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Microorganisms colonize plastics in the aquatic environment but their composition on
plastics used in aquaculture remains poorly studied. Microorganisms play a significant role
in aquaculture in terms of water quality and the health of cultivated species. In the current
study, we explored the composition of microorganisms on floating plastics and their
surrounding water collected from ponds and open aquaculture areas. Using scanning
electron microscopy, the diversity of microbial communities, primarily diatoms, and
bacteria were identified on the plastic surfaces. Additionally, epifluorescence
microscopy revealed that prokaryotes were colonized on all plastic samples from 0.1 to
29.27×103 cells/cm2, with a high abundance found in open aquaculture areas compared
to ponds. Bacterial communities were characterized by 16S rRNA sequencing which
showed that bacterial communities on plastics were dominated by Proteobacteria,
Cyanobacteria, Bacteroidetes, and Actinobacteria. The level of these microbial
communities on the plastics differed from those found in the surrounding seawater
samples and the abundance of potentially pathogenic bacteria was higher in plastics
than in seawater samples. Moreover, hydrocarbon-degrading bacteria were more
abundant in the investigated plastic samples than in the water samples. This study
contributes to the knowledge regarding the plastisphere community in aquaculture.

Keywords: plastisphere, aquaculture plastic, microbial community, pathogens, plastic polymers
INTRODUCTION

Plastics are semisynthetic or synthetic materials made of natural products, such as crude oil, natural
gas, cellulose, and coal. Because of their flexibility, plastics have been used in many applications,
especially packaging (Lambert and Wagner, 2018). Plastic production has grown rapidly since the
1950s compared to other human-madematerials and has even replaced metals and wood (Geyer et al.,
2017). Thus, plastic production has increased 189 times to reach 330 million metric tons in 2016
(Lebreton and Andrady, 2019). Nevertheless, plastic production may reach 20% of the petroleum used
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worldwide and 15% of the annual carbon emission budget
(Lebreton and Andrady, 2019). With inadequate waste
management, human activities have led to the accumulation of a
considerable volume of plastics in the marine environment. In
2010, it was estimated that between 4.8 and 12.7 million tons of
plastic litter entered the ocean from 192 coastal cities, accounting
for 1.8–4.7 % of the plastic generated globally that year (Jambeck
et al., 2015) and this number is predicted to increase in the
following decade (Wu et al., 2017).

Plastics can last for a long time in the marine environment and
thus present an artificial substrate for microbial colonialization.
Microorganisms, such as bacteria, algae, and fungi aggregate on
plastics through producing polymeric substances to adhere to each
other and the surface forming a biofilm, known as the plastisphere
(Amaral-Zettler et al., 2020). It was reported that groups of
Rhodobacteraceae Flavobacteriaceae, Alteromonadaceae, and
Cyclobacteriaceae are highly abundant on plastics collected from
the marine ecosystem (Zettler et al., 2013; De Tender et al., 2015;
Oberbeckmann et al., 2016; Xu et al., 2019; Vaksmaa et al., 2021).
Microorganisms grown on plastics vary from those in the
surrounding water, sediment, and organic particles (Zettler et al.,
2013; De Tender et al., 2015). Nevertheless, microorganisms grown
on plastics are influenced by different geographic areas
(Oberbeckmann et al., 2016) and, to some extent, by polymer
type (Basili et al., 2020). Furthermore, plastics in the ocean carry
harmful microorganisms, including members of the genus Vibrio
and other potentially pathogenic microorganisms such as members
of Camplylobacteraceae, Enterobacteriaceae, Pseudomonadaceae,
and Shewanellaceae (Zettler et al., 2013; Amaral-Zettler et al.,
2020; Zhang et al., 2021). However, the majority of research on
the plastisphere that has employed high-throughput DNA
sequencing has focused on plastic samples from Europe, with a
few focusing on samples fromAsia and Africa (Amaral-Zettler et al.,
2020) as well as aquaculture (Wen et al., 2020).

Aquaculture, which is one of the fastest expanding segments of
the food industry (FAO, 2020), makes extensive use of plastics due
to their positive application in management and packaging
(Mahapatra et al., 2011). Aquaculture systems vary greatly
worldwide depending on species and region. In mariculture
systems, plastics are used to keep the structures floating and are
fixed in a place using ropes. For cages, plastics are used from small
to high-scale facilities for ropes, nets, and buoys. In ponds, plastics
are used in pond linings, ropes, floats, and fish feeders. Furthermore,
plastics are generally used in the aquaculture process for packaging,
feed, transportation, and in the daily life of farmers, such as cups,
bags, and bottles (Lusher et al., 2017). Plastic materials from
aquaculture facilities may be discarded, lost, washed ashore, or
accumulated on the seafloor posing hazards for animals, fishers, and
boat traffic (Andréfouët et al., 2014; Bendell, 2015). Additionally, the
breakdown of these materials can lead to the formation of
microplastics, which could have a further impact on the marine
ecosystem. Furthermore, these plastics present a substrate for
microorganism colonization as a result of nutrient accumulation
and waste (Cole et al., 2009; He et al., 2022), which may increase
their longevity (Carson et al., 2013; Virsěk et al., 2017), affect their
buoyancy (Lobelle and Cunliffe, 2011), potentially degrade them
Frontiers in Marine Science | www.frontiersin.org 2
(Oberbeckmann et al., 2016), and host potential pathogens (Radisic
et al., 2020; Bhagwat et al., 2021). For instance, fish pathogens
(Aeromonas salmonicida) were found to be attached in higher
numbers to plastics than to stainless steel used in aquaculture
(Carballo et al., 2000). Additionally, nylon and copper nets
employed in aquaculture contain potential pathogens belonging to
theWinogradskyella and Tenacibaculum taxa (Canada et al., 2020).
Conversely, some bacteria found in aquaculture facilities’ biofilms
play a critical role in the elimination of toxic metabolic wastes
(Moriarty, 1997; King et al., 2004). Therefore, given the extensive
use of plastics in aquaculture that can host microbial communities,
which could play a critical role in aquaculture ecosystem, the
plastisphere in aquaculture needs extensive investigation to
determine their ecological effect on cultured species and ecosystem.

