variability other than air

temperature and discuss potential improvements to the simple

model system developed by this study (Section 4).
Methods

Data

Observed air and water temperatures were obtained for the

NOAA station at Thomas Point, MD from the National Data

Buoy Center (Figure 1). This station has recorded hourly air

temperature (17.4 m above MSL) and water temperature (1 m

below MLLW) from October 1985 to the present. We resampled

these hourly observations to daily means and removed days in

which less than 18 hourly observations were available. Gaps in

the data of up to three days were filled with linear interpolation,

while larger gaps were dropped from the analysis.

Forecasts of near-surface air temperature were obtained

from the Global Ensemble Forecast System (GEFS) model

output provided as part of the Subseasonal Experiment (SubX)

dataset (Pegion et al., 2019). This dataset contains a suite of
frontiersin.org
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retrospective forecast simulations, or reforecasts, in which a

weather forecast model was initialized with historical

observations and freely run forward in time to produce a

forecast. The GEFS reforecasts that we used were initialized

once per week (every Wednesday) from 1999 through 2016 and

run for 35 days. Each reforecast simulation included 10

ensemble members, with each ensemble member beginning

with slightly perturbed initial conditions and other minor

differences to capture uncertainty (Zhou et al., 2017). The

GEFS data were archived at 1 degree resolution, and we used
Frontiers in Marine Science 03
an average of grid points between 38 and 40°N and -76 to -75°E

to approximate air temperatures at the Thomas Point station.

To prepare the air temperature forecasts for use in forecasting

water temperature, we applied a simple lead-dependent bias and drift

correction.Wecalculatedasmoothed, lead-dependentclimatologyfor

the GEFS ensemble mean using methods described in Pegion et al.

(2019) and Ross et al. (2020) (except with the smoothing window

reduced to ±5 days to better capture peaks) and subtracted the

climatology from the GEFS reforecast to produce anomalies. The

smoothed climatology calculated for the Thomas Point air
FIGURE 1

Location of the Thomas Point station (red star) within Chesapeake Bay.
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temperatureobservationsduringthesametimeperiodwasthenadded

to the anomalies to produce corrected air temperature forecasts. This

correction addresses mean biases and drifts in the model, including

mean biases that may arise as a result of the difference in station and

model air temperature height, and allows the correction to vary as a

function of the forecast initialization and lead time.
Predicting SST from near-surface
air temperature

Surface water temperature at the Thomas Point station was

predicted from the ensemble of bias-corrected GEFS air

temperature forecasts using a simple model that we adapted

from models developed by Piccolroaz et al. (2013) and

subsequent papers (Toffolon et al., 2014; Toffolon and

Piccolroaz, 2015; Piccolroaz, 2016; Piccolroaz et al., 2016).

This model predicts the time rate of change of sea surface

temperature (or temperature within the surface mixed layer)

as a function of the net air-sea heat flux, with the net heat flux

parameterized entirely by the water and near-surface air

temperatures. The model was originally developed to predict

water temperature in lakes and rivers that respond rapidly to

atmospheric temperature forcing. The shallow Chesapeake Bay

and other coastal regions in the Northeast U.S. also respond

fairly rapidly and predictably to atmospheric temperature

forcing (Hare and Able, 2007; Hare et al., 2010; Muhling et al.,

2018). Furthermore, the net air-sea heat flux is the primary

driver of marine heatwaves in Chesapeake Bay (Mazzini and

Pianca, 2022). We used an adaptation of this model because it

provides both prediction skill and low computational costs.

Mathematically, the model for Chesapeake Bay SST is

dW
dt

(W ,A) =
Hnet

rcpD
≈
b0 + b1A + b2W

d
(1)

where W and A are the surface water and air temperatures,

respectively. Physically, the time rate of water surface

temperature change depends on the net heat flux Hnet divided

by the water density r, the specific heat capacity cp , and the

water mixed layer depth D . The model parameterizes this rate of

change using three empirically-determined b terms that relate

the net heat flux to the daily mean air and water surface

temperatures and a normalized depth d = D
D0

which is the

mixed layer depth divided by a reference mixed layer depth.

Note that we have implicitly divided the b terms by rcpD0 .

In Equation 1, the parameterized heat flux is distributed

throughout the surface mixed layer, the depth of which must also

be parameterized. We designed our parameterization to account for

the seasonal variation of mixing of temperature and density in

Chesapeake Bay near the Thomas Point station: temperature is

typically vertically homogeneous in autumn and winter and

partially stratified in spring and summer (Figure S1A) and
Frontiers in Marine Science 04
density is usually stratified but less so in autumn and winter

(Figure S1B). We parameterized the mixed layer depth using an

annual harmonic:

d = 1 + c0 cos  (wd) + s0 sin  (wd) (2)

where w is the angular frequency corresponding to a period of

one year, d is the day of the year, and c0 and s0 are tunable

coefficients. Consistent with expectations, in the optimized model,

the mixed layer depth is highest in winter and lowest in summer

(Figure S2). Adding an additional higher order harmonic did not

improve the model performance. Other uses of similar SST models

have parameterized the mixed layer depth using the sea surface

temperature (e.g. Piccolroaz et al., 2013); however, we found that

SST is not easily related to the extent of vertical mixing in

Chesapeake Bay. For example, June and September have similar

mean SST but different vertical temperature and density profiles

(Figure S1).

