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Owing to climate warming and human activities (irrigation and reservoirs), sea level rise
and runoff reduction have been threatening the coastal ecosystem by increasing the soil
salinity. However, short-term sparse in situ observations limit the study on the response of
coastal soil salinity to external stressors and thus its effect on coastal ecosystem. In this
study, based on hydrological connectivity metric and random forest algorithm (RF), we
develop a coastal soil salinity inversion model with in situ observations and satellite-based
datasets. Using Landsat images and ancillary as input variables, we produce a 30-m
monthly grid dataset of surface soil salinity over the Yellow River Delta. Based on the
cross-validation result with in situ observations, the proposed RF model performs higher
accuracy and stability with determination coefficient of 0.89, root mean square error of
1.48 g·kg-1, and mean absolute error of 1.05 g·kg-1. The proposed RF model can gain the
accuracy improvements of about 11–43% over previous models at different conditions.
The spatial distribution and seasonal variabilities of soil salinity is sensitive to the changing
signals of runoff, tide, and local precipitation. Combining spatiotemporal collaborative
information with the hydrological connectivity metric, we found that the proposed RF
model can accurately estimate surface soil salinity, especially in natural reserved regions.
The modeling results of surface soil salinity can be significant for exploring the effect of
seawater intrusion and runoff reduction to the evolution of coastal salt marsh ecosystems.

Keywords: coastal wetlands, soil salinity, random forest algorithm, hydrological connectivity metric,
remote sensing
1 INTRODUCTION

A coastal ecosystem locates in the transitional zone between land and sea, which is one of the most
vulnerable areas on Earth. Human disturbance (including coastal reclamation and aquaculture) and
the frequent occurrence of extreme climate change (including sea level rise and coastal erosion)
caused the increased deterioration of coastal salt marsh wetlands (Barbier et al., 2011; Ma et al.,
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2014; Wei et al., 2015; Rodriguez et al., 2017). According to the
estimation of Barbier et al. (2011), in recent decades, over 50% of
salt marshes, 29% of seagrasses, and massive seaweed beds have
disappeared from the earth. Thus, in the context of global
changes, the response and feedback mechanism of coastal
ecosystems is one of the focuses of climate change and
ecological research.

Stress factors, such as moisture content, salinity, nutrients, and
pollutants, may have an important influence on the salt marsh
ecosystem. Soil salinity is one of the key factors in the evolution
process of coastal salt marsh ecosystems (Davis et al., 2019; Tully
etal., 2019;Wilsonetal., 2019).Generally, surface soil salinity canbe
affected by multiple environmental factors, such as vegetation
pattern, meteorology (e.g., temperature and rainfall), and
topography (e.g., terrain attributes) as well as biophysics (e.g.,
evapotranspiration) (Allbed et al., 2014; Scudiero et al., 2015;
Peng et al., 2019). However, in coastal areas, freshwater input and
sea level change can be definitely the dominant factors that modify
the salinity of the soil (Cui et al., 2016;Wanget al., 2016;Wanget al.,
2017; Jin et al., 2019;Mahmoodzadeh andKaramouz, 2019; Pereira
et al., 2019). The interaction of the runoff and saltwater alters the
distribution of soil salinity (Zhou and Li, 2013; Yao et al., 2014;
Herbert et al., 2015; Russak et al., 2015; Rossetti and Scotton, 2017),
further affecting the local ecosystem structure and function by
interfering the biogeochemical cycle, such as carbon, nitrogen,
and phosphorus (Herbert et al., 2015; Pereira et al., 2019). Thus,
to reveal the response and feedback to anthropogenic activities and
climate change in estuarine wetland ecosystem, it is critical to
explore the temporal and spatial distribution characteristics of
salinity in the surface soil of coastal salt marshes.

However, for current studies, themost limiting factor is the lack
of long-term, high-quality, and large-scale salinity observation
methods. Traditionally, data on salinity is mainly obtained from
in situ sampling and laboratory measurements to reveal the salinity
distribution characteristics of a single moment in time (Yu et al.,
2014; Bai et al., 2016; Contreras-Cruzado et al., 2017). The sampling
method can directly determine the relationships between salinity
and environmental factors in the surface soil of salt marshes.
However, due to the spatial heterogeneity of soil salinity, in situ
samplingdata often lack spatial representation andaredifficult tobe
applied on a regional scale (Yu et al., 2014). In time scales, soil
salinity in coastal salt marshes can vary with seasons and differ
among years (Contreras-Cruzado et al., 2017). Therefore, the
traditional in situ observations cannot fully represent the
spatiotemporal variation of salinity distribution.