In the current study, we compared the microbial communities
grown on plastics in two mariculture systems, ponds and marine
ranching, in order to examine potential factors affecting the
growth of the bacterial community in aquaculture, compare the
levels of bacterial diversity, and identify potential pathogens and
plastic-degrading bacteria. We employed high throughput 16S
rRNA sequencing to identify bacterial populations growing on
several kinds of plastic obtained from aquaculture systems.
MATERIALS AND METHODS

Sampling Locations
Samples were collected during July 2021 from four aquaculture sites
surrounding Shandong Province in the Yellow Sea and Bohai Sea of
China (Figure S1). We sampled plastics from two aquaculture
systems (ponds and marine ranching) located in different locations.
Sites located in Laizhou (S2) and Weihai (S3) were closed
aquaculture ponds, whereas sites located in Qingdao (S1) and
Haiyang (S4) were open mariculture areas. These sites were used
for farming sea cucumbers, mussels, and seaweed. Plastics
associated with the aquaculture processes (i.e., ropes, raft balls,
bottles, and bags) and surrounding water were collected from each
site. At every site, six plastic items that differed in texture and color
were collected. Plastics were floated in the water and exposed to sun.
Using sterilized scissors, blades, and tweezers, submerged plastic
parts were cut into small pieces (approximately 5–10 cm), washed
with sterilized seawater, placed in 50 mL sterilized tubes, and
preserved in an ice box containing dry ice (approximately -87°C)
until reaching to the laboratory. Thereafter, plastics were preserved
at -20°C and the water samples were preserved at 4°C until analysis.

Water Nutrients
Seawater samples were collected from each site for analysis. Salinity
and temperature were measured using an YSI instrument.
Additionally, nitrate (NO3-N), phosphate (PO4-P), nitrogen
dioxide (NO2-N), and ammonia (NH3-N) were measured
through colorimetric analysis using a QuaAAtro autoanalyzer
(Seal Analytical, Norderstedt, Germany). Furthermore, nutrients
of potassium (k), calcium (Ca), sodium (Na), magnesium (Mg), and
strontium (Sr) were determined in the water using inductively
coupled plasma–mass spectrometry (ICP–MS).
July 2022 | Volume 9 | Article 895611
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FT-IR Spectroscopy
Every plastic particle was analyzed using Fourier transform
infrared (FT-IR) spectroscopy (Nicolet iS50 FT-IR). To provide
knowledge on the chemical structure of the samples, the
spectrum was compared with several libraries in the OMNIC
software (Thermo Fisher Scientific, USA).

Scanning Electron Microscopy
Each plastic sample was immediately placed in an electron
microscopy fixative solution and preserved at 4°C until
analysis via scanning electron microscopy (SEM). The fixed
samples were washed three times for a total of 15 minutes each
time with 0.1 M phosphate buffer (pH 7.4). Thereafter,
postfixation with 0.1 M (pH: 7.4) phosphate buffer (1%
osmium acid) at room temperature was followed by three 15-
minute rinses with 0.1 M phosphate buffer. Following that, the
samples were dehydrated in a graded sequence of ethanol
concentrations of 30%–50%–70%–80%–90%–95%–100%–100%
for 15 minutes each time, and isoamyl acetate for 15 minutes. A
critical point dryer was used to dry the samples after they were
collected. Finally, SEM images were captured after samples were
adhered to metallic stubs using carbon stickers and sputter-
coated with gold for 30 s.