To forecast future sea surface temperature from forecast

future air temperature, the model in Equation 1 was initialized

with water and air temperatures observed on the day before the

start of the air temperature forecasts and stepped forward in time

using a predictor-corrector method:

Ŵ t+Dt = Wt + Dt dWdt (Wt ,At)

Wt+Dt = Wt +
1
2 Dt

dW
dt (Wt ,At) +

dW
dt (Ŵ t+Dt ,At+Dt)

� � (3)

where the time step Dt is one day. To prevent unphysical

values and keep the simulations stable, the water temperature

was restricted to values between -1°C and 40°C.

To find the optimal values of the tunable parameters in the

SST model, the model was run forward in time using the time

series of atmospheric temperature observed at the Thomas Point

buoy during 1986 through 1998. The model ran continuously,

aside from restarting with observed water temperatures during

occasional interruptions in the atmospheric temperature

observations. Optimization was achieved by minimizing the

mean square error of the predicted water temperature

compared to the observed water temperature.

After tuning on observed data from 1986 to 1998, the SST

model was used to produce forecasts of SST for 1999 to 2016 using

the dataset of GEFS air temperature forecasts. The GEFS dataset

consists of an ensemble of 10 air temperature forecasts per

initialization date, and the model in Equation 3 was run

separately for each forecast to produce an ensemble of 10 SST

forecasts for each date. Each forecast for a given start date was

initialized with the same water and air temperature observed on the

day before the initialization.
Probabilistic SST forecasts

In addition to considering the raw 10-member ensemble of

SST forecasts generated for each initialization date, we applied a
frontiersin.org
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nonhomogeneous Gaussian regression (NGR) post-processing

method to obtain probabilistic forecasts from the ensemble

(Gneiting et al., 2005). NGR assumes that the probability

distribution for forecast SST given a model ensemble x is a

Gaussian distribution determined by the ensemble mean mx and
the ensemble variance s 2

x , shifted and scaled to adjust for biases

in the mean and variance of the ensemble relative to the range of

observed outcomes:

P(SST ∣ x) ∼ N (a + bmx , c + ds 2
x ) (4)

In Equation 4, a represents a mean SST forecast bias, which

should be near zero in our case because the atmospheric

forecasts are bias-corrected and the parameters of the SST

model are optimized to minimize error. Similarly, b , which

scales the ensemble mean, will ideally be near 1 for our case. The

key components are the variance bias c and scaling d , which

determine the variance of the probability distribution and the

uncertainty of the forecast. NGR uses information about the

ensemble variance to determine the forecast uncertainty.

However, ensemble forecasts of the earth system are routinely

underdispersive (Palmer et al., 2005), in which case the scaling

term d corrects for underdispersion by inflating the variance of

the ensemble and the constant term c applies a mean bias

correction to the variance. For cases where the ensemble

variance does not provide information about the forecast

uncertainty, d = 0 and the forecast uncertainty is a constant

set by c .

The four parameters in Equation 4 were determined by

minimizing the continuous ranked probability score (CRPS)

averaged over the complete set of retrospective forecasts,

following Gneiting et al. (2005). For a single observation y and

a forecast cumulative distribution function F , the CRPS is

CRPSðF, y) =
Z ∞

−∞
F(t) −H(t − y)½ �2dt, (5)

where H is the Heaviside step function and t denotes a

threshold. This score evaluates a probabilistic forecast of a

continuous variable and is equivalent to taking the Brier score

for a forecast of the probability of exceeding a threshold t and

integrating it over all real thresholds (Gneiting and Raftery,

2007). If the forecast is deterministic, the CRPS is equal to the

absolute error (Gneiting and Raftery, 2007). Because the forecast

distribution F for nonhomogeneous Gaussian regression is a

Gaussian distribution, a closed form solution for Equation 5 is

CRPS N (m,s 2), y
� �

= s
y − m
s

2F
y − m
s

� �
− 1

� 	
+ 2j

y − m
s

� �
−

1ffiffiffiffi
p

p
� �

(6)

where F and j are the CDF and PDF of a normal

distribution with mean 0 and variance 1 evaluated at the

normalized forecast error (y−m)/s (Gneiting et al., 2005). An
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optimization algorithm was used to find the parameters a , b , c ,

and d that minimized the CRPS averaged over all forecasts.

Because we expected that the optimal NGR parameters will

vary as the lead time changes, for example due to changing

underdispersion or weakening of the relationship between

ensemble variance and forecast error, a different set of

parameters was derived for each forecast lead time. For a

forecast lead time t , the parameters were optimized using

forecasts from leads t±1 . We note that the optimization was

performed using the same set of forecasts and observations that

were also used to assess the skill of the probabilistic forecasts,

and therefore the skill assessment could be artificially biased

high. However, due to the large sample size (18 years of weekly

forecasts), any artificial bias should be minimal.

We refer to the probabilistic forecasts produced using this

post-processing method as calibrated forecasts because the

forecast probability implied by the ensemble has been adjusted

using an algorithm tuned to produce probabilities that are more

consistent with the observed frequencies of events. Whether the

forecast probabilities are actually consistent with the observed

frequencies has also been referred to as calibration in some

studies; however, we will refer to consistency between forecast

probabilities and observations as reliability (Section 2.4).