Currently, sensors with moderate or high spatial and temporal
resolution (e.g., aerial photographs, satellite and airborne
multispectral sensors, microwave sensors, video imagery, and
airborne geophysical and hyperspectral sensors) make it possible
to monitor soil salinization by means of remote sensing in
combination with soil salinity measurements (Metternicht and
Zinck, 2003; Scudiero et al., 2015; Peng et al., 2019). Many studies
have demonstrated that soil spectral reflectance was highly
correlated with soil salinity (Peng et al., 2014; Ge et al., 2019). To
establish this relationship, previous studies have developed a series
of regression models of salinity or electrical conductivity based on
Frontiers in Marine Science | www.frontiersin.org 2
raw remote sensing data, such as amultiple linear regression (MLR)
model based on the canopy response salinity index (CRSI)
calculated from multi-year Landsat 7 ETM+ canopy reflectance
data (inSan JoaquinValley,CA,USA; Scudieroet al., 2015), apartial
least squares regression (PLSR) model on Landsat 8 OLI data (in
Ebinur Lake wetland, China; Liang et al., 2019), and a
geographically weighted regression (GWR) model (in Heihe River
Basin, China; Yang et al., 2019). These studies proved that the soil
salinization estimation based on remote sensing could provide
retrospective salinity data with high quality, wide coverage, and
low cost.

Current satellite-based salinity estimation approaches
nevertheless produce significant errors, especially for coastal
wetlands. The alternate submerging of the overlapping zone
between permanent land and permanent water (Mentaschi
et al., 2018) due to the interaction of tides, waves, and rivers
results in rapid changes of soil salinity. A number of salinity
estimation studies have taken the effects of general factors (i.e.,
meteorology, topography, vegetation, etc.) into consideration
(Allbed et al., 2014; Scudiero et al., 2015; Peng et al., 2019).
However, coupling studies on the convergence mechanism of
saltwater and freshwater in coastal wetlands are still weak, which
only involve some common hydrological factors such as
groundwater level and soil moisture content (Fan et al., 2012;
Taghizadeh-Mehrjardi et al., 2014). Furthermore, most recent
studies have focused on a single time period, ignoring seasonal
differences (Hong et al., 2011; Wang et al., 2019) and implicitly
assuming that the distribution of the present vegetation best
reflects the present soil salinity conditions (Cho et al., 2018).
Vegetation distribution and landform do not vary synchronously
with variation in environmental conditions. Therefore, this
assumption has limited the findings to unique inversion times
and time delays (Lee et al., 2003; Cho et al., 2018).

In recognition of this problem and to support the study of
coastal wetland ecosystem evolution, the present study utilizes a
machine-learning algorithm (i.e., random forest algorithm) to
generate a soil salinity dataset with a high spatial resolution and a
long time series by incorporating a hydrological connectivity
metric, remotely sensed spectral information about vegetation
and soil, terrain attributes, and meteorological conditions.

A multivariate random forest model is developed to estimate the
30-m monthly soil salinity distribution over the Yellow River Delta
during theperiod2006–2018, considering all of the above-mentioned
situations. The model performance is assessed by comparing the
results with the records of MLR-, GWR-, and PLSR-generated soil
salinity (Figure 1). Prediction accuracy is evaluated by 10-fold cross-
validation (CV) statistics, and two variable importance measures are
implemented to examine the impact of each predictor on soil salinity
estimation on a regional scale.
2 DATASETS AND PREPROCESSING

2.1 Study Area
Our study was conducted in the Yellow River Delta (hereafter
referred to as YRD; 37°24′44″–38°08′51″ N, 118°11′28″–119°17′
May 2022 | Volume 9 | Article 895172
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30″ E) (Figure 2). The delta is located in the interlaced zone
between the Yellow River estuary and the Bohai Sea, which is
widely recognized as one of the most intact, most extensive, and
youngest preserved wetland ecosystems. Compared with other
international important wetlands, the YRD has few human
activities (Cui et al., 2016). With the establishment as nature
reserve of the Yellow River Delta, it provides a typical model for
us to study the response of the formation, evolution, and
development of newly formed estuarine wetland ecosystems to
global changes. The YRD includes nature reserves (hereafter
referred to as NR) with few anthropogenic activities and
industrial and agricultural areas (hereafter referred to as IAA)
with wide and profound anthropogenic activities (Figure 2D).
Frontiers in Marine Science | www.frontiersin.org 3
This contrast provides a reference for an analytical study of the
properties of soil salinity distribution in different types of coastal
wetland ecosystem.