Procaryotic Cell Abundance on Plastics
To quantify the total prokaryotic abundance on plastic fragments
by epifluorescence microscopy, we applied the acridine orange
staining protocol as described previously, with a few adaptations
(Luna et al., 2002). Acridine orange is a cell-permeable and
cationic dye that intercalates with nucleic acids through
electrostatic interactions. Each fragment was placed into a
sterile 50 mL conical centrifuge tube and covered with 30 mL
of filtered (0.2-µm pore size) 2% formalin solution buffered at a
pH of 8.5 with a borate buffer and immediately fixed overnight at
4°С. Then, the samples were sonicated three times for 2 min each
to release the bacterial cells from plastic samples. The suspension
of the plastic fragments was diluted 100 times in prefiltered
seawater. Thereafter, each sample was supplemented with
acridine stock solution at a final concentration of 0.01% and
incubated in the dark for 30 minutes at room temperature. The
stained solution was washed 3 times with PBS buffer (pH 7.4) to
remove the excess dye. Aliquots were filtered onto a black
nucleopore polycarbonate (0.2 µm-pore-size). Finally, 10 µL of
each filter was added to microscope slides and examined by
epifluorescence microscopy. For each slide, at least 5 randomly
selected microscope fields were examined, and the bacterial cells
were enumerated and calculated as the mean value of cells
abundance per each field.

High-Throughput Sequencing for
Biodiversity and Community Composition
DNA Extraction and Illumina Sequencing
Following the manufacturer’s instructions, HiPure Soil DNA
Kits (Guangzhou, China) were used to extract DNA from the
samples. By utilizing the particular primer pairs of 341F (5’-CCT
ACGGGNGGCWGCAG-3’ and 806R (5’- GGACTACHVG
Frontiers in Marine Science | www.frontiersin.org 3
TTTAAT -3’), the V3–V4 region of the 16S rRNA was
amplified by PCR, resulting in a product length of ~466. The
PCR amplifications were carried out with three replicates of a 50
mL of mixture containing 10 mL of 5 × Q5 reaction Buffer, 1.5 mL
of 2.5 mM of dNTPs, 1.5 mL of each primer (10 mM), 0.2 mL of
High-Fidelity DNA Polymerase, and 50 ng of DNA template
(Biolabs, New England, USA). A two-minute denaturation step
at 95°C was followed by 27 cycles of 98°C for 10 s, 62°C for 30 s,
and 68°C for 30 s, with an elongation step of 10 min in the final
PCR conditions.

An AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
United States) was used to extract and purify the amplified
products from agarose gels (2%) and an ABI StepOnePlus Real-
Time PCR System was used for quantification (Life Technologies,
Foster City, USA). Equimolar purified amplicons were pooled and
paired end sequenced (PE250) by Guangzhou Genedenovo
Biotechnology Co., Ltd (Guangzhou, China) using the Illumina
HiSeq 2500 platform (Illumina, Inc., San Diego, CA, USA). All of
the raw reads were deposited into the NCBI Sequence Read Archive
(SRA) database, bioproject PRJNA815345.

Quality Control and Clustering
FASTP (0.18.0) was used to eliminate reads containing more
than 10% unknown nucleotides or fewer than 50% of bases with
a quality (Q-value) > 20 from the raw data. FLASH (1.2.11) was
then used to combine the pair-ended clean reads with a
minimum overlap of 10 bp and error rates of 2%. To obtain
clean tags of high quality, paired end clean readings were filtered
according to the following conditions: 1) when the number of
bases in a continuous poor-quality value (the default quality
threshold is ≤3) surpasses the specified length (the default length
is 3 bp), raw tags were separated from the first low quality base
site; and 2) then, tags with a base length of less than 75% of the
tag length were excluded. Next, UPARSE pipeline software was
used to perform clustering based on the clean tags into
operational taxonomic units (OTUs) of 97 % (9.2.64). The
UCHIME method was used to eliminate all chimeric tags,
resulting in effective tags. Within each cluster, the tag sequence
with the greatest abundance was chosen as the representative
sequence. A naive Bayesian model was used to classify typical
OTU sequences into organisms, using the RDP classifier (version
2.2) and the SILVA database (version 132), with a confidence
threshold of 0.8.

Data Analysis
Community distribution and environmental characteristics
relationship was studied using R software and the Vegan
package version 2.5.3 using redundancy analysis (RDA) (R
core Team, 2020). Additionally, Welch’s t-test and Wilcoxon
rank test were used to compare species between groups in the R
project Vegan package (version 2.5.3). Furthermore, biomarker
characteristics in each group were screened using LEfSe software
(version 1.0) and R software (labdsv package version 2.0.1, pROC
package version 1.10.0, and random forest package version
4.6.12). Alpha diversity analysis was conducted through Chao1,
Shannon, and Simpson indexes, which were calculated in QIIME
version 1.9.1. Alpha index comparisons between groups were
July 2022 | Volume 9 | Article 895611
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calculated by Welch’s t-test and Wilcoxon rank test in the R
project Vegan package (version 2.5.3). Analysis of the KEGG
pathways of the OTUs was done using PICRUSt (version 2.1.4).
BugBase was used to classify bacterial phenotypes in the
microbiome. Welch’s t-test, Wilcoxon rank test, Kruskal-Wallis
H test, and Tukey’s HSD were used in R project Vegan package
to analyze function differences between groups (version
2.5.3).Where necessary, one-way ANOVA was employed to
determine significant differences between samples.
RESULTS

Water Nutrients
The association between the microbial community and
environmental conditions was examined using RDA, including
salinity; temperature; and the nutrients PO4-P, NO3-N, NO2-N,
and NH3-H. Analysis showed that most phyla were located near
salinity and phosphate except of Cyanobacteria, which was
located near nitrate and nitrite vectors (Figure 1). The results
suggest that salinity plays a key role in the abundance of the
microbial community rather than other environmental factors.
The deviation explained by RDA was 86.02% in composition at
the phylum level. Marine ranching sites had significantly higher
abundance of K, but ponds had higher concentrations of NO3

and NO2. Also, nutrients of Mg, and Na were significantly lower
in the pond at S2 than at the other sites (Table S1).

