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Skipjack tuna (Katsuwonus pelamis, SKJ), a widely distributed and highly migratory 
pelagic fish, dominates the global tuna catch, especially in the Pacific Ocean, with nearly 
70% of world catch. Studies have reported that SKJ in the tropical Pacific was strongly 
associated with Niño-Southern Oscillations, while the relationship between SKJ in the 
Northwest Pacific (NWP, the second-contributed statistical area of SKJ Pacific catch) 
and climate variability has not yet been well understood. Considering the teleconnection 
between western Pacific and Atlantic Ocean, this study investigates the potential 
relationship between the relative abundance CPUE (Catch Per Unit Effort) of SKJ and 
climate indices including trans-basin and basin signals at different spatial-temporal scales 
in the NWP during 1972–2019 using Convergent Cross Mapping (CCM) and Threshold 
Generalized Additive Model (TGAM) techniques. Results show the Atlantic Multidecadal 
Oscillation (AMO) plays a causal role in the temporal SKJ variations with an optimal lag at 
15 months, while further analysis preliminarily reveals sea surface temperature acts as a 
vital medium in the relationship through teleconnection. The AMO effected SKJ processes 
are nonstationary over the study time, of which the transition years occurred in the early 
1990s (around 1991/92). Providing an unprecedented insight into climate variability effect 
on SKJ in the NWP, this study has essential implications and reference for predicting 
and managing SKJ fishery through incorporating the climate index in estimating the SKJ 
abundance in advance,  and for the connection between large-migrating species and 
tans-basin climatic variation.

Keywords: Skipjack tuna, climate variability, causality, trans-basin teleconnection, nonstationary relationship

1 INTRODUCTION
Tunas are important in ecological meaning and are highly commercial for being an upper 
predator distributed extensively in the ocean. Studies have found that population dynamics 
of tunas were involved with climate variability, which was shown in aspects of the recruitment 
variability, fishing ground distribution, and catch fluctuations (Sugimoto et al., 2001; Lima & 
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Naya, 2011; Carlos Baez et  al., 2020; Wu et  al., 2020a), and 
could be well described by large-scale climate patterns, such 
as the ENSO (El Niño-Southern Oscillation), IOD (Indian 
Ocean Dipole), and AMO (Atlantic Multi-decadal Oscillation) 
(Lehodey et al., 1997; Lan et al., 2013; Faillettaz et al., 2019).

Skipjack tuna (Katsuwonus pelamis, hereinafter as SKJ), has 
been the most productive tuna fishery species worldwide. Its 
catch ranked third among the ten marine capture species for 
the ninth consecutive year in 2017 (FAO, 2020). SKJ catch in 
the Pacific (nearly 0.9 million tons per year) has contributed 
to more than 70% of global SKJ catch since 1950. This can be 
attributed to its shorter life cycle with the first mature length 
(about 45 cm) and wider habitats from temperate to equatorial 
areas than other tunas (Collette & Nauen, 1983). Up to date, 
the maximum reported SKJ age was 12 years (Collette & 
Nauen, 1983). Studies involved with stock assessment and 
tagging surveys typically assume that SKJ forms a single stock 
in the Pacific Ocean with long-distance movement, which is 
characterized by migrating from west to east along the equator 
and migrating across the equator longitudinally (Kiyofuji 
et  al., 2019; Ashida, 2020; Moore et  al., 2020). Despite this, 
Ashida (2020) found that the first mature time, spawning 
mode, and fecundity of SKJ varied between the tropical Pacific 
Ocean and the extratropical waters.

The first response of SKJ to climate oscillations was verified 
in the western tropical Pacific (the highest production area 
among the Pacific (Figure S1, FAO online data), which 
supported the prediction of SKJ fishery two months in advance 
through ENSO index (Lehodey et  al., 1997). By contrast, 
whether SKJ in the Northwest Pacific (hereinafter as NWP), the 
major contributor in the extratropical Pacific and the second 