To graphically demonstrate the concepts discussed in this

section, Figure 2 shows the calibrated ensemble mean forecast

(thick red line) derived from the 10-member SST forecast

ensemble (thin red lines) for a single forecast beginning on

July 26, 2006. The uncertainty in the forecast, represented by the

80% forecast interval (shaded red area), increases at later lead

times. Due to the significant underdispersion of the 10-member

ensemble at shorter lead times, the calibrated uncertainty in the

first few days is much wider than the ensemble spread. At later

lead times, as forecast skill declines, the width of the forecast

interval becomes nearly constant.
Evaluation of SST forecasts

The evaluation of the SST forecasts was primarily conducted

using skill scores, which compare the error of the model

forecasts with the error of a reference forecast such as the

long-term mean value or the previously observed value

(Murphy, 1988; Murphy and Epstein, 1989). A general skill

score, expressed in percent, takes the form of

100%� A(f ) − A(r)
A(p) − A(r)

(7)

where A denotes an accuracy metric that compares a set of

forecasts with a set of observations, f is the model forecasts, r is

the set of reference forecasts, and p is a perfect forecast (for

which the accuracy metric is often zero) (Murphy, 1988). A

positive skill score indicates that the forecasts are more accurate
frontiersin.org
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than the reference forecast; the upper bound of the skill score is

100% and indicates a perfect forecast. Deterministic forecasts

were primarily evaluated using the mean square error (MSE)

skill score, which uses the mean square error as the accuracy

metric in Equation 7. Probabilistic forecasts of SST were

evaluated using the continuous ranked probability skill score

(Equation 6) as the accuracy metric in Equation 7. The

uncertainty of the forecast evaluation metrics was determined

using the bias-corrected and accelerated bootstrap method

(Efron, 1987) with 1000 samples.

The skill scores used for forecast evaluation require one or

more reference forecasts for comparison. As illustrated in

Figure 2, we considered two different reference forecasts in

this study. First, the climatological reference forecast predicts

that future SST will follow the observed climatological mean.

The climatological mean SST was determined using the same

smoothing method used for air temperature (Section 2.1).

Because the model forecasts are bias-corrected using the

climatology from 1999–2016, we used this same period to

calculate the climatological forecast. Additionally, we included

a linear trend term to allow the climatology to change over time,

to ensure that the forecast skill does not come solely from

capturing an easily predictable response to climate change.

Based on the observed trend in the 1999–2016 anomalies at

the Thomas Point station, the SST climatology warms at a rate of

0.37°C per decade (a trend larger than Hinson et al. (2021) found

for a longer time period and broader spatial region).

The second reference forecast, the damped persistence

forecast, assumes that the SST anomaly (the difference

between the daily SST and the mean climatology of SST) will
Frontiers in Marine Science 06
gradually revert from the anomaly observed prior to the

initialization of the forecast to zero. We assumed that the

reversion to the mean for the damped persistence forecast is

consistent with a first-order autoregressive (AR1) process. The

damped persistence forecast at lead time t is given by

W(t) = �W(t) +W 0
−1f

t+1 (8)

where �W(t) is the climatological mean SST, W′
−1 is the SST

anomaly observed before the start of the forecast, and f is the

value of the autocorrelation function at lag 1. Note that lead 0

corresponds to a 1-day-ahead forecast for the autoregressive

model, hence the addition of 1 to the lead time in the exponent.

The autocorrelation function was calculated using the same

period of data used to calculate the climatology and using

detrended anomalies (i.e. with the linear trend term used for

the climatological forecast subtracted from the anomalies).

Similarly, to ensure that the damped persistence forecast

accounts for the long-term trend, the anomaly W′
−1 in

Equation 8 is also the detrended anomaly, and the climatology
�W(t) is the 1999-2016 climatology plus the linear trend.

Damped persistence can also easily be considered as a

reference forecast for the evaluation of probabilistic forecasts.

In this case, the probability distribution for the forecast is a

Gaussian distribution with a mean given by Equation 8 and a

variance given by

s 2
W(t) = s 2 1 − f2(t+1)

1 − f2 (9)

wheres2 is the variance of the noise in the autoregressive process.
FIGURE 2

Demonstration of a set of model forecasts (red) and reference forecasts (blue) for SST at the Thomas Point station initialized on July 26, 2006,
and the SST observed at the station (black). Shaded regions indicate 80% prediction intervals.
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In addition to evaluating the skill of the probabilistic

forecasts using the CRPS skill score, we also assessed whether

the forecasts were reliable and sharp using methods similar to

those suggested by Gneiting et al. (2007). In general terms,

forecast reliability refers to whether the forecast probabilities are

consistent with the observed frequencies of events; for example,

out of all of the times that a 10% chance of an SST threshold

being exceeded was forecast, 10% of the observations should

show the exceedance (Johnson and Bowler, 2009). We assessed

reliability using probability integral transform (PIT) plots, which

are histograms of the forecast CDF values of the actual

observations. A reliable forecast model is indicated by a flat

PIT plot that resembles a histogram of samples from a standard

uniform distribution, while some problems such as

overdispersion, underdispersion, or biases can be identified by

characteristic deviations from flatness. Forecast sharpness refers

to the magnitude of the range covered by the forecast probability

distribution; a better, sharper forecast will have the probability

concentrated within a narrower range of outcomes. We assessed

forecast sharpness by comparing the median widths of the 50%

and 80% prediction intervals of the forecasts as a function of

lead time.