Scanning Electron Microscopy
Procaryotic cells were found on plastics mostly with a rod shape.
Additionally, pennate diatoms were highly abundant in most
samples. Examples of diatom species identified morphologically
using SEM include Amphora sp., Nitzschia sp., Navicula sp.,
Frontiers in Marine Science | www.frontiersin.org 4
Cocconeis sp., and Licmophora sp. (Figure 2). Furthermore, we
noticed that the microorganism type on the plastics could be
different according to the geographic area. For instance, rod-
shapped prokaryotic cells were dominant in plastics collected
from S1, whereas diatoms were dominant in S3.

Procaryotic Abundance on Plastics
To count the net number of the prokaryotes in the collected
samples, we applied the acridine fluorescence dye. The numbers
of prokaryotic cells were estimated, assuming a range bacterial
number of 0.05–5.07×105 cells/g, with an average of 0.82 ± 1.04
cells/g. When considering the length of the samples, the
abundance of the cells was 0.1–29.27×103 cells/cm2, with an
average of 2.52 ± 5.37×103 cells/cm2 (Figure 3). The highest
abundance of cells was observed in samples of S1, while the
lowest abundance of cells was observed in S3. No significant
difference was found in the number of cells between sites (p >
0.05). Additionally, similar or different (i.e., PE vs. PVC) polymer
type of plastics from different sites showed no significant
difference in the number of cells (p > 0.05).

Comparing different site characteristics (i.e., ponds vs. marine
ranching), we found a significantly higher number of cells in
plastics samples collected frommarine ranching (S1 and S4) than
samples collected from ponds (S2 and S3; 1.35 ± 1.30×105 and
0.28 ± 0.23×105, respectively; p < 0.05), indicating that plastics in
open aquaculture sites have higher abundance of procaryotic
cells. Furthermore, we noticed high values of prokaryotic cells on
plastics with rough surface and grooves, such as ropes and some
aquaculture floats, indicating that the physical characteristics of
plastic could determine the number of microorganisms.

Microbial Community Composition
16S high throughput sequencing revealed highly diverse of
microbial communities. The effective tags reached a ratio of
85.33–91.96%, with an average of 87.61 ± 1.60% (Figure S2). The
annotated OTUs in each sample were 848–2,584, with an average
of 1,811 OTUs. There was no significant difference in OTU
numbers among sites (p > 0.05). No significant differences in
OTU numbers were found between different regions with the
same polymer type (p > 0.05). Additionally, there were no
significant differences in the OTU number of plastics with
different characteristics (p > 0.05). Furthermore, we compared
two polymer types (PE vs. PVC) and there were no significant
differences between the two polymers in OTU number regardless
of the location or plastic characteristics (p > 0.05).

In the water and plastic samples, Proteobacteria had the highest
abundance among all samples at the phylum level with relative
abundances of 38.29 ± 10.93% and 32.44 ± 33.75%, respectively,
which were significantly higher on plastics than seawater (Figure 4
and Figure S3). In the plastic samples, Cyanobacteria, Bacteroidetes,
and Actinobacteria exhibited high relative abundances in the
descending order of 18.60 ± 17.55%, 17.11 ± 7.14%, and 6.70 ±
5%, respectively, whereas, in water samples Actinobacteria,
Cyanobacteria, and Bacteroidetes exhibited relative abundances in
the order of 27.01 ± 30.58%, 15.92 ± 20.98%, and 14.31 ± 12.40%,
respectively. At the class level, plastic samples had a high abundances
of Alphaproteobacteria (31.94 ± 9.88%), Oxyphotobacteria (18.55 ±
FIGURE 1 | Redundancy analysis on the correlation between relative
abundance of microbial community at phylum level and water quality
parameters, including phosphate, nitrate, nitrite, ammonia, temperature,
and salinity. QD, Qingdao; Lai, Laizhou; Wei, Weihai; Hai, Haiyang.
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17.59%), and Bacteroidia (15.87 ± 6.35%), whereas, Actinobacteria
(23.33 ± 31.77%), Gammaproteobacteria (21.07 ± 35.13%),
Oxyphotobacteria (15.91 ± 20.98%), and Bacteroidia (13.97 ±
12.43%) had the highest abundance in water samples. The most
abundant families in plastic samples were Rhodobacteraceae (20.93 ±
9.50), Flavobacteriaceae (10.19 ± 5.50), and Sphingomonadaceae
(4.56 ± 4.92), and the most abundant families in water samples
Frontiers in Marine Science | www.frontiersin.org 5
were Microbacteriaceae (22.76 ± 31.78), Cyanobiaceae (12.16 ±
22.20), and Flavobacteriaceae (9.01 ± 11.28).