contributor in the whole Pacific from 1950 to 2000 (Figure S1, 
FAO online data), is linked with climate variability remains 
unclear. SKJ in the NWP comprises individuals with various 
migration patterns evidenced through parasite identification 
(Takano et al., 2021). Based on the tagging experiments, SKJ in 
the NWP mainly comprises three groups: the first group that 
the North Pacific Gyre Oscillation (NPGO) or Pacific Decadal 
Oscillation (PDO) might influence as it migrated from the 
northeast Pacific, the second group whose parents linked with 
ENSO, mainly comprised small-size SKJ individuals traveled 
from the western tropical Pacific (Lehodey et al., 1997; Arai 
et al., 2005; Moore et al., 2020), and the third group who spawns 
at the offshore area of the Nansei Islands, Japan and makes 
a northward seasonal migration across Kuroshio Current in 
the NWP (defined as a local group too) (Kiyofuji et al., 2019; 
Tawa et  al., 2020) (Figure  1). Previous studies showed that 
the effects of basin-scale climate variability on fisheries varied 
largely in the NWP. For example, the suitable habitat of neon 
flying squid extended southward with increasing abundance 
during La Niña events, whereas albacore tuna Catch Per Unit 
Effort (CPUE). is lower (Mukti & Saitoh, 2004; Yu et  al., 
2019). In contrast, Japanese anchovy was positively related 
to PDO on a centurial scale through sea surface temperature 
(SST) (Zhou et al., 2015). Notably, recent research discovered 
the trans-basin interaction between the Pacific and Atlantic 
Oceans (Enfield et al., 2001; Zhang & Delworth, 2007), and the 
AMO plays a vital role in the natural variability of the western 
Pacific (Sun et  al., 2017; Sun et  al., 2020; Sun et  al., 2021), 
especially on the NWP through the North Pacific subtropical 
mode water (Wu et al., 2020b). In this sense, whether one or 
multiply long-term climate oscillations could be a proxy for 

FIGURE 1 |   Schematic of the study area in the north Pacific with main currents, climate background, and migration routes of skipjack tuna inside. The study area 
(Northwest Pacific, NWP) is surrounded by the grey-dotted lines and the mainland coast of countries, including China, Korea, South Korea, Japan, and Russia. Blue 
ellipses show the defined scope of climate indices with different brightness. The main spawning grounds (MSG) of SKJ in the western Pacific and potential migration 
routes of three groups of skipjack tuna in the NWP are indicated with black arrow lines and grey ellipses, respectively (Arai et al., 2005; Kiyofuji et al., 2019; Tawa 
et al., 2020; Moore et al., 2020). The paths of Kuroshio Current with its origin (North Equatorial Current) and extension and Oyashio Current are shown by red and 
dark blue arrow lines, respectively.
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controlling the SKJ fluctuation in the NWP is to be concerned 
and is of great economic importance for adopting pre-emptive 
management rules to keep the sustainable development of the 
SKJ fishery.

Many studies found that the tuna response to climatic 
regime shifts was “seesaw”-like. Such as, yellowfin tuna in the 
western Indian Ocean was in phase with the Dipole Modular 
Index during negative IOD phases, and vice versa (Lan et al., 
2013).The suitable habitat of Atlantic bluefin tuna in the 
North Atlantic Ocean was controlled by an opposite pattern 
in the zonal direction during different AMO phases (Faillettaz 
et  al., 2019). Indeed, the modulation of climate oscillations 
would be more complex and uncertain with longer time, 
especially for the upper predator on the ecosystem, such as 
tunas on a decadal scale. Ménard et  al. (2007) reported that 
yellowfin tuna and bigeye tuna were intermittently linked 
with the Indian Oscillation Index at decadal scales (from 1955 
to 2003). Therefore, the relationship between climate indices 
and tuna is probably time-dependent or phase-dependent 
rest on the regime shift point of the climate index. Recent 
studies supported that Threshold Generalized Additive Model 
(TGAM) performs well in identifying the change point of 
a relationship by fitting two functions for different periods 
(Puerta et al., 2019; Ma et al., 2020; Ma et al., 2021), which can 
be used to understand whether the SKJ-climate relationship 
in the NWP is nonstationary and determine the regime-shift 
point as well.

Correlation analysis is frequently used in the ecological 
study to couple with environment, while the correlation 
does not imply causation because of the joint driving factor 
between two variables. Moreover, a mirage correlation that 
is characterized by a weak or an intermittent correlation 
across the long time series could hide the real causation signal 
(Sugihara et al., 2012; Chang et al., 2017). Sugihara et al. (2012) 
developed a non-parametric method that could distinguish 
the real cause-effect relationship from the above situations 
through transforming the time series into low-dimension 
and nonlinear dynamic systems in the state space, which is 
called the cross-convergence mapping (CCM). It has been 
successfully used in fishery oceanography, Doi et  al. (2021) 
revealed that temperature influenced species richness over 

thousands-year time scales. Nakayama et  al. (2018) showed 
that the population dynamics of anchovy and sardine in the 
NWP were controlled by the double effect of climate change 
and interspecies dynamics.

Combined with the above considerations, this study 
applies CCM and TGAM methods to SKJ in the NWP, and 
the prominent climate patterns that overlap migratory SKJ 
habitat to identify: a) whether there is a causal connection 
between SKJ in the NWP and climate variability, especially 
for the AMO), b) whether the interaction process between  
climate variability and SKJ is nonstationary on the decadal 
scale.

2 MATERIALS AND METHODS

2.1 Study Area
NWP area is referred to as FAO Major Fishing Area 61, which is 
compassed by the north of 20°N and the west of 175°W across 
the mainland coast of countries, including China, North Korea, 
South Korea, Japan, and Russia. Note that SKJ catch in the 
southwestern corner of FAO Area 61, i.e., west of 115°E and south 
of 20°N, is excluded in the study as it is near zero and the study 
area is limited to the south of 45°N of NWP area, considering the 
distribution of SKJ (Figure 1).