In the example forecast (Figure 2), the observed SST on the

day before the first forecast day was about 0.4°C above the

climatological average for that day (dotted blue line), so

the damped persistence forecast (solid blue line) begins near

this SST anomaly and decreases towards the long-term

climatology at later lead times. Uncertainty for the damped

persistence forecast (shaded blue region) is lower for the first few

lead times than for the rest of the forecast due to the information

provided by the previous conditions and the gradual divergence

of the autoregressive process. For roughly the first two weeks of

this particular forecast, the calibrated ensemble mean forecast

was closer to the observed SST than the reference forecasts of

climatology or damped persistence were, which indicates a

skillful forecast. The calibrated 80% prediction interval was

also initially sharper than the damped persistence interval. At

some later lead times, the reference forecasts were more accurate,

which indicates that the model forecast was not skillful at this

lead time.
Extreme SST forecasts

Using the suite of retrospective, probabilistic forecasts of

Chesapeake Bay SST, we also created forecasts of the probability

of experiencing an extreme heat event. We considered any day in

which the daily mean SST exceeds 27.5°C to be an extreme event.

We note that we are considering only a single day of extreme SST

to be part of an event, whereas other definitions such as multiple

days of SSTs above a certain threshold or the exceedance of

certain SST quantiles rather than absolute values have more

commonly been considered indicators of marine heatwaves
Frontiers in Marine Science 07
(Hobday et al., 2016; Hobday et al., 2018). We focused on a

single day definition in part because estuarine SST can be more

variable and less persistent than open ocean SST and also

because the negative impacts of extreme SSTs can occur

rapidly in estuaries and coastal regions. We primarily focused

on the 27.5°C threshold because exceeding this threshold is

climatologically possible (with a maximum probability of 35% in

early August; Supporting Information Figure S3), which allows a

large enough sample size for evaluation, but is also never more

likely than not to occur. Furthermore, 27.5°C is within a range of

temperatures that have negative impacts on water quality and

living marine resources in the bay (Muhling et al., 2017; Shields

et al., 2019). To check whether the results are sensitive to the

definition of an extreme event, we also evaluated forecasts using

thresholds between 26.5 and 28.5°C. We also note that under our

definition of an extreme heat event as the exceedance of an

absolute temperature threshold, extreme heat events can only

occur during the warm season. Mazzini and Pianca (2022) found

that heatwaves defined using the traditional Hobday et al. (2016)

definition, which can occur during any time of the year, occurred

most frequently in the summer in Chesapeake Bay.
Evaluation of extreme SST forecasts

To assess the potential value of extreme SST forecasts, we

applied an approach developed by Richardson (2000) and Wilks

(2001) and recently applied by Kiaer et al. (2021). This method

evaluates forecasts of an event occurrence based on the real or

hypothetical value of using the forecasts to make a decision to

avoid harmful impacts and financial losses associated with the

event occurring. The evaluation takes place in a binary context

where forecasts are used to decide whether or not to take action

to protect against a potential event, and subsequently the event

and its impacts either do or do not occur (summarized in

Table 1). For example, exceeding the 27.5°C heatwave

threshold could be considered an event; the loss associated

with this event could be healthcare costs to treat infection with

pathogenic Vibrio bacteria that grow rapidly at warmer

temperatures (Ralston et al., 2011; Davis et al., 2017; Collier

et al., 2021); and the action taken to avoid these impacts could be

a temporary suspension of fishing and recreation if temperatures

above 27.5°C are forecast.

For an individual event-forecast pair, no cost is incurred for

a correct forecast of no event. If an event is forecast and

protective action is taken but the event does not occur, the

cost of protection (C; for example, loss offishing and recreational

income) is incurred. If an event and the need for protection is

correctly forecast to occur, the cost is C plus any unavoidable

loss Lu associated with the event that occurs regardless of

protection. Finally, if an event is not forecast but it does occur,

both Lu and the loss that could have been prevented with

protection, Lp , are incurred. To use this framework to
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evaluate the forecasts, the costs associated with the observed

outcomes and the hypothetical forecast-driven decisions are

added up over time and compared with the costs that would

have been incurred using a reference or perfect forecast instead,

following the framework for general skill scores (Equation 7).

It can be shown that the unavoidable loss Lu cancels out

during calculation of the value skill score (Wilks, 2001), and the

resulting score depends only on the forecasts, observations, and

the ratio of the cost of protection to the preventable loss C/Lp .

Probabilistic forecasts can be converted into binary decisions

using this same ratio; if the forecast probability of a harmful

event is less than C/Lp , no protective action should be taken

because the expected loss is less than the cost of protection, but if

the forecast probability is greater than C/Lp , protective action is

expected to be beneficial and should be taken (Wilks, 2001). We

used this rule to convert the probabilistic SST model forecasts

and the reference forecasts of damped persistence and

climatology (discussed next) into binary decisions. We also

evaluated a deterministic forecast of the ensemble mean SST

forecast; in this case, protective action is always taken when the

ensemble mean exceeds the 27.5°C event threshold. We

evaluated the forecasts over a range of values of C/Lp greater

than 0 but less than 1; note that action is free and always taken

when C/Lp=0 , and action is expensive and never taken when C/

Lp>1 .

To calculate the climatological reference forecast needed for

the skill score, (1) for each calendar day of year, we determined

the fraction of days that exceeded the SST threshold during

1999–2016 (the empirical probability), and (2) we used the same

smoothing method applied in Section 2.1 obtain a smooth

climatology of the heat wave probability as a function of the

day of year (Supporting Information Figure S3). In this case, we

did not include a trend term in the climatology because it would

be difficult to accurately estimate a trend in rare events over such

a short time period.
Results

SST model

When run as a nearly continuous hindcast using the air

temperature observed at the Thomas Point station, the model

can accurately predict SST (Table 2). A modest negative bias (i.e.,
Frontiers in Marine Science 08
the model predictions are cooler than the observations) develops