All the samples were identified as plastics, which included
polyethylene (PE), polyethylene terephthalate (PET), polyethylene
low density LDPE, polyvinyl chloride (PVC), polypropylene (PP),
and ethylene vinyl acetate (Table S2). When comparing PVC
(aquaculture floats) to PE (bags) samples from all sites, we found
Cyanobacteria (33.87 ± 29.16%) in the PVC samples at a higher
abundance than in the PE samples (7.03 ± 6.74%). Moreover,
Bacteroidetes had a higher abundance on PE (20.45 ± 3.88%) than
on PVC (8.68 ± 3.26%). Also, Firmicutes had a higher abundance
on PE (12.15 ± 23.64%) than PVC (0.90 ± 0.80%) (Figure S4).
According to the Chao1, Simpson and Shannon indexes, different
polymer types (i.e., PE and PVC) had no significant difference in
alpha diversity (Figure S5).

When considering different sites, 482 OTUs were shared
among plastic samples from all sites, which were composed of/
or dominated by Proteobacteria and Bacteroidetes phyla
(Figure 5). However, there was no significant difference in the
number of OTUs between the PE and PVC samples, and 1,186
OTUs were shared among them. Furthermore, PCoA analysis
showed that S2 and S4 had distinct and overlapping OTU
microbial assemblages from S1 or S3 (Figure 6).

DNA sequencing showed that there was a difference between the
plastisphere community and surrounding water. For instance, a
higher number of unique OTUs were found on plastic samples
(1,429 OTUs) than in water samples (648 OTUs), suggesting
variance in the number of unique species between plastics and
FIGURE 2 | Examples of microbial community on plastics samples using scanning electron microscopy.
FIGURE 3 | Prokaryotic abundance on plastics sampled from aquaculture
areas (mean ± SE).
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seawater. Additionally, Chao1, Shannon, and Simpson diversity
indices showed that higher richness of the microbial community
was detected on plastic than in seawater (Figure S5). Furthermore,
PCoA analysis showed that water samples had distinct microbial
OTU assemblages from most plastic samples (Figure 6).
Frontiers in Marine Science | www.frontiersin.org 6
Bacterial Community Functions
Similar functional types for bacteria were found between plastics
and water samples (Figure S7). However, there was a significant
difference between all functional composition between plastics
and water (Wilcoxon rank test p < 0.05). The highest abundance
FIGURE 4 | Percentage of prokaryotic community composition of all samples at the Phylum level.
FIGURE 5 | Venn diagram shows the overlapped OTUs between plastic samples from every site (a), plastic vs. water samples, and PE vs. PVC plastic samples.
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function for bacteria was membrane transport function and the
lowest abundant function was immune disease.

Potential Pathogens
A total of 6,151 OTUs were matched with potentially pathogenic
bacteria, with higher abundance on plastics than water (Figure S8).
The most abundant phyla on plastics and water were Proteobacteria,
Firmicutes, Patescibacteria, Bacteroidetes, and Acidobacteria. For the
class of potentially pathogenic bacteria, the most abundant classes
in the water were Gammaproteobacteria (21.069 ± 35.13%), Bacilli
(1.927 ± 3.62%), Bacteroidia (1.696± 1.32%), andAlphaproteobacteria
(1.290 ± 1.18%). In plastic samples, the most abundant classes were
Alphaproteobacteria (6.55 ± 4.83%) Gammaproteobacteria (4.66 ±
3.43%), Bacilli (2.14 ± 9.59%), Parcubacteria (1.32 ± 1.77%), and
Deltaproteobacteria (1.14 ± 0.76%). The most abundant orders of
potentially pathogenic bacteria in the water were Oceanospirillales
(14.517 ± 26.96%), Pseudomonadales (4.533 ± 8.78%), and Bacillales
(1.927 ± 3.62%). In plastic samples, the abundant orders were
Rhodobacterales (3.45 ± 3.56%), Rhizobiales (2.54 ± 1.84%), and
Bacillales (2.14±9.58%). Furthermore, themost abundant families in
the water samples were Halomonadaceae (13.73 ± 27.45%),
Moraxellaceae (4.52 ± 8.77%), and Bacillaceae (1.71 ± 3.39%),
whereas, in the plastic samples, the most abundant families were
Frontiers in Marine Science | www.frontiersin.org 7
Rhodobacteraceae (3.45 ± 3.58%), Rhizobiaceae (2.07 ± 1.66%), and
Planococcaceae (1.95± 9.13%).Additionally, the average abundances
of Vibrionaceae, Enterobacteriaceae, Pseudomonadaceae, and
Shewanellaceae, which are regarded as opportunistic pathogen
families, were 0.14 ± 0.25%, 0.31 ± 1.07%, 0.01 ± 0.02% in plastic
and 0.01 ± 0.03%, and in water 0.07 ± 0.08%, 0.06 ± 0.05%, 0.02 ±
0.02%, and 0.02 ± 0.03%, respectively. The most abundant genera in
thewater sampleswereCobetia (13.63±23.61%),Psychrobacter (4.42
± 7.56%), and Bacillus (1.66 ± 2.86%). In plastic samples, the most
abundantgenerawereRuegeria (1.13±2.39%),Pseudahrensia (0.30±
0.30%), Psychrobacter (0.26 ± 1%), and Granulosicoccus (0.26 ±
0.35%). For species abundance, Bacillus hwajinpoensis was the
most abundant species in water (1.64 ± 3.26%), while in plastics,
Marichromatium sp. (0.23 ± 1.07%) andMarinicella litoralis (0.15 ±
0.16%) were the most abundant species.