2.2 Fishery Data
Monthly aggregated SKJ catch data using fishery gear types 
(pole and line, and purse seine) were provided from WCPFC 
(Western and Central Pacific Fisheries Commission, http://
www.wcpfcnt/public-domain, last accessed in November 
2020). The primary result of retrieved data for the NWP area 
showed that pole and line fishery was the main operating gear 
with its catch nearly six times to the purse seine fishery during 
1972–2019. Finally, this study uses the pole and line data with 
a resolution of 5°, which comprises year, month, catch, effort 
(operating days), latitude, and longitude. CPUE is assumed to 
be a common proxy for fish relative abundance. In this study, 
the CPUE of SKJ is defined as SKJ catch in metric tons per 
operating day.

TABLE 1 | The definition and sources of climatic indices.

Climatic indices Definition Data source Resolution

ONI3,4 The ocean part of ENSO event, is defined as a 3-month running 
mean of SST anomalies in the Niño 3.4 region (5°N–5°S, 
120°–170°W).

https://origin.cpc.ncep.noaa.gov/products/analysis_
monitoring/ensostuff/ONIv5.php

Monthly

SOI The atmospheric part of the ENSO climate pattern by comparing 
surface air pressure anomalies at Darwin, Australia, to pressure 
anomalies at Tahiti.

https://www.ncdc.noaa.gov/teleconnections/enso/soi Monthly

PDO The leading pattern of SST anomalies in the North Pacific basin 
north of 20°N.

http://swww.ncdc.noaa.govteleconnectionspdo Monthly

NPGO A climate pattern that emerges as the 2nd dominant mode of sea 
surface height variability (2nd EOF SSH) in the Northeast Pacific.

http://www.oces.us/npgo/enso.html Monthly

AMO The average SST anomalies in the North Atlantic basin, typically 
over 0–65° N, 80° W–0°.

http://www.psl.noaa.gov/data/timeseries/AMO/ Monthly

SST Sea surface temperature of the NWP. https://www.met.office.gov.uk/hadobs/hadsst3 Monthly & 5°(spatial)
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2.3 Climatic Data
Five climate indices associated largely with the NWP and SKJ 
migration (Figure 1), and SST data of the NWP with a resolution 
of 5°are employed in this study (Table 1). All data were monthly 
time series with a period of 1972–2019.

2.4 Convergent Cross Mapping
Convergent cross mapping (CCM) is an approach that 
can distinguish causality from mirage correlation in time 
series from dynamical (i.e., nonlinear) systems, which is 
nonparametric and rooted on state space reconstruction 
(Sugihara et  al., 2012). The fundamental CCM principle is 
that the cause time series left its footprints on the effect time 
series at a state space level. Before applying CCM analysis, 
CPUEda is created to represent the anomaly fluctuations 
of SKJ relative abundance by detrending CPUE first and 
subsequently monthly anomaly of the detrended CPUE. 
The relationship between CPUEda and climate indices were 
preliminarily analyzed using the Spearman rank correlation, 
which provides a measure of a monotonic relationship 
between two continuous random variables and is useful 
with non-normal data, the 95% significance level is set 
on the correlation analysis. Results showed no prominent 
relationship between climate indices and SKJ existed except 
for a weak and negative correlation between NPGO and SKJ 
(Table S1). Here, time series are transformed into a dynamic 
system of low-dimension and nonlinear to represent its space 
state before performing CCM by the following steps:

1) Determining the Best Embedding Dimension (E)
Based on Takens’ Theorem, the dynamics of the system 
can be gotten from the time lags of a single time series. 
For one time series X of length L, {X}={X1,X2,...,XL} the 
lagged-coordinate vectors series, { xt }=< Xt,Xt−1τ,Xt−2τ…, 
Xt−(E−1)τ >        (1+(E−1)τ<t<L), are reconstructed as “shadow” 
attractor manifold MX to be used in CCM (Sugihara et al., 2012). 
Here, τ is the time lag, E is the embedding dimension (i.e., the 
number of time-delayed coordinates). Following the simplex 
projection method (Sugihara & May, 1990), the selection of E 
was based on leave-one out cross-validation. The best E for each 
time series was determined from 2 to 10 dimensions according 
to the prediction skill (here Pearson correlation coefficient (ρ) 
was used).