during the testing period, which could reflect the warming trend

induced by climate change. Despite the worsened bias, the

RMSE, MAE, and skill score are similar during the training

and testing periods. This bias also should not affect the forecast

simulations, which only run for 35 days after being initialized

with observed SST. The parameters of the optimized SST model

are provided in Table 3.
Air and SST forecast evaluation

Compared to observations at the Thomas Point station, the

ensemble mean of the GEFS retrospective forecasts for daily

mean air temperature exhibits significant skill for about two

weeks after forecast initialization. The first five forecast days

have a root mean square error below 2°C (Figure 3A). The

surface air temperature forecast errors contain a weak

periodicity as a result of the weekly forecast initializations; for

example, a large error associated with an extreme event that

occurred at lead 6 in one set of forecasts will also occur at leads

13, 20, or 27 in forecasts initialized in prior weeks. Air

temperature forecast error increases fairly linearly during the

first two weeks, and overall the forecast skill scores are

significantly greater than zero through lead 12 (Figure 3B).

RMSE for leads 0-3 is lower for damped persistence than for

climatology, resulting in lower skill scores when using damped

persistence as the reference metric. Beyond lead 3, the damped

persistence and climatology scores are essentially the same. This

rapid convergence is consistent with the weak autocorrelation of

the atmosphere, which results in a damped persistence forecast

that quickly reverts from the initial condition to the long-term

climatology. When separated by season (Figure 3C), the air

temperature forecast skill relative to damped persistence reaches

zero fastest for the summer, while the skill is generally highest

for the winter.

The calibrated forecasts of sea surface temperature remain

significantly skillful for up to 17 days of lead time, much longer

than the forecasts of air temperature (Figure 4). SST forecast errors

are substantially lower than air temperature forecast errors

(Figure 4A). These lower errors are consistent with the stronger

autocorrelation and weaker variance of SST anomalies compared to

air temperature anomalies. However, this stronger autocorrelation

and weaker variance also results in lower skill scores for SST
TABLE 1 Framework for evaluation of forecast value.

Not forecast (no protection) Event forecast (action taken)

Not observed (no impact) 0 C

Observed (loss incurred) Lu+Lp C+Lu
Columns indicate whether or not an extreme event was forcast and action was taken to mitigate the risk, and rows indicate whether or not an extreme event and the associated damages
actually occured. The table entries give the total cost associated with each possible forecast and observation pair, and the possible costs are the cost of protection C , the loss that can be
avoided with protection Lp, and the loss that is unavoidable Lu.
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forecasts (Figure 4B), even though the skill scores remain positive

for longer. Like air temperature, damped persistence is the most

challenging reference forecast to beat (the lowest error and skill

scores). SST forecasts generally follow the air temperature pattern of

higher skill for longer lead times in the winter than in the summer

(Figures 4C, D). Despite the use of this idealized model, the skill of

the spring, summer, and fall forecasts is closely comparable to the

skill found in numerical model simulations for the same time period

by Ross et al. (2020).

Figure 5A shows the values of the four parameters used in the

NGR forecast calibration (Equation 4). The parameters a and b are

near 0 and 1, respectively, indicating that mean biases in the SST

forecasts are negligible. The parameter d is above one for the first
Frontiers in Marine Science 09
week (aside from the first two days), indicating that the variance of

the ensemble must be inflated to reliably capture the forecast

uncertainty. However, because the ensemble variance is small in

the early part of the forecast, the inflated ensemble variance ds2

nevertheless remains small relative to the total calibrated forecast

variance (Figure 5B). The small value of the ensemble-informed

variance ds2 relative to the fixed variance correction c suggests that

the ensemble spread has a weak correlation with the forecast

uncertainty and that the primary effect of the NGR post-

processing is to give each forecast the same variance c .

In the evaluation of the probabilistic forecasts, the forecasts

calibrated using NGR are skillful compared to the reference forecast

of damped persistence (Figures 6A, B). To test whether the post-

processing improved the forecast skill, we also calculated the CRPS

score for the raw model ensemble using the empirical CDF of the

ensemble (Hersbach, 2000) and compared with the score for the

calibrated model. Using a probabilistic forecast derived directly

from the variance of the raw model ensemble results in significantly

lower CRPS skill due to the underdispersive nature of the raw

ensemble. Skill for the calibrated forecasts remains significantly

positive out to 17 days of lead time, matching the skill of the

deterministic forecasts (Figure 4). However, the CRPS skill score is

much lower than the MSE skill score at earlier lead times (before

about 10 days), suggesting that there is room for improvement in
TABLE 2 Skill of the SST model hindcast during the training (1986–1998) and testing (1999–2016) periods.

Period Bias RMSE MAE Skill Correlation

Training -0.00256 0.8 0.629 74.5 0.996

Testing -0.118 0.741 0.59 76.2 0.996
All metrics are calculated using predicted SST values, not anomalies. Units for RMSE and MAE are °C, and skill indicates the MSE skill score using the smoothed climatology. Correlation
includes the annual cycle.
B CA

FIGURE 3

(A) Root mean square error of all GEFS ensemble mean air temperature forecasts compared with the error of the climatology and damped
persistence reference forecasts. (B) Mean square error skill scores for all ensemble mean air temperature forecasts relative to the climatology
and damped persistence reference forecasts. (C) MSE skill scores calculated separately for each season, using only damped persistence as the
reference forecast. In all panels, shaded regions are 90% confidence intervals.
TABLE 3 Optimized values of the parameters in the model for SST
(Equation 1).

Parameter Value Units

b0 -1.15 °C day −1

b1 0.128 day −1

b2 -0.124 day −1

c0 0.341

s0 0.0372
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the representation of forecast uncertainty at early leads. When

separated by season, the skill is highest in the winter and lowest

in the spring and summer, again consistent with the skill of the

deterministic forecasts.