The long-term monitoring and research program in the YRD
based on the national experimental station provided a profound
understanding of the process and mechanism of the freshwater
and saltwater confluence, the micro-topography, the vegetation
pattern, and the soil salinity distribution in this region. The
freshwater from the river and precipitation and the saltwater
from the ocean meet and merge both regularly and irregularly in
this area, which directly affect the distribution of soil salinity (Cui
et al., 2016). Due to the erosion by the river and the deposition of
sediment, the topographical features vary over the area,
FIGURE 1 | Structure and specific schematics of the random forest model based on hydrological connectivity metric. (A) The model benefited from rich information
of multi-resource data (including the remote-sensed spectral data, terrain attributes, meteorological data, temporal information, and hydrological connectivity metric).
(B) The constructed random forest model integrated output results of all decision trees based on weighted average mechanism. (C) The model obtained the best
estimation of surface soil salinity of each pixel.
May 2022 | Volume 9 | Article 895172
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including high and flat grounds, marsh, and tidal flat formed by
the river (Wu et al., 2019). The topography differences can
indirectly affect the soil salinity by affecting the water content
and evaporation from the surface soil (Allbed et al., 2014).

Salt-tolerant vegetation is widespread in the study area
(Figure 2C), such as Robinia pseudoacacia, Spartina alterniflora,
Phragmites communis, Tamarix chinensis, and Suaeda salsa. Some
of the vegetation can relieve soil salinization by absorbing salt
(Flowers and Colmer, 2015). The YRD has a temperate continental
monsoon climate associated with a rainy season from June to
September. The annual mean evaporation is greater than the
annual mean precipitation, which is conducive for salt rising from
underground water to the soil surface (Wu et al., 2017).

In addition, a very large quantity of observational salinity data
has been accumulated, providing an excellent database in
support of the study.

2.2 Sampling Campaigns and
Laboratory Measurement
Twenty-nine field investigations were conducted from 2006 to
2019, and a total of 1,135 mixed topsoil samples were collected at
Frontiers in Marine Science | www.frontiersin.org 4
various depths up to 10 cm. The latitude, longitude, and
elevation of each sampling site were recorded by a handheld
GPS device. The soil samples were sealed in a Ziploc bag to
prevent moisture loss and then analyzed in the laboratory.

Soil samples located within the same pixel from Landsat-7
ETM+ or Landsat-8 OLI images were re-sampled as single valid
samples. A total of 831 valid samples were collected in this way
from NR and 304 valid samples from IAA (Supplementary
Table S1). Stones and plant roots were removed, then air-dried,
ground, and sieved with a 0.2-mm mesh. Soil salinity was
determined by measuring the electrical conductivity (EC) in
the soil saturation extracts in the laboratory (Richards, 1954).
The conversion relationship between soil salinity and EC was
determined by an in situ observation dataset (Supplementary
Figure S1).

2.3 Remote Sensing Image and
Data Processing
A total of 88 Landsat-7 ETM+ or Landsat-8 OLI images acquired
from 2006 to 2018 were selected, where cloud cover was less than
10% (Supplementary Table S2). Six spectral bands in the visible
FIGURE 2 | Location of the Yellow River delta, China. (A) Map of China, (B) digital elevation map of Shandong, (C) land use cover types for 2016 from the Landsat
8 OLI image at 30-m spatial resolution, and (D) sampling points (red dots) in the Yellow River delta.
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and infrared wavelengths from both satellites (Band Blue, Green,
Red, NIR, SWIR1, and SWIR2), with a grid resolution of 30 m,
were used in the study. Fast Line-of-sight Atmospheric Analysis
of Spectral Hypercubes software was used to implement
radiation and atmospheric corrections on all remote-sensing
images to minimize atmospheric scattering.

To reduce data dimensionality and improve the accuracy of
extracted information, principal component analysis and
tasseled cap transformation were implemented on the
corrected images to provide the correction matrix. To obtain
the spatial and temporal distribution of freshwater sources (i.e.,
the Yellow River and freshwater reservoirs) and saltwater sources
(i.e., coastline, tidal creeks, and aquaculture ponds) from 2006 to
2018 (Figure 2C), an initial outline of the waterbody was
extracted based on normalized difference water index (Xu,
2006), and fine extraction was conducted by visual
interpretation combined with the corresponding image.