2) Identifying Nonlinear Dynamical Systems From 
Linear Stochastic Systems (θ)
The nonlinearity of time series embedded with the optimal 
E could be identified using the S-map procedure, which fits 
local linear maps to describe the dynamics through various 
weight options (Sugihara, 1994). The nonlinear localization 
parameter, θ, is defined to determine the degree to which 
points are weighted when fitting the local linear map. 
Specifically, when θ> 0, nearby points in the state space 
receive larger weight, and the local linear map can differ in 
state-space to accommodate nonlinear behavior, suggestive 
of nonlinear dynamics. When θ= 0, all points are equally 

weighted, meaning that the local linear map is identical for 
various points in the reconstructed state-space. Following 
(Chang et  al., 2017; Tsonis, 2018), if predictability improves 
with increasing θ (i.e., the best θ > 0), indicating the evidence 
for nonlinear dynamics; if not (i.e., the best θ = 0), the time 
series would be first-differenced to extract the nonlinear 
characteristic further. Here, the first-differenced derivates 
of NGPO, PDO, and SOI (NPGOfd, PDOfd, and SOIfd) 
are created based on the posterior results (Figures S3, S4). 
Finally, CPUEda, AMO, ONI, NPGOfd, PDOfd, and SST are 
qualified indices with nonlinear dynamics to sequent CCM 
experiments (Figures S3−S5).

3) Causality Test and Lag-Time Analysis by CCM and 
Extended CCM
CCM determines causality by generating a cross-mapped 
estimate of Y(t), denoted by Ŷ(t) | MX i.e., predicting the 
current quantity of one variable My using the time lags of 
another variable Mx (Sugihara et  al., 2012; Chang et  al., 
2017). This prediction skill (ρ) is quantified by calculating 
the Pearson correlation coefficient between the predicted and 
observed values of Y(t) and is be computed over many random 
subsamples of the time series to quantify convergence. The 
parameter library size (L) depended on the sample length 
(Lmax), and best E+1 (Lmin) represents the subsample size. The 
significance of the cross-mapping skill is tested using 1000 
surrogate time series to simulate null distributions. If there is 
a causal relationship between X and Y, the cross-mapping plot 
would be “convergent,” which means that the prediction skill 
(ρ) enhances and approaches a definite limit with increasing 
L. Note that the direction of cross-mapping (xmap) is opposite 
to the direction of the cause-effect, that is, the prediction skill 
of X xmap Y reached a convergence indicates Y causes X and 
vice visa.

Extended CCM (ECCM) was developed to determine the 
optimal delay-lag and distinguish the real unidirectional 
causal relationship from bidirectional causation through 
adjusting the cross-map lag time (l) (Ye et  al., 2015). The 
true unidirectional causality means that a negative lag for 
cross mapping tested in the true causal direction (i.e., the 
result variable is better at predicting the past values of the 
causal variable rather than future values) and a positive lag 
exists tested in the other direction (the causal variable best 
predicts the future result variable). Based on the posterior 
results (Figures  4, 8A), a significant and unidirectional 
causal relationship between CPUEda and AMO and a strong 
bidirectional relationship between SST and AMO were 
determined. For CPUEda and AMO, the detailed time lag is 
further determined using ECCM to understand the potential 
process better. Considering the maximum SKJ age is 12 years 
(mentioned earlier), the yearly lag-time was first determined 
by the time-interval parameter (l = 1 year, l max = 12), and the 
accurate monthly lag-time (l = 1 month) was determined over 
1000 random libraries (with various seed value) of Library size 
(Lmax=565). For SST and AMO, ECCM would check whether 
the direction is truly unidirectional further.
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The “rEDM” package conducted analyses in this section 
in R. Details algorithm for this methods can be found in 
(Sugihara et al., 2012; Ye et al., 2015).

2.5 Generalized Additive Model and 
Threshold Generalized Additive Model
Generalized additive models (GAM) and threshold 
generalized additive models (TGAM) were used to determine 
the relationship type (stationary or non-stationary) between 
SKJ and the causal climate index (AMO, from the above 
results). Specifically, a “stationary” relationship is better fitted 
by a single function throughout the period of the time series 
and is typically formulated using a GAM (Ciannelli et  al., 
2004):

 Y s X X= + ( ) + +α 1 2   (1)

where Y is the response variable (the square root of CPUE that 
conforms to normal distribution), X1 is the predictor (AMO), X2 
is the month variable (as a categorical variable), and s, α, and ε 
are smooth function (with k ≤ 3 to avoid overfitting), intercept, 
and error terms, respectively.

Different functions better fits a “non-stationary” relationship 
for different periods, and the responses to drivers have an abrupt 
change over a threshold year (Litzow et  al., 2018), which is 
formulated using a TGAM (with specific to two time periods) 
(Puerta et al., 2019):

 
Y s X X

s X X

t

t(t) ,
,={ + ( )+ +

+ ( )+ +
>
≤

α
α

2 2 1 2

1 1 1 2



t y
t y

  (2)

where y is the threshold year that separates two periods with 
varying responses to drivers, set as between the 0.1 lower and 
the 0.9 upper quantiles of the time series at a month scale, 
the designations of X1, X2, and Y are the same as them in 
the GAM. The nonstationary optimization model is selected 
by minimizing the model’s generalized cross-validation score 
(GCV) (Casini et al., 2009). The superior model was selected 
and further conducted based on the minimum Akaike 
information criterion (AIC). The analyses in this section 
were conducted using “mgcv” package in R.Analyses flow is 
shown in Figure 2.

