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Bacterial degradation of dimethylsulfoniopropionate (DMSP) plays a significant role in
ecosystem productivity and global climate. In this study, the abundance and diversity of
Roseobacter group DMSP degradation genes were explored in spatial scale of the South
China Sea (SCS). Quantitative PCR showed that a higher abundance of dmdA (DMSP
demethylase) and dddP (DMSP lyase) genes was detected above 75 m than deep water,
especially in surface water. A high ratio of dmdA/dddP existed in all sites and increased
with water depth, indicating that demethylation was the main degradation pathway in the
Roseobacter group. High-throughput sequencing analysis showed that distribution of
dmdA gene had a significant layering structure in the northern SCS, and high taxonomic
diversity of dmdA gene was observed in near-surface waters (25 and 50 m). DmdA gene
in the Roseobacter group, such as Leisingera, Nioella, Roseobacter, Roseovarius,
Donghicola, Phaeobacter, and Tateyamaria, had remarkable specificity due to the effect
of different sites and water depths. Different ecological strategies of DMSP degradation
may be used by members of the bacterial community harboring demethylation genes. In
addition, many dmdA sequences were affiliated with unidentified bacteria, indicating that
the SCS reserved high diversity of DMSP-degrading bacteria. Canonical correspondence
analysis (CCA) suggested that temperature and depth were the most important factors to
determine the taxonomic distribution of DMSP degradation genes in the Roseobacter
group, as well as their abundance. This study highlighted the understanding of the role of
Roseobacter group in DMSP degradation in the tropical ocean.

Keywords: Roseobacter group, dimethylsulfoniopropionate degradation genes, diversity, abundance, South
China Sea
in.org May 2022 | Volume 9 | Article 8956131

https://www.frontiersin.org/articles/10.3389/fmars.2022.895613/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.895613/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.895613/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.895613/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.895613/full
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles
http://creativecommons.org/licenses/by/4.0/
mailto:mlwu@scsio.ac.cn
https://doi.org/10.3389/fmars.2022.895613
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.895613
https://www.frontiersin.org/journals/marine-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.895613&domain=pdf&date_stamp=2022-05-03


Sun et al. DMSP Degradation Genes in Seawater
INTRODUCTION

Dimethylsulfoniopropionate (DMSP), an important sulfur
compound, is mainly produced by marine phytoplankton in
marine water (Howard et al., 2006; Michaud et al., 2007; Levine
et al., 2012; Moran and Durham, 2019). Association with
phytoplankton aggregates may provide many ecophysiological
advantages to the marine Roseobacter group, including easy
access to DMSP and other algal products (González et al., 1999;
Amin et al., 2015). When released from phytoplankton, DMSP is
mainly assimilated and degraded by members of bacteria via a
demethylation or cleavage pathway (Malmstrom et al., 2004;
Curson et al., 2011; Burkhardt et al., 2017; Raina et al., 2017).
The demethylation pathway transforms the majority of DMSP to
3-methiolpropionate, which is then incorporated into the cell
biomass (Kiene et al., 1999; Reisch C. R. et al., 2011). By
contrast, the cleavage pathway converts DMSP to produce
dimethylsulfide (DMS) through various DMSP lyases (Johnston
et al., 2016). DMS represents the largest volatile sulfide in the
ocean, and its oxidation production can form cloud nucleation
and affect global climate (Andreae and Crutzen, 1997; Simó, 2001).

The Roseobacter group is affiliated with Alphaproteobacteria,
and the majority is of marine origin, constituting a large
proportion of the total bacterial community (Brinkhoff et al.,
2008; Simon et al., 2017). Members of the Roseobacter group
can establish symbiotic relationships with phytoplankton, partly
through the exchange of DMSP (Liu et al., 2018; Nowinski et al.,
2019; O’Brien et al., 2022). Roseobacter are often dominant with
functional genes, which can encode the capabilities of oxidation
sulfur compounds and methylated amines, and catabolism of
various carbohydrates (Zhang et al., 2016). The Roseobacter
group is considered to be a key participant in DMSP
metabolism, and nearly 1/3 of DMSP assimilation process is
performed through the Roseobacter group in the coastal area
(Malmstrom et al., 2004). At least 80% of Roseobacter group
cells contain dmdA in the Sargasso Sea (Howard et al., 2006;
Howard et al., 2008). Of the seven ddd genes identified (dddD,
dddK, dddL, dddP, dddQ, dddY, and dddW), dddP and dddQ genes
are the most frequently detected in marine bacteria and mainly
found in the Roseobacter group (Howard et al., 2008; Todd et al.,
2009; Todd et al., 2011; Sun et al., 2016). To date, more and more
the whole genomes of marine Roseobacter strains have been
sequenced (Newton et al., 2010; Luo et al., 2012; Voget et al.,
2015; Billerbeck et al., 2016; Bakenhus et al., 2018). According to
the above studies, dmdA and dddP genes are the most important
genes for DMSP degradation in the Roseobacter group.