Plastic Degrading Bacteria
Various bacterial families that include members known as
hydrocarbon degraders were identified, including Rhodobacteraceae,
Flavobacteriaceae, Saprospiraceae, Alteromonadaceae ,
Sphingomonadaceae, Rhodospirillaceae, and Oscillatoriaceae. The
most abundant families that include members known as
hydrocarbon degraders were Rhodobacteraceae (20.93 ± 9.50%),
FIGURE 6 | Principal coordinate analysis (PCoA) of microbial communities based on the 16S rRNA sequencing profiles.
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Flavobacteriaceae (10.19 ± 5.50%), and Saprospiraceae (3.52 ± 4.35%;
Figure 7). Among them, the relative abundance of Rhodobacteraceae
washigher inplastics (20.93±9.50%) than in the surrounding seawater
(7.57 ± 7.10%; p < 0.05;Wilcoxon rank test and LEfSe analysis; Figure
S3). Different genera that described previously as hydrocarbon
degraders were found on plastics, including Erythrobacter, Lewinella,
Winogradskyella, Persicirhabdus, Altererythrobacter, Alcanivorax,
Crocinitomix, Alteromonas, Hyphomonas, Oleibacter, Dokdonia,
Tenacibaculum, Owenweeksia, andMarinobacter (Figure 7). Among
these genera, Erythrobacter was the most abundant genus on plastics
Frontiers in Marine Science | www.frontiersin.org 8
(2.10 ± 3.39%; p < 0.05; Wilcoxon rank test), which was higher on
plastics than in the surroundingwater (0.41 ± 0.32%), constituting 5%
of the Proteobacteria phylum, which followed by Lewinella (1.68 ±
4.36%),Winogradskyella (0.83 ± 1.30), Persicirhabdus (0.68 ± 1.13%),
and Altererythrobacter (0.52 ± 0.43%).

DISCUSSION

Aquaculture extensively utilizes plastics due to their positive
application in management and packaging (Mahapatra et al., 2011).
FIGURE 7 | Circos diagram displays the composition relationship between different plastic degrading bacterial families and genera. The lines on both sides indicate
the corresponding relationship pair, and the thicker the line, the greater the abundance value.
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These plastics present a substrate formicroorganisms colonization,
some of which are considered harmful or pathogenic (Amaral-
Zettler et al., 2020). The abundance of organic matter, as well as
phosphorus and nitrogenous metabolites, makes the aquaculture
field suitable media for microbial growth (Martıńez-Porchas and
Vargas-Albores, 2017). These microorganisms play a significant
role in aquaculture,maintaining thewater quality, and the health of
cultured species (Moriarty, 1997; Bentzon-Tilia et al., 2016).
Therefore, understanding the role of plastics in microbial
colonialization in aquaculture systems is critical for
understanding the biological impact of plastics in these systems.
Herein, we sampled plastics used in two aquaculture systems, i.e.,
ponds and marine ranching (i.e., open mariculture areas). The
sampledplastics originated fromaquaculturefloats andnets used in
suspended culture, as well as bottles and packaging bags.

The PE polymer was found to be the most prevalent
component of the plastics tested. PE is the most common
plastic type utilized in daily life and is primarly used in
packaging, pipes, and containers. Additionally plastics, such
as LDPE and high-density polyethylene (HDPE) are
manufactured in vast quantities using PE (Lusher et al.,
2017). Furthermore, PE is widely used in aquaculture in
ropes and floats due to its low density (Andrady, 2011; Wu
et al., 2020). In the current study, all the sampled plastics were
floated on the surface of seawater which could explain the high
abundance of PE.

SEM analysis showed that procaryotic cells in rod shape and
pennate diatoms were dominantly abundant in the plastic
samples. Diatoms play a key role in biofilm formation on
plastics as they are the first colonizers of the surface (Eich
et al., 2015; Zhao et al., 2021). Studies on the biofilm
composition of plastics have showed that diatoms, such as
coccolithophores and cyanobacteria, were the most abundant
microorganisms on the floating plastics (Casabianca et al., 2019).
Additionally, SEM analysis showed that diatoms were dominant
in S3, whereas rod-shaped bacteria were dominant in S1. This
could indicate that the characteristics of the area affect the type of
microorganisms grown on plastics in aquaculture areas.
Similarly , the microorganism communities differed
significantly among locations (Oberbeckmann et al., 2016).