3 RESULTS
3.1 Temporal and Spatial Variations in 
CPUE and Catch of SKJ
The fluctuations of SKJ catch present earlier increase and 
later decrease in trend during 1972–2019: An increasing trend 
was determined from 1972 to 1984 with the highest catch 
(151,649-mt) occurring in 1984; a relative stable segment 
during 1985–2005 is characterized by a slight decline; at last, 
an obvious declining trajectory appeared since 2006, where 
the lowest catch (25,267-mt) occurred in 2014. (Figure 3A). 

The CPUE of SKJ fluctuates with a rising trend over the study 
period at the decadal scale. It remains a line before the 1980s, 
but increases sharply in the mid-1990s, reaching the first 
peak (5.61-mt/day) in 1993 and gently fluctuating during 
1994–2014, then the maximum peak (5.84-mt/day) occurred 
in 2015. (Figure 3A).

The high-catch areas distribute along the western 
boundary of the NWP, which overlaps the path of the 
Kuroshio Current fitly. Among these, the biggest patchy 
area of high catch is near the mixed area between Kuroshio 
Current front and Oyashio Current (Figure 3B). By contrast, 
the spatial distribution of SKJ CPUE is characterized by many 
meridional strips, where two intensified trips of CPUE are 
located at the most northern area (along 35°–40° N) and the 
southeast corner (150°E across on the 20°N), respectively 
(Figure 3C).

3.2 Causal Relationships Between SKJ 
CPUEda and Climate Indices
An obvious convergence of the AMO causing on CPUEda 
and a declined trend of the opposite predicting skill (CPUEda 
causing on the AMO) are found with the library size larger 
(Figure  4), which shows the interaction between the AMO 
and SKJ is unidirectional, and indicates that the abnormal 
fluctuation of SKJ CPUE in the NWP depended on the 
long-term variation of the AMO, despite the insignificant 
correlation (r = −0.004, Table S1). The ECCM results further 

FIGURE 2 | Flow chart of the statistical methods conducted in this study
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attest that the strongest causation occurs at a lag of 1 year at 
an annual scale. (Figure 5A). More specifically, the maximum 
lag on the month scale is identified at 15 months (Figure 5B).

For other climate indices, the predicting skill of the 
ONI causing on CPUEda shows a weak convergence at the 
library size (L = 400) with a declined trend after the library 
size reached 400 (Figure S6). Considering the maximum 
predicting skill is less than 0.1, the ONI effect on SKJ is almost 
neglected. The predicting skills between PDOfd and NPGOfd 
cross-with CPUEda presented with negative values make no 
sense (Figure S6), which shows no causal interaction between 
SKJ with PDO and NPGO at the statistical level.

3.3 Nonstationary Relationship Between 
SKJ CPUE and the AMO
For the comparison between stationary and nonstationary 
models, the TGAM model obviously causes lower AIC 
(Figure  6), showing better model performances than the 
GAM model. Consequently, the relationship between SKJ 
and the AMO during the whole period is nonstationary. 
Following the variations in the GCV of TGAM model, 
the threshold years that distinguished eras for fitting 
AMO-CPUE relationship separately was around 1991/92 
(Figure  7). Two eras were found with various relationships 
between CPUE and the AMO (Table  2), where the AMO 
is significantly related to CPUE in the era1 (1972–
1991), while this relationship was insignificant in the  
era2 (1992–2019, Figure 8).

4. DISCUSSION

This study presents the continuous pole-line catch data of SKJ 
in the NWP area over the 1972–2019 period, where the SKJ 
catch shows a relatively higher level before the 21st century and 
contributed secondly to the SKJ catch in the Pacific while its role 

B C

A

FIGURE 3 | Characteristics of temporal variations and spatial distributions of skipjack tuna in the study area during 1972–2019. (A) Timeseries variations of skipjack 
catch (blue lake bar) and CPUE (bright orange line). (B) Spatial distribution of skipjack accumulative catches (million metric tons). (C) Spatial distribution of skipjack 
mean CPUE (metric tons per day).

FIGURE  4 | Results of the CCM applied to the nonlinear dynamics of 
CPUEda and AMO. The blue lake and bright orange lines represent the 
effect of AMO on skipjack and the opposite effective direction, respectively. 
The different color shadows represent the 95th percentile of the results 
of CCM for the surrogate data versus the original effect time series.
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has been weakening in the recent two decades. (Figures 3A; S1). 
As pole-line is the uniform fishing gear and the effort defined as days 
is homogeneous, the reduction in SKJ catch may result from the 
decreased effort instead of the fishing method since 1981 (Figure 
S2). By contrast, CPUE indicates an increasing trend during the 
whole period, which conforms with the stock assessment report 
in 2019 that SKJ is not over-fished and the population level is 
healthy (Vincent et al., 2019). Therefore, this study uses CPUE, to 
obtain the long-term change feature of SKJ relative abundance at 
the temporal scale, to link with climate indices. The CCM results 
showed that the AMO was causally related to the variability of SKJ 
relative abundance in the NWP, while the ONI, NPGO, and PDO 
have little effect on SKJ in this study.