The northern South China Sea (nSCS) is a marginal sea
characterized by tropical and subtropical climates and
representing typical oligotrophic characteristics with significant
environmental gradients. High concentrations of DMSP and DMS
are detected in surface water, especially between 20 and 75m (Yang,
2000; Yang et al., 2008). Previous studies reported that the
abundance of DMSP degradation genes had spatial variability in
the seawater (Howard et al., 2011; Levine et al., 2012; Varaljay et al.,
2012; Choi et al., 2015; Cui et al., 2015), indicating that DMSP
degradationgenes are strongly impactedbyprimaryproduction,UV
radiation,DMSPandDMSconcentrations, andChl a concentration.
Frontiers in Marine Science | www.frontiersin.org 2
To date, DMSP degradation genes have been little reported in the
SCS, and biogeography of DMSP degradation genes in spatial-
vertical distribution of marine water needs further study. In this
study, dmdA and dddP genes were targeted and collected from the
surface to 200 m depth during a cruise across the SCS. The aims of
this study were to describe the spatial–vertical distribution and
abundance of Roseobacter-like DMSP degradation genes, and to
explore the diversity shift of DMSP degradation genes related to
water environment in the SCS.

MATERIALS AND METHODS

Sample Collection
The cruise was carried out in the South China Sea with the Shiyan 3
from August to September 2011 (Figure 1). A conductivity-
temperature-depth (CTD) system (SeaBird SBE-911 Plus, US)
was deployed to acquire hydrographic parameters. Seawater
samples were collected at different depths (0, 25, 50, 75, 100, 150,
and 200 m) with CTD 12-L Niskin bottles (General Oceanics, Inc.,
Miami, FL). Once collected, the samples were immediately filtered
using polycarbonate membranes (EMDMillipore, US) with a pore
size of 0.22mm. The filter was immediately placed in a 1.5-ml sterile
centrifuge tube and stored in liquid nitrogen for further DNA
extraction. Sample DNAwere extracted using the DNA Extraction
Kit (OMEGA, US) according to the protocol instructions. Nitrate
(NO3), phosphate (PO4), silicate (SiO3), and chlorophyll (Chl a)
concentrations were measured according to the protocols of “the
specialties for oceanography survey” (GB17378.4-2007, China).

Quantitative PCR of dmdA and
dddP Genes Abundance in the
Roseobacter Group
Two dmdA primers were used to amplify the different
Roseobacter subclades (A/1 and A/2) (Varaljay et al., 2010) for
the DMSP demethylase gene, and dddP primers targeting the
Roseobacter group were used to detect the DMSP lyase genes
(Levine et al., 2012). The reactions were performed in the iQ5
Real-Time PCR Detection System (Bio-Rad, US). Quantification
was based on the increasing fluorescence intensity of the SYBR
green dye during amplification. QPCR standards were made
from PCR products amplified from environmental samples using
the pMD19-T cloning kit (TaKaRa, Japan). The real-time PCR
assay was performed in a 20-mL reaction volume with SYBR
Premix Ex Taq II (TaKaRa, Japan). All qPCRs were run in
triplicate for each sample. QPCR conditions were as follows:
predenaturation at 95°C for 30 s, 35 cycles at 95°C for 5 s, and
annealing at 60°C for 30 s. Tenfold serially diluted standard and
no-template controls were run in triplicate for each reaction.