The NGR post-processing generally produced reliable

probabilistic forecasts (Figure 6C). Representation of uncertainty

appears to be challenging in the first few days of the forecast: the

post-processed lead-0 forecasts are overdispersive (observations

falling disproportionately in themiddle of the forecast distribution)

and the lead-1 forecasts are slightly underdispersive (observations

disproportionately in the tailsof the forecast distribution).By5days

of lead time, however, the forecasts appear to be reliable, as

indicated by nearly flat lines. In addition to being reliable, the

forecasts arealso reasonably sharp (Figure6D).Themodel forecasts

have substantially narrower prediction intervals than the damped
Frontiers in Marine Science 10
persistence reference forecast during early leads. At lead times

beyond about 20 days, the interval widths for both forecasts

converge and plateau, consistent with unskillful forecasts of the

climatological probability distribution.
Forecasting extreme SSTs

The simple model for forecasting Chesapeake Bay sea

surface temperature examined in the previous section showed

skill at producing both deterministic and probabilistic forecasts

of SST. In this section, we evaluate whether the SST forecasts can

be applied to predict and avoid the impacts of extreme SSTs.

The extreme forecasts show significant value when applied

in the idealized decision-making framework detailed in Section
B

C D

A

FIGURE 4

(A) Mean square error skill scores for calibrated SST forecasts over all forecast times. (B) MSE skill scores for each season, for the climatology
reference forecast. (C, D) MSE skill scores for each season, using climatology (C) and damped persistence (D) as the reference forecasts. In all
panels, shaded regions are 90% confidence intervals.
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2.6. For lead 5 (Figure 7A), making decisions using the calibrated

probabilistic forecast would result in substantial value beyond

the benefit of using the climatological probability of

experiencing an extreme SST for nearly all values of the cost

to preventable loss ratio (with statistical significance for ratios

below 0.5). The calibrated probabilistic model forecasts also

generally have higher value than the probability given by the

damped persistence forecast, suggesting that the modest skill of
Frontiers in Marine Science 11
the probabilistic forecasts (Figure 6) nevertheless may provide

meaningful and actionable information to decision-makers.

Using the deterministic forecast, which entails ignoring all

information about probability and simply taking protective

action when the ensemble mean SST forecast is above the

extreme threshold, also results in value for moderate values of

the cost-loss ratio. Note that this method of using the

deterministic forecast is essentially equivalent to deciding to
B

A

FIGURE 5

(A) NGR parameters used to calibrate the probabilistic forecasts. (B) Contribution of the variance bias correction c and the ensemble spread ds2 to the
total variance of the calibrated probabilistic forecasts. Solid lines are averages over all forecasts, and shaded regions denote 10-90% percentiles.
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protect whenever the forecast probability is above 50%; as a

result, the value of the deterministic forecast resembles the value

of the calibrated forecast when C/Lp is near 0.5, and the value is

less than the calibrated forecasts for low values of C/Lp (when the

deterministic forecast too rarely results in protection) and for

high values of C/Lp (when the deterministic forecast too

frequently results in protection).

The value of the calibrated probabilistic forecast is generally

higher, and the calibrated forecasts are generally valuable for

longer lead times, when C/Lp is smaller (Figure 7B). This pattern

partially reflects the quickly increasing uncertainty in the SST

forecasts—the high forecast probability required to take action

when C/Lp is high rarely or never occurs in long-lead forecasts,
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and in this case the forecasts result in the same lack of action as

the climatological reference case for high C/Lp . Note that in

Figure 7A, the damped persistence reference forecast similarly

has no value for high values of C/Lp at lead 5. In contrast, strong

persistence of initial anomalies means that initial or early warm

SSTs can correctly cause a small increase in the forecast extreme

temperature probability, which, when C/Lp is small, can

sometimes result in the correct decision to take action. It is

also important to note that the value score is generally expected

to be maximized at a C/Lp ratio equal to the observed frequency

of the event being forecast (Richardson, 2000). As a result, it is

expected that forecast value will be higher at low values of C/Lp
when forecasting extreme events. However, in this study, the
B

C D

A

FIGURE 6

Assessment of the probabilistic forecasts. (A) Skill metrics based on the continuous ranked probability score (CRPS) for all forecasts. This figure
compares the NGR calibrated forecasts (Section 2.3) with probabilistic forecasts where the uncertainty is determined by the raw ensemble.
(B) Skill scores for the calibrated forecasts evaluated separately by initialization season. In both panels (A) and (B), shaded regions are 90%
confidence intervals. (C) Probability integral transform plots for various forecast lead times. (D) Median widths of the 50 and 80 percent
prediction intervals for the calibrated and damped persistence forecasts.
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observed frequency varies seasonally, so the relation between the

observed frequency and the C/Lp ratio with maximum value may

not strictly hold.

The value of the forecasts depends similarly on the threshold

used to define an extreme event (Figure 7C). Although the values

for thresholds between 27 and 28.5°C generally have similar

relationships to C/Lp , the value for the 26.5°C threshold shows

an opposite pattern of lower value for low C/Lp and higher value

for moderate to high C/Lp . Following the same reasoning as

before, it is expected that the region of highest value will shift

towards higher C/Lp as the temperature threshold is lowered and

the climatological probability and observed frequency of

exceeding the threshold increases.
Discussion

Sources of forecast errors and possible
improvements to the
model system

Our analysis of SST forecast skill in the Chesapeake Bay

applied a simple model that predicts SST as a function of only

the previously observed SST, the forecast air temperature, and

the time of year. This simple model greatly reduced the

computational requirements of this study and enabled the

rapid generation of the large number of ensemble simulations

necessary to generate and evaluate the probabilistic forecasts.

