AUTHOR=Hao Peng , Li Shuang , Yu Chengcheng , Wu Gengkun TITLE=A Prediction Model of Significant Wave Height in the South China Sea Based on Attention Mechanism JOURNAL=Frontiers in Marine Science VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.895212 DOI=10.3389/fmars.2022.895212 ISSN=2296-7745 ABSTRACT=

Significant wave height (SWH) prediction plays an important role in marine engineering fields such as fishery, exploration, power generation, and ocean transportation. Traditional SWH prediction methods based on numerical models cannot achieve high accuracy. In addition, the current SWH prediction methods are largely limited to single-point SWH prediction, without considering regional SWH prediction. In order to explore a new SWH prediction method, this paper proposes a deep neural network model for regional SWH prediction based on the attention mechanism, namely CBA-Net. In this study, the wind and wave height of the ERA5 data set in the South China Sea from 2011 to 2018 were used as input features to train the model to evaluate the SWH prediction performance at 1 h, 12 h, and 24 h. The results show that the single use of a convolutional neural network cannot accurately predict SWH. After adding the Bi-LSTM layer and attention mechanism, the prediction of SWH is greatly improved. In the 1 h SWH prediction using CBA-Net, SARMSE, SAMAPE, SACC are 0.299, 0.136, 0.971 respectively. Compared with the CNN + Bi-LSTM method that does not use the attention mechanism, SARMSE and SAMAPE are reduced by 43.4% and 48.7%, respectively, while SACC is increased by 5%. In the 12 h SWH prediction, SARMSE, SAMAPE, and SACC of CBA-Net are 0.379, 0.177, 0.954 respectively. In the 24 h SWH prediction, SARMSE, SAMAPE, and SACC of CBA-Net are 0.500, 0.236, 0.912 respectively. Although with the increase of prediction time, the performance is slightly lower than that of 12 h, the prediction error is still maintained at a small level, which is still better than other methods.