Illumina MiSeq Sequencing of dmdA
Genes in the Roseobacter Group
The primer pairs, dmdA282F (5′-TGCTSTSAACGAYCCSGT-3′)
and dmdA591R (5′-ACRTAGAYYTCRAAVCCBCCYT-3′)
(Zeng et al., 2016), were used for Roseobacter-like dmdA gene
amplification. PCR conditions were as follows: 94°C for 3 min, 35
cycles at 94°C for 1 min, 54°C for 30 s, extension at 72°C for 30 s,
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and a final extension at 72°C for 10min. The PCR comprised a 20-
mL reaction volume containing 4 mL of 5× FastPfu Buffer, 2 mL of
2.5 mMdNTPs, 0.5 mL of FastPfu polymerase, 1.0 mL of primers (5
mM), and 10 ng of template DNA. A positive control and non-
template control samples were run to validate PCR. PCR products
were purified using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, US), and quantified using QuantiFluor™-ST
(Promega, US). An Illumina MiSeq platform (Illumina, US) was
used for paired-end sequencing (2 × 300) according to the
standard protocols.

Forpair-ended reads obtainedby Illumina sequencing, barcodes
and primers were trimmed and then assembled using FLASH
(V1.2.7). Reads that contained Ns were shorter than 50 bp or had
primer mismatches which were also excluded. Sequences were
compared with RDP reference database using VSEARCH (1.9.6)
to detect chimeric sequences. Then sequences were grouped into
OTUs (operational taxonomic units) using UPARSE (v7.0.1001),
and pre-clustered at 97% sequence identity. The highest OTU
frequencies were selected as representative OTU sequences. The
taxonomy of each dmdA gene sequence was analyzed by RDP
classifier algorithm against the NCBI non-redundant (nr) database
using a confidence threshold of 70%.
RESULTS AND DISCUSSION

Characteristics of the Abundance of dmdA
and dddP Gene in the South China Sea
Two subclades (A/1 and A/2) of dmdA genes and dddP genes
were quantified using qPCR (Figure 2). The copy numbers of
dmdA and dddP genes and their distribution in the northwestern
Frontiers in Marine Science | www.frontiersin.org 3
SCS varied greatly among sampling sites and depths. This result
was similar with the study in the Pacific Ocean (Cui et al., 2015),
indicating that the abundance of DMSP degradation genes had
great variability of abundance in the ocean. Overall, the
abundance of dmdA and dddP genes located in the northwest
SCS was higher than that located in the northeastern SCS. As
seen from a spatial scale, sites (S1, S2, S3, S8, and S9) showed
higher copy numbers of dmdA and dddP genes than other sites
(S5, S6, S12, and S13). In these five stations, two sites (S1 and S2)
are close to the shore, and the remaining three (S3, S8, S9) are in
the middle of the survey area. Similar to previous studies in the
SCS (Ling et al., 2012; Sun et al., 2015), bacterial community in
the northwestern SCS had higher diversity than that in the
northeastern SCS. The abundance difference is likely due to
water temperature. As seen in Figure 1, the SST of the sites to the
left of longitude 117°E is higher than that of the sites to the right.
This result was similar to other reports that temperature is an
important factor in determining the abundance of dmdA and
dddP in surface water (Levine et al., 2012; Varaljay et al., 2012;
Cui et al., 2015).

DmdA and dddP genes from the Roseobacter group were
particularly enriched in surface waters with an order of
magnitude difference in their abundance relative to deep
waters (Figure 2), which indicated that the abundance of
dmdA and dddP genes was strongly separated by water depth.
Copy numbers of dmdA and dddP genes were higher above 75 m
water than those below 100 m water, and the highest abundance
of these genes was observed in the surface layer. Variation of
gene abundance of dmdA and dddP may be closely related to the
DMSP concentration in vertical depth. Previous studies reported
that DMSP and DMS concentrations in SCS were markedly high
FIGURE 1 | Map of sampling stations in the South China Sea. Sea surface temperature (SST) during investigation time was shown in the base map that was
obtained from NOAA.
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in the surface seawater, and decreased gradually with increasing
depth (Yang, 2000; Zhai et al., 2020). Other studies also reported
that distribution patterns of dmdA and dddP were roughly
consistent with the distribution characteristics of DMSP
concentration, and were mainly influenced by the Chl a
concentrations, depth, salinity, and temperature (Howard et al.,
2011; Varaljay et al., 2012; Cui et al., 2015).