The model also produced SST forecasts with skill roughly

comparable to the forecasts produced with a dynamical ocean

model (Ross et al., 2020). However, the idealized model neglects

drivers of SST variability other than those that can be directly

related to air and water temperature and time of year, which
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could reduce the forecast skill, and is also incapable of predicting

other ecologically relevant variables such as bottom temperature.

The idealized model thus provided an important framework for

testing forecast methods and potential forecast skill, but

expansion of this approach to an ensemble of dynamical

model forecasts will be an essential future step.

A limitation of the simple model applied in this study is that it

predicts daily mean sea surface temperature and does not resolve

sub-daily temperature variability. At the study site, the difference

between the daily mean SST and the daily maximum SST averages

as low as 0.4°C in the winter to as high as 0.9°C in the summer

(Supporting Information Figure S4). The variability of the

maximum-mean difference is also higher in the summer. For

applications that are especially sensitive to the exceedance of a

specific threshold for a short period of time, this mean variability

could be accounted for by reducing the daily mean temperature

threshold accordingly, or the simple model could be modified to

predict daily high or low temperatures and explicitly include the

effects of downwelling shortwave radiation and other forcing

predicted by the atmospheric model.

The model also does not account for wind-driven anomalies in

SST. Wind events in the summer can increase mixing and reduce

stratification(Scully, 2010;XieandLi, 2018), resulting in lowerSSTsas

cooler deep water is mixed to the surface. Depending on direction,

windscanalsodrive lateral circulation(LiandLi,2011;LiandLi,2012)

andcauseupwellingordownwellingandestuary-shelf exchangeat the

mouth of the bay (Paraso and Valle-Levinson, 1996). However, the

latter two effects are likely small at the central upper-bay location

analyzed in this study. To test whether wind-driven mixing could

contribute to SST forecast errors, in Figure 8A,we compare the errors

of SST forecastswith 5days of lead timewith themeanwind speed for

all forecasts initializedbetweenJuneandAugust.Theseresultsdoshow

that increased wind speed results in positive SST forecast errors
B CA

FIGURE 7

Relative value of heatwave forecasts. (A) The relative value of calibrated probabilistic forecasts, the deterministic forecasts using the ensemble
mean, and the probabilistic damped persistence reference forecasts at 5 days lead time. Shaded regions are 90% confidence intervals.
(B) Relative value of the calibrated probabilistic forecasts at all lead times. (C) Relative value of the calibrated forecasts using different thresholds
of an extreme event ranging from 26.5 to 28.5°C. Confidence intervals are not shown in (B) or (C) for clarity.
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(observations cooler than forecast), although the overall contribution

to the forecast error is small (R2=0.08 ).

SST forecast errors could also be caused by variations in tidally

drivenmixing (suchas the spring-neap cycle)which arenot explicitly

included in the simplemodel. InFigure 8B,we compare summerSST

errors with tidal range. Tidal range was computed by taking hourly

water levels from theNOAAtide gauge atTolchester Beach,MDand

calculating the difference between the daily maximum and daily

minimum water level. Variations in tidal range appears to have a

negligible effect on the SST forecast error (R2=0.006 ).

Finally, SST forecast errors could also be caused by river

discharge to the bay. Processes throughout the Chesapeake Bay

are strongly driven by river discharge (e.g. Jiang and Xia, 2016;

Jiang and Xia, 2017), and about half of the total freshwater

entering the bay is discharged by the Susquehanna River

(Schubel and Pritchard, 1986). Increased river discharge

increases salinity stratification in the bay, potentially resulting

in a shallower mixed layer than predicted by the seasonal cycle of

depth in the forecast model and producing errors in the forecast

SST change. High river discharge also contributes a large volume

of river water that may have a different temperature than the

ambient bay water. In Figure 8C, we compare the summer SST

forecast errors with discharge from the Susquehanna River

measured at the Conowingo Dam averaged over the 20 days

before the forecast verification date. Variations in river discharge

also appear to have a negligible effect on the SST forecast error

(R2=0.009 ). Two factors could help explain this negligible effect.

First, river discharge has a strong seasonal cycle, and by

including a seasonal cycle of mixed layer depth in the SST

forecast model (Equation 2), we are able to capture the primary

influence of river discharge on mixed layer depth and SST.
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Second, our analysis of temperature extremes and forecast errors

has focused on summer, and Susquehanna River discharge is

typically lowest in summer and autumn.
Potential improvements to forecast pre-
and post-processing

Before using the air temperature forecasts as input to the SST

model, the drifts and biases in the forecasts were removed by

subtracting a smoothed climatology that was a function of the

lead time and initialization day of year. This correction only

adjusts the mean of the air temperature forecasts and does not

remove other potential problems such as an incorrect

climatological variance or a wrong distribution. We assessed

the distributions of the observed and forecast air temperature

anomalies and found that both were well-represented by nearly

identical normal distributions (Figure S5). The similarity of the

distributions suggests that a mean bias correction is sufficient,

and we assumed that any of the minor errors in variance seen in

Figure S5 would be corrected by the NGR post-processing step if

they affected the SST forecasts. If the forecasts were not as well-

behaved, bias correction methods that correct the full

distribution of the model data [e.g., Cannon et al. (2015)]

could be applied. One challenge of using these methods for

correcting forecasts is that accurately estimating a correction to

apply to the full distribution requires a substantially longer

retrospective forecast period than merely estimating the mean.