4.1 Relationships Between SKJ Groups in 
the NWP With Climate Patterns
As mentioned earlier, three groups migrated from distinct areas 
constitute most SKJ in the NWP (Figure 1). Because of the least 
contribution of the northeast Pacific SKJ catch to its catch in 
Pacific during 1972–2019 (Figure S1), and the scared long-scale 
SKJ movement between the northeast Pacific and NWP through 
the conventional tagging (Moore et  al., 2020), it is assumed 
that the SKJ from the northeast Pacific (i.e., group 1) hardly 
contributes to the SKJ in the NWP. Besides, no causal linkage 
between NPGO and SKJ in this paper supports the assumption 
from another perspective (Figure S6).

In contrast, the second group from the western tropical 
Pacific is considered as an important component of the SKJ in 
the NWP. SKJ catch in the western tropical Pacific has ranked 
the first since 1950 (Figure S1) and was significantly related 
to ENSO events (Lehodey et  al., 1997). During the ENSO 
episodes, the SKJ purse seine fishery in the western tropical 
Pacific showed profound displacement between the warm 
and cold pools with catch fluctuations. Tag-release programs 
and otolith studies showed that there are one or two various 
migratory routes between the NWP and western tropical 
Pacific (Arai et al., 2005; Kiyofuji et al., 2019). However, the 
ONI makes a weak linkage with SKJ in this study. Accounting 
for a weaker effect on the high-latitude extratropical area 
(like the NWP) of ENSO than on low-latitude tropical areas 
(Alexander et  al., 2004), ENSO records may be faded in the 
NWP, which may have little effect on SKJ. Besides, recent 
studies found that the fluctuation of SST in the western tropical 
Pacific is largely in phase with AMO on the decadal scales 
through atmospheric teleconnection and the interaction of 
air-ocean dynamics (Sun et al., 2017; Sun et al., 2021). When 
the Atlantic is in a positive phase with positive SST anomalies, 
so is the western tropical Pacific, which fitly overlaps and 
affects the migratory environment of the second group to 
reach the NWP area (Figure  11). Therefore, the production 
of the second migratory group may largely depends on the 
spawning parents linked with ENSO in the western tropical 

TABLE 2 | Significant covariates degrees of freedom goodness of fit (Akaike Information Criterion, AIC), model performance with deviance explained in percentage and 
regression coefficient R-sq. adjusted are indicated for identified threshold year GAM models.

Model Covariates Degrees of freedom significance AIC Deviance explained R2 adjusted GCV

Year <=r AMO 1 <0.01** 106.952 74.1% 0.727 0.092528
Year>r AMO 1 >0.05 455.0047 37.8% 0.356 0.21798

**means coefficients significant at 0.01.

BA

FIGURE 5 | Results of the ECCM applied to the nonlinear dynamics of CPUEda and AMO at yearly scales (panel a) and month scales (panel b). The black bar 
shows the mean cross map skill from AMO to skipjack at various time lags, where the units of (A, B) are year and month, respectively. Specifically, the vertical lines 
in panel B show the standard deviations over 1000 random libraries.
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Pacific, while the survival rate of the second group migrated 
to the NWP is most likely to rest on the AMO.

More notably, the subsurface layer of the NWP was evidenced 
to correlate with the AMO without lag (Wu et  al., 2020b). 
Since the 21st century, studies have indicated that the AMO 
dominates the multidecadal variability of the Atlantic Ocean 
and exhibits significant footprints on transoceanic basins, 
especially on the Pacific Ocean, which reflects in modulating 
the variability of Pacific prominent modes (such as ENSO, 
PDO et al.) and inducing the synchronous response of physical 
environment (such as the anomalous warm of western Pacific 
SST, the increased upper ocean heat content and the intensified 
tropical cyclones during positive AMO phases) (Enfield et al., 
2001; d’Orgeville & Peltier, 2007; Levine et al., 2017; Sun et al., 

2017; Wang et al., 2017; Gong et al., 2020; Sun et al., 2020; Wu 
et  al., 2020b; Zhang & Delworth, 2007). Moreover, a novel 
discovery is that the AMO played a decisive role in SKJ in the 
NWP during 1972–2019, which is consistent with the notion 
that the AMO could explain fish catch variability in the NWP 
by dominating the subtropical mode water (Figure  11) (Wu 
et al., 2020b).