In addition, the copy numbers of the dddP gene were far
lower than those of the dmdA gene at almost all sites and depths
(Figure 2), even if only the dmdA A/2 clade was considered. The
copy number ratios (dmdA/dddP) of these genes ranged from 2
to 156 times. The copy numbers of the dmdA A/2 gene were
higher than those of the dmdA A/1 gene at almost all sites and
depths, which suggested that subclade A2 was the main group of
Roseobacter group in the demethylation pathway. The other
study reported that two Roseobacter group dmdA gene
subclades (A/1 and A/2) showed opposite depth distributions
in the summer (Levine et al., 2012). Interestingly, high ratios of
dmdA/dddP and dmdA2/dmdA1 were mainly observed in deep
waters (below 75 m), even if these three genes had relatively low
abundance, indicating that demethylation is the main pathway of
DMSP degradation in the water. Previous studies suggested that
80% of DMSP degradation is processed through the
demethylation pathway, and only 20% is cleaved to DMS
(Kiene et al., 1999). Marine bacteria keep the ability of DMSP
demethylation to a suitable evolutionary pressure, which can
explain the consistently stable and high dmdA gene frequencies
in the ocean (Varaljay et al., 2012). In marine waters, nutrients
Frontiers in Marine Science | www.frontiersin.org 4
and organic sulfur such as DMSP are important because cells
need increased sulfur demand for growth, causing more sulfur to
be incorporated into cell protein (Kiene et al., 1999).

Diversity Distribution of dmdA Gene in the
Roseobacter Group
A total of 231,246 valid reads and 688 OTUs were obtained from
the 19 samples through Illumina MiSeq sequencing analysis.
Each of the samples contained 9155 to 17,955 reads, with OTUs
ranging from 12 to 55. The coverage was more than 0.999, which
suggested that sequencing data had favorable coverage for dmdA
diversity. Diversity indices, including Shannon, Chao, Ace, and
Simpson, are demonstrated in Supplementary Table S1. The
result indicated that the dmdA gene had higher community
diversity above 50 m than in deep waters (100 and 200 m).

The study revealed that the composition of the dmdA
gene varied significantly among the sites and depths (ANOVA,
p < 0.01). Overall, the dmdA gene was mainly affiliated
with Alphaproteobacteria and Gammaproteobacteria
(Figure 3). In most sites, the dmdA gene was dominated by
Alphaproteobacteria, whereas a few of the samples (S2_0, S6_0,
S6_50, and S9_25) were dominated by Gammaproteobacteria. In
addition, low abundance of Acidithiobacillia-like dmdA gene was
detected (1.37%). High abundance of dmdA (2.64%–87.95%),
which had very low similarity with the amino acid identity of
uncultured bacteria, was found in some samples. Moreover,
21.78% of all sequences had 73%–79% amino acid similarity
with Gammaproteobacteria. This result provided further
FIGURE 2 | Abundance of dmdA and dddP in the SCS from surface water to 200 m depth based on quantitative PCR.
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evidence that oceanwater contains a highdiversity of dmdA genes,
which has not yet been unearthed in the tropical ocean.

Overall, dmdA genes in the nSCS showed greater variation near
surface water than in deep waters, which is related to the vertical
structure of water (Figure 3). At the genus level, high abundance
of dmdA genes below 100 m belonged to Phaeobacter,
Roseicitreum, Ruegeria, Tropicibacter, and Shimia. The upwelling
site (S1-25) was characterized by Tateyamaria (43.11%) and
Pelagimonas (8.40%). These findings indicated that coastal
upwelling had different dmdA taxonomy of the Roseobacter
group with open water. S5_0 and S9_0 sites were dominated by
Leisingera (>20%) and Nioella (>46%). S3_0 and S8_0 sites were
characterized by highly abundant Roseovarius (>80%). Site S6_25
was mainly composed of Roseobacter (58%) and Shimia (9.56%).
Site S7_25 was mainly composed of Roseobacter (38%),
Roseovarius (12.32%), and Planktotalea (4.97%). The dmdA gene
of Donghicolamainly dominated in the 25- and 50-m water layer.
Moreover, dmdA genes of Leisingera, Planktotalea, Roseovarius,
and Ruegeria were dominant in the 25- or 50-m water layer.