The average abundance of prokaryotic cells on plastics in the
aquaculture areas was lower than procaryotic abundance on
those collected from coastal areas impacted with anthropogenic
pollution (Basili et al., 2020), but higher than that found on
plastic particles collected from the Mediterranean Sea (Dussud
et al., 2018). Considering different polymer types, there was no
significant difference in the prokaryotic abundance between
different polymers among sites. Similar results were observed
in plastics collected from the Mediterranean Sea (Basili et al.,
2020). However, the abundance of prokaryotic cells was
significantly higher in marine ranching sites than in ponds.
This might be because of nutrient differences between ponds
and marine ranching sites. Marine ranching had a significantly
higher abundances of K, Na, and Mg than ponds. A nutrient
increase positively correlates with the amount of bacteria
attached (Cowan et al., 1991; Donlan, 2002). Similarly,
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nutrients and salinity affect the growth rate of biofilm (Li et al.,
2019; He et al., 2022). Furthermore, plastics with special physical
characteristics, such as grooves and rough surface, were found to
contain a high number of prokaryotic bacteria. Similarly,
physical and chemical features of the substrate shape the
microorganism community (Kirstein et al., 2018).

In the water samples, the microbial community was
dominated by Proteobacteria, which was followed by
Actinobacteria, Cyanobacteria, and Bacteroidetes. Similarly,
microbial communities in the marine ranching area of Laoshan
Bay was dominated by Proteobacteria, which was followed
by Cyanobacteria, and Actinobacteriota (Fang et al., 2021). In
aquaculture ponds of shrimp Litopenaeus vannamei in
Zhongshan, China, Proteobacteria was dominant, followed by
Tenericutes, and Bacteroidetes (Zhang et al., 2019). In another
shrimp pond in Dongying, China, Bacteroidetes were the
dominant in the water, followed by Proteobacteria,
Actinobacteria, and Cyanobacteria (Huang et al., 2018).

The composition of plastics was dominated by Proteobacteria
followed by Cyanobacteria, Bacteroidetes, and Actinobacteria.
Similarly, Proteobacteria was the most abundant phylum
identified on microplastics placed in aquaculture ponds for
shrimp, followed by Bacteroidetes, Planctomycetes, and
Cyanobacteria (Deng et al., 2021). Additionally, Proteobacteria
was the dominant phylum identified on plastics collected from
beaches in the Mediterranean Sea (Basili et al., 2020; Vaksmaa
et al., 2021). Furthermore, Bacteroidetes, Actinobacteria, and
Cyanobacteria were highly abundant among biofi lm
communities on plastics collected from beaches in the
Mediterranean (Basili et al., 2020). In the Mediterranean Sea,
Proteobacteria was followed by Bacteroidetes and Cyanobacteria
(Vaksmaa et al., 2021). Moreover, plastic marine debris in the
Mediterranean Sea was dominated by Cyanobacteria and
Alphaproteobacteria (Dussud et al., 2018).

16S rRNA sequencing showed that there was a difference
between the plastisphere community and that in the surrounding
water. For instance, a higher number of unique OTUs was found
on plastic samples (1,429 OTUs) than in water samples (648
OTUs), suggesting variance in the number of unique species
between plastics and seawater (Figure 5). Additionally, we
observed differences between the microbial community of
plastics and surrounding water at the phylum, order, class,
family, and genus levels (shown above). Furthermore, the
Chao1 and Shannon diversity indexes showed that higher
richness of the microbial community on plastic than in
seawater (Figure S5). Moreover, PCoA analysis showed that
water samples had distinct microbial OTU assemblages from
most plastic samples (Figure 6). This indicates that plastic
samples in aquaculture areas have a variable abundance of
communities compared to seawater. This observation is in
agreement with observations of biofilm on microplastics in
aquaculture (Deng et al., 2021) and previous studies in the
open ocean (De Tender et al., 2015; Dussud et al., 2018;
Vaksmaa et al., 2021).

When comparing different polymer types (i.e., PVC vs. PE),
we found Cyanobacteria had a higher abundance on PVC
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samples than PE samples, whereas Bacteroidetes and Firmicutes
had a higher abundance on PE samples than PVC samples. This
difference might not only be because of different polymer types
but also because of the surface characteristics, such as polymer
type and surface characteristics influence the type of
microorganisms that attached (Amaral-Zettler et al., 2020).
Alpha diversity indexes showed that there was no significant
difference between the two polymer types and both shared high
numbers of OTUs. Collectively, polymer type might influence
the abundance of microbial groups on plastics (i.e., specific
groups of microbes might prefer one polymer over another).
This observation is in agreement with previous studies that
concluded polymer type affects the bacterial community
attached to plastics; there was a significant difference in the
microbial community on PE compared to PP or PS (Vaksmaa
et al., 2021).