Indeed, an obvious and significant causal affection of the 
AMO on SST in the NWP is identified in this paper using 
CCM and ECCM techniques (Figures 9A,B), due to the 
negative optimal SST lag caused (predicted) by the AMO and 
the positive optimal AMO lag caused by SST (Figure  9B), 
which indicates that SST should be the essential oceanographic 

FIGURE 6 | Model comparisons between stationary and non-stationary 
models

FIGURE 7 | Generalized cross-validation score (GCV) paths of the best fitted 
models by TGAM. The red line represents the threshold year characterized 
by concave GCV paths

FIGURE 8 | Fitting relationships between the AMO and SKJ CPUE in various eras using the best-fitted models. The left and right panels represent the first era 
before 1991 and the second era posterior 1991, respectively.
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medium between the AMO and SKJ, and which is further 
verified using CCM test between SST and CPUEda who showed 
an obvious convergent trait of the prediction skill from CPUEda 
to SST (Figure  10). Accordingly, the SKJ inhabiting in the 
NWP, especially for the residents (i.e., the third group) and the 
immigrants from the second group, are possibly forced by the 
AMO through SST (Figure 11).

Previous studies have shown that environmental changes 
caused by climate variability could affect tunas in recruitment, 
spawning, distribution, etc. For instance, SST anomaly concurred 

with ENSO events in the Indian Ocean could reflect in the tuna 
fishery (e.g., yellowfin tuna and bigeye tuna) in the Indian 
Ocean (Syamsuddin et al., 2013; Báez et al., 2020). Although 
PDO is the proxy of SST anomaly signals in the north Pacific, 
this study shows that PDO makes no causality with SKJ in 
the NWP, which is consensus with the point that the NWP 
ecosystem could not be completely explained by PDO, of 
which many species fluctuations could not be associated with 
PDO yet on a decadal scale (Tian et al., 2014; Ma et al., 2020; 
Wu et al., 2020b; Ma et al., 2021). Conversely, in this study, SKJ 
in the NWP over 1972–2019 is caused by the AMO through 
SST. The plausible explanation for this is that SST variation 
first affects the habitat suitability of SKJ and second triggers 
the SKJ relative abundance anomalies. Similar phenomena 
was confirmed in Atlantic bluefin tuna in the north Atlantic 
and SKJ in the tropical Pacific (Lehodey et al., 1997; Faillettaz 
et al., 2019). However, the fishery ground covered the whole 
study area without obvious changes all the way in this paper. 
Therefore, the possible explanation is that the SST variability 
involves in the growth and development of SKJ during 
its lifetime. SKJ could adopt various breeding strategies 
depending on the external SST; it could spawn all over the year 
in the tropical ocean, but spawn seasonally in the extratropical 
water (Ashida, 2020). Moreover, the early-life ontogenetic SKJ 
development (juvenile) is positive and significantly related to 
SST (Ashida et  al., 2018) too. Combined with the maturity 
age (1.1–1.6 year) of SKJ in the NWP (Ashida, 2020), and the 
optimal causal relationship between the AMO and SKJ at the 
lag of 15 months (Figure  5B), this paper implies the AMO 
effects on the recruitment process of one generation of SKJ 
cohort through SST. Specifically, the second group leading a 
bold and long-distance migration for feeding ground in the 
NWP (Moore et  al., 2020) would experience SST variability 
caused by the AMO in their migratory processes, which 
directly influenced their survival and growth rates. On the 

BA

FIGURE 9 |  Results of the CCM and ECCM applied to the nonlinear dynamics of SST and the AMO. (A) Results of the CCM without time lag, (B) Results of the 
ECCM at different lags (l = 1 month). The blue lake lines indicate that the AMO causes SST; the bright orange lines represent the opposite effective directions from 
SST to AMO. The vertical lines in panel b represent the optimal lag times by the best prediction skills at varying interaction directions, respectively

FIGURE  10 | Results of the CCM applied to the nonlinear dynamics of 
CPUEda and SST. The blue lake and bright orange lines indicate the 
effect of SST on CPUE and the opposite effective direction from CPUE to 
SST, respectively. The shadows represent the 95th percentile of the results 
of the CCM for the surrogate data versus the original effect time series.
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other hand, the fecundity of the local spawning cohort and the 
subsequent growth and development rate of SKJ would depend 
on SST controlled by the AMO. Consequently, the early life of 
SKJ in the NWP is affected by the AMO through SST.