Principal component analysis (PCA) illustrated that the dmdA
gene of the bacterial community had distinct differences among
different sites and depths (Figure 4). The results indicated that the
dmdA gene of the Roseobacter group in shallow water (0 m, 25 m,
Frontiers in Marine Science | www.frontiersin.org 5
and 50 m) and deep layer (100 and 200 m) had clustered together
separately. The dmdA gene of the deep water was separated by a
large distance from the shallow layer. Overall, the results indicated
the clearly distinct structure among sampling sites and depths
(ANOVA, p < 0.01). Veen analysis showed that dmdA gene
diversity had 14 and 11 common OTUs between the surface
water and 25-m depth of the horizontal scale. Considering the
vertical depths, no common OTU was found from the surface to
200 m water depths (Figure 5).
Environmental Factors Affected the
Distribution of the dmdA Gene
The CCA analysis constructed a correlation between
environmental factors and dmdA gene diversity (Figure 6A).
The first ordination axis accounted for 32.1% of the cumulative
percentage variance in the matrix, while the second axis
accounted for 31.2%. DmdA gene in the upwelling (S1-25) was
mainly positively related to Chl a and silicate concentration
(p<0.05). DmdA gene below 100-m depth was negatively
defined by water depth (p<0.01), while shallow water samples
(0 m and 25 m) were strongly determined by water temperature
(p<0.01). Other environmental factors, such as salinity, nitrate,
A

B

FIGURE 3 | Taxonomic distribution of samples through High-throughput sequencing analysis in class level (A) and genus level (B).
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and phosphate, had no obvious effects on the diversity of
dmdA genes.

In the CCA map (Figure 6B), cluster A, mainly composed
by Tateyamaria, Pelagimonas, and Marivita, had significant
correlation (p < 0.05) with Chl a and silicate concentration,
Frontiers in Marine Science | www.frontiersin.org 6
which was influenced by the upwelling. High abundance OTUs
of cluster B, which was afflicted with Leisingera, Nioella,
Roseovarius, and Roseobacter, were mainly positively related
to temperature. High abundance of OTUs (cluster C), which
was afflicted with Roseobacter, Shimia, Planktotalea, and
FIGURE 4 | Principal components analysis (PCA) based on phylogenetic UniFrac distance metrics.
A B C

FIGURE 5 | Veen map analysis of dmdA gene diversity in spatial and vertical scale. (A) common OTUs in the vertical layers; (B) common OTUs in the surface water;
(C) common OTUs in the 25-m water layers.
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Donghicola, were mainly related to depth, phosphate, and
salinity. Cluster D and E, mainly composed by Phaeobacter,
Roseicitreum, Ruegeria, and Tropicibacter, were mainly
positively related to depth, indicating that these Roseobacter
OTUs were suitable to environment change with deep water. As
described above, a high ratio of dmdA/dddP was found in deep
water, which indicated that the Roseobacter group had more
nutrition demand and greater degree of demethylation than
DMSP cleavage. Different ecological strategies of DMSP
degradation may be used by members of the bacterial
community harboring demethylation and/or cleavage genes
(Reisch C. et al., 2011). In previous studies, the Roseobacter
group is the dominant microbial taxa in the offshore, upwelling,
and mesoscale eddy of the South China Sea (Zhang et al., 2016;
Sun et al., 2020; Sun et al., 2022), and diversity of DMSP
degradation potential has obvious significance for sulfur
material cycling and transformation.
CONCLUSION

This study showed that DMSP degradation genes varied
significantly in spatial scale of the South China Sea. The
current study found that temperature and water depth mainly
induced variations in taxonomic affiliations of Roseobacter group
DMSP degradation genes over space. These findings further
implied that additional factors including light, salinity, and
temperature, which are caused by an increase in depth, may
play important roles in regulating the DMSP degradation genes.
Frontiers in Marine Science | www.frontiersin.org 7
These factors play an important role in regulating the switch
process between bacterial DMSP demethylation and DMSP
cleavage. This study highlighted the understanding of the role
of Roseobacter group in sulfur cycling and transformation
conversion in the tropical ocean.
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