When considering different sites, S2 and S4 had distinct and
overlapping OTUs from S1 and S3. Additionally, only 482 OTUs
were shared among sites. Furthermore, our SEM observation showed
distinct microorganisms on plastics in S1 and S3 from S2 and S4.
Collectively, this observation is in agreement with previous studies
concluding that the microbial community structure differs according
to the geographic area (Amaral-Zettler et al., 2015; Oberbeckmann
et al., 2016; Basili et al., 2020). Furthermore, the membrane transport
function was highly represented by the biofilm community on
plastics compared to other predicted functions. This observation
was reported previously from plastics marine debris collected from
the western Mediterranean Sea (Dussud et al., 2018) and submerged
plastic pellets in Australia (Bhagwat et al., 2021), which is an essential
function for biofilm formation (Dussud et al., 2018).

It has been reported that plastic particles can accumulate
pathogenic bacteria and harmful microalgae, which indicates
that plastic particles may act as carriers of pathogenic bacteria,
resulting in the spread of diseases (Amaral-Zettler et al., 2020;
Meng et al., 2021). According to the finding of the current study,
bacterial families identified include well-known fish and shellfish
potential pathogenic strains, which support the potential for
plastics to serve as vectors for possible pathogenic microbes. This
might pose a threat to aquaculture profitability and cultured
species. For instance, Rhodobacteraceae was the most abundant
family on plastic samples, and is widely regarded as potential
pathogenic bacteria (Meng et al., 2021). Some members of this
family may contribute to shrimp, sea cucumber, and coral
disease (Soffer et al., 2015; Zhang et al., 2019; Deng et al.,
2021). Additionally, bacterial families commonly regarded as
potential pathogens, such as Vibrionaceae, Enterobacteriaceae,
Pseudomonadaceae, and Shewanellacea were higher on plastics
than in water samples. The abundance of these families was
lower than or comparable to those detected on plastics employed
in the Yellow Sea (Zhang et al., 2021). Also, the family
Vibrionaceae has been widely confirmed on marine plastics
and is dominated by the Vibrio genus and a large number of
potential pathogens (Amaral-Zettler et al., 2020). The Vibrio
genus includes animal and human pathogens that have been
responsible for catastrophic pandemics and innumerable
epidemics around the world and could result in significant
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financial loss for aquaculture farms (Laverty et al., 2020).
Taken together, our findings support the hypothesis that
plastic acts as a vector for potential pathogens.

Conversely, some microbes were reported to have a positive
impact on aquaculture management. For instance, some
members of the family Rhodobacteraceae produce antibacterial
compounds that can inhibit fish pathogens (Henriksen et al.,
2022). Also, members of the family Rhizobiaceae were identified
among the denitrifying bacteria in the recirculation aquaculture
system (Chen et al., 2021). Additionally, the genus Ruegeria had
the highest abundance on plastic samples, which is a common
bacteria in the aquaculture system and was previously detected
on microplastic particles (Zhang et al., 2020). This genus
includes members that have probiotic potential due to
inhibition of fish pathogens (Sonnenschein et al., 2017).
Furthermore, Bacillus hwajinpoensis, which was the most
abundant species in water samples, has been reported as a
dominant species in aquaculture water and is regarded as
probiotic to improve the water quality and inhabit pathogenic
bacteria (Wei et al., 2021). Additionally, Marichromatium sp.
was the most abundant species identified on plastics, which was
reported to improve water quality (Zhu et al., 2019). We
anticipate that the extent of the presence of harmful or
beneficial bacteria in the aquaculture system may depend on
the effective management of the water quality in the farm.

Microorganisms maybe able to provide solutions for plastic
pollution through biodegradation (Amaral-Zettler et al., 2020).
The Rhodobacteraceae family was found to be the most abundant
family on the plastic samples and higher than of seawater.
Members of this family are known as hydrocarbon degraders
of which Rhodococcus ruber has been shown to degrade PE
(Gilan et al., 2004; Dubinsky et al., 2013). Several studies have
reported a high abundance of the family Rhodobacteraceae on
plastic samples (Bryant et al., 2016; Dussud et al., 2018).
Furthermore, we found 14 genera that were previously
reported to include hydrocarbon degrading bacteria, of which
Erythrobacter had the highest abundance, and these were
previously detected on PE plastic samples (Vaksmaa et al., 2021).
CONCLUSION

In the current study, we investigated the microorganisms associated
with plastics collected from aquaculture areas (i.e., ponds and
marine ranching). Our findings indicated that the amount of
bacterial community associated with plastics was significantly
different in open aquaculture areas than in closed ponds,
regardless of polymers type. Additionally, 16S rRNA gene
sequencing and SEM analysis showed that the type of microbial
communities differed among the aquaculture areas. Also, our results
showed that plastic samples in aquaculture areas had a distinct
abundance of the microbial community from seawater samples.
Additionally, different polymers may influence the abundance of
specific microbial communities. Furthermore, the abundance of
potential pathogenic bacteria was higher on plastics than in
seawater. However, the dominance of potential probiotic bacteria
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that have the potential to inhabit pathogens might explain the
limited abundance of potential pathogens in the samples collected
from aquaculture fields. Moreover, the high abundance of genera
including hydrocarbon degrading bacteria indicated that these
groups might play a role in plastic degradation. Further research
could focus on manipulating and managing beneficial microbes on
plastics to enhance the aquaculture management.
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