4.2 Possible Explanations for the 
Nonstationary Relationship Between the 
AMO and SKJ
TGAM results show that SKJ CPUE correlates linearly with 
AMO at the former era (1972–1991), while the correlation 
disappears at the latter era (1992–2019). Although the most 
famous and climatic regime shift documented in the North 
Pacific Ocean was in 1976–1977, recent major alterations 
in some components of the North Pacific ecosystem were 
identified a further shift in 1989 in the northeast Pacific 
and a nonlinear and non-stationary with threshold years in 
the 1990s in the NWP, respectively (Hare & Mantua, 2000; 
Litzow et  al., 2018; Ma et  al., 2021). This time-dependent 
nonstationary responses between AMO and SKJ occurred 
around the early 1990s as well, which may indicate a complex 
ecological effect of the ecosystem. As the opportunistic feeder, 
SKJ could consume various preys, such as squid, crustaceans, 
and some mackerel or perciform fish during migration (Aoki 
et  al., 2017). Such region-dependent feeding could probably 
moderate the down-top biotic effect on SKJ through the food 
chain, while the inverse control from predators (like sharks 
and billfishes in the eastern tropical Pacific Ocean, (Hunsicker 
et al., 2012; Chang et al., 2022) is unclear in the NWP.

Studies to date have explored the teleconnection 
mechanism between the AMO and Pacific ocean through 
the atmosphere bridge and ocean-atmosphere interaction, 
of which the direct oceanographic variations in the western 
pacific surface triggered by the AMO is SST (Sun et  al., 
2020; Wu et  al., 2020b), In this sense, this paper explored 
the causation between local SST and SKJ, which is consistent 
with many studies that highlighted the importance of SST on 
tuna abundance (Zainuddin, 2011; Tangke et al., 2020; Salazar 

et al., 2021). The distinct relationships between the AMO and 
SKJ during two eras in this study may respond to the various 
stages in the thermal niche response curve of SKJ with warmer 
SST. SST before 1991 may be within the ascending stages 
of the niche response curve, which is slowly more suitable 
for the SKJ growth. While SST since 1991 could match the 
gentle slope stages of the curve (relative decrease but still in 
positive). Apart from SST, other biotic factors (such as Mixed 
layer depths and Chlorophyll-a) could also represent the 
primary habitat environment in defining SKJ suitable habitat 
(Mugo et al., 2020; Salazar et al., 2021). Although no obvious 
shift of the SKJ fishery ground is found during different eras 
in current study, future work is needed to explore the multi-
effect from environment factors on the SKJ distribution and 
abundance. Additionally, the temporal evolution of AMO 
has shown a trend of increasing volatility in recent decades, 
indicating that the AMO is non-stationary (Beyraghdar 
Kashkooli & Modarres, 2020). Chen et al. (2019)reported that 
modulating effect from the AMO on the relationship between 
wintertime North Pacific oscillations and ENSO is different 
during various AMO episodes, which may further show the 
nonstationary relationship between the AMO and Pacific. 
Therefore, the nonstationary trait between AMO and SKJ 
may be attributed to a comprehensive process coupled with 
the AMO variability, the SKJ population dynamics affected by 
biotic and abiotic factors.

4.3 The Strength and Extension of the 
CCM Technique
Compare with the spearman correlation results (Table S1), 
CCM method shows a stronger ability for determining a distinct 
causation between SKJ and climate variability (AMO) in this 
study, and provides the key evidence of the causation direction 
from AMO via SST effecting on SKJ. This is consistent with 
the notion that the CCM is superior to traditional correlation 
techniques on determining the caused signal with big datasets 
(Chang et  al., 2017). With the high development of observed 
tools and computer science, big ocean data are birthed and how 

FIGURE 11 | Schematic process of SKJ in the Northwest Pacific affected by the AMO. The blue dotted line shows the study area in this paper. The orange patches, 
lines, and arrows show the possible affection process in the western pacific caused by the AMO in the north Atlantic (Sun et al., 2017; Wu et al., 2020b). SNP means 
subtropical North Pacific, WTP means western tropical Pacific, STMW means subtropical mode water in the study area.
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to mine the potential information under these common datasets 
becomes a hot issue. The CCM method is of great benefit to 
prompt this analysis. Moreover, the extension of CCM methods 
involved with multiple factors, such as Multivariate CCM and 
Multiview CCM (Ye & Sugihara, 2016; Hu et al., 2021) are also 
recommended understanding the comprehensive mechanism 
between organisms with climate variability and local physical 
factors in the ecosystem.

This study proposes that the trans-basin interaction between 
the AMO and Pacific Ocean has affected the NWP SKJ fishery 
at 15 months in advance. Similar phenomena occurred in the 
Indian ocean as well. Such as, the tuna fishery in the Indian ocean 
could suffer an obvious decline  were out of phase with PDO 
(Báez et al., 2020; Wu et al., 2020a). Tunas or other large pelagic 
fish (such as swordfishes, sharks) who migrated at the meso-large 
spatial scale experiences large environmental variation during its 
whole life history, large-scale climate indices that combine many 
physical variables would likely serve as an appropriate proxy for 
explaining and predicting the long-term abundance variation of 
the species. With the deeper understanding of the teleconnection 
pattern among oceans and atmosphere under the global climate 
change, the trans-basin effect of climate patterns on the prediction 
of the large-scale migratory species should be highlighted as the 
same as the basin climatic oscillations in the future.
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