During the forecast post-processing, forecast uncertainty was

represented with a Gaussian distribution determined by the

ensemble mean and variance. However, distributions with heavier
B CA

FIGURE 8

Errors of all 5 day lead summer forecasts compared with (A) the mean wind speed on the forecast verification day, (B) the tidal range on the
forecast verification day, and (C) the discharge from the Susquehanna River averaged over the 20 days before the forecast verification day. In all
subfigures, the solid orange line shows a generalized additive model fit to the data, and the solid blue line shows a linear fit to the data.
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tails, such as the logistic or t distributions, could give better

prediction of extreme events and account for additional forecast

uncertainty introduced by the estimation of the post-processing

parameters (Siegert et al., 2016; Gebetsberger et al., 2018). Similarly,

the minimum negative log-likelihood (or maximum likelihood),

rather than the minimum CRPS, is an alternative calibration target

that places heavier penalties on events in the tails of the forecast

distribution (Gebetsberger et al., 2018). We tested post-processing

the forecasts with logistic distributions fitted by minimizing the

negative log-likelihood and found that it did not improve the value

of the probabilistic forecasts (not shown). This result is consistent

with the probability integral transform plot (Figure 6) which shows

that the forecasts based on Gaussian distributions are

generally reliable.

The four parameters used in the NGR post-processing

method were assumed to depend only on the forecast lead

time and were fit using all of the available retrospective

forecast and observation data for a given lead. However, these

parameters could be allowed to vary over time to capture

changes or seasonal variability in the properties of the SST

model forecasts. In short-term weather forecasts, a rolling

window of forecasts and observations from the most recent

days or weeks is often used to train the post-processing

algorithm (e.g. Stensrud and Skindlov, 1996). This window

allows the post-processing method to handle complications

such as seasonal variations in model bias or spread or changes

in weather regimes that affect predictability. Alternatively, the

post-processing parameters could be fit separately for each

calendar month or season to capture regular seasonal

variability in model properties. Although in this study we only

allowed the post-processing parameters to vary with lead time,

future studies should experiment with other forms of time

dependence for the parameters.
Potential applications of extreme SST
and marine heatwave forecasts

The weather-scale extreme SST forecasts developed in this

study have potential applications to managing fisheries and

water quality issues that can arise quickly during high

temperature excursions. In some cases, weather forecasts of air

temperature have already been applied in an attempt to address

these issues. For example, the Maryland Department of Natural

Resources has recently issued advisories that recommend striped

bass fishers take precautions when air temperature is forecast to

exceed 90°F (about 32°C) and discourage striped bass fishing

after 10 a.m. when air temperature is forecast to exceed 95°F (35°

C) (Chesapeake Bay Magazine, 2019). These voluntary

advisories are intended to reduce the mortality that occurs

when striped bass are caught and released at times when the

air and water is unusually warm. Similar and more robust
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advisories could be issued with the SST forecasts developed in

this study, and the value-based assessment framework could be

used to evaluate whether using forecasts to make decisions

improves the tradeoff between the cost of reducing fishing

when a heatwave is forecast and the loss of fish from catch-

and-release mortality.

Current methods to reduce the risk of Vibrio bacteria in

oysters rely on restricting harvest times and requiring rapid

cooling of harvested oysters during months when the average

water temperature exceeds a certain threshold (Froelich and

Noble, 2016). This management method is essentially the same

as the climatological reference forecast used in the value-based

assessment framework—protective action is always taken when a

certain climatological probability of dangerously warm water is

exceeded. After a careful forecast skill assessment, with an

appropriate emphasis on the need to protect public health,

forecasts of air and water temperatures could be applied to

determine when stricter harvest controls are beneficial and

necessary or when looser controls could be permitted. In

particular, forecasts may be useful for managing and adapting

to climate change by identifying times when protective action

needs to be taken outside of the time period when it was

historically necessary.

In addition to reducing the ecosystem and public health

impacts of extreme events, forecasts could also be used to reduce

the economic impacts on fishers by enabling them to adjust their

harvest to compensate for expected closures or decreases in

catch. For example, Jin and Hoagland (2008) note that fishers

may use short-term harmful algal bloom forecasts to increase

their harvest before a bloom occurs and the fishery is closed.

However, similar applications of forecasts, such as temperature-

based forecasts of the timing of lobster landings in the Gulf of

Maine, have had unanticipated effects and raised ethical

concerns (Pershing et al., 2018; Hobday et al., 2019).

Fortunately, reliable probabilistic forecasts with robustly

assessed skill, such as those developed in the present study,

can help reduce the potential for unintended consequences and

avoid ethical issues (Hobday et al., 2019).
Conclusion

Our study presented a set of methods for developing and

evaluating probabilistic forecasts of SST and extreme SST

events in an estuary. These forecasts showed significant skill

and have valuable potential to inform decisions to protect

against damages associated with extreme events. In the

idealized decision-making framework, accounting for

uncertainty by using the calibrated probabilistic forecasts

lead to better decisions than simply considering the

deterministic ensemble mean forecast for most values of the

ratio of the cost of taking protective action to the preventable
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loss. These forecasts were skillful despite the simple nature of

the SST model, which predicted SST solely from forecasts of

atmospheric temperature. Future studies should consider

improvements to the SST model and conduct more detailed

evaluations of applications that could benefit from probabilistic

SST forecasts.
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