In addition, to clarify the land use pattern of the study area,
support vector machine modeling was used to classify land use
with the validated kappa coefficient of 0.97 in the delta
(Figure 2C). Several vegetation indices and salinity spectral
indices were also computed (Supplementary Table S3).

2.4 Obtaining the Terrain Attributes
Terrain attributes are the most important surface parameters
influencing the salt distribution of topsoil and determine the
evaporation, infiltration, and migration of the surface water
(Abdelkader, 2011; Taghizadeh-Mehrjardi et al., 2014; Fan et al.,
2016). The 30-m ASTER global digital elevation map used in this
study was obtained from the National Aeronautics and Space
Administration. A total of 18 terrain attributes were calculated
using the Automated Geoscientific Analyses System and
Geographic Information System for a 30-m digital elevation model
corrected and filled with depressions (Supplementary Table S3). A
30 × 30-m grid was adopted in the model to match the spatial
resolution of the Landsat image and soil landscape analyses.

2.5 Meteorological Data
The meteorological data used in this study was collected from
records at the field observation station. Seven meteorological
quantities at the resolution of 0.125° × 0.125° were measured
(Supplementary Table S3), including 2 m air temperature, TEM
(K); total precipitation, PRE (mm); ground surface temperature,
GST (K); 10 m U/V wind components (m·s–1); relative humidity,
RHU (%); hours of sunlight, HS (h); and surface atmospheric
pressure, RSP (hPa). Wind speed, WS (m·s–1), and wind
direction, WD (°), are calculated using the vector synthesis
method (Chuantao and Dinghua, 1997). All meteorological
quantities used in this study are monthly mean values.
3 METHODOLOGY

3.1 Correlation and Collinearity Diagnosis
Related covariates of remotely sensed spectral information of
vegetation and soil from Landsat-8 OLI or Landsat-7 ETM+,
Frontiers in Marine Science | www.frontiersin.org 5
terrain attributes, and meteorological attributes were introduced
to construct two types of models for NR and IAA separately
(Supplementary Table S3). Variables having positive or negative
effect on the surface salinity at a significant level (P < 0.05;
Supplementary Tables S4, S5) were selected from all covariates
to construct the models. Additionally, it was essential to take into
account the multi-collinearity of seemingly independent
variables to avoid information duplication. The variance
inflation factor (VIF) method was chosen to diagnose
collinearity and further select the variables. In this study, to
select variables with low multi-collinearity as possible, 21
variables were selected initially in the NR (i.e., WIN, PRE,
RHU, SSD, TEM, CRSI, PC2, PC3, S1, S4, S5, S7, TCfif, TCfou,
CNBL, CD, CI, CSC, TWI, VD, and NDVI) (Supplementary
Table S6), and 10 variables were selected initially in the IAA (i.e.,
SSD, PC1, S2, S4, SI1, TCbri, TCfif, TCgre, CNBL, and GEO)
(Supplementary Table S7) for model fitting.

3.2 Random Forest Model
3.2.1 Random Forest Model Based on Hydrological
Connectivity Metric
The traditional random forest first systematically proposed by
Breiman is a very flexible and efficient machine-learning
algorithm (Breiman, 2001). It takes the decision tree as the
basic unit and integrates multiple decision trees by ensemble
learning theory (in this study, adopting the bagging approach).

Generally, each decision tree is an independent regression
machine with corresponding regression results in input samples.
The random forest model integrates the regression results of all
constructed decision trees and then weight-averages all results as
the best prediction output [H(x)] (see Equation 1 for details).
Bagging efficiently tackles a large number of input samples with
high-dimensional features without reducing dimensionality to
achieve excellent accuracy. Each decision tree selects training
samples and features in the growing process randomly based on
bootstrap theory, which makes a random forest model efficiently
avoid overfitting and gives a good anti-noise capacity. The
generating process of each tree (h(x)) follows Hastie (Hastie
et al., 2009).

For each output decision tree (hi(x)) ∈ R,

H(x) =
1
To

T
i=1wihi(x) (1)

where wi is the weighted value of each decision tree hi(x).
Generally wi ≥ 0,oT

i=1wi = 1; T is the number of decision trees.
As one of the most commonly adopted machine-learning

models at present, the use of the traditional random forest model
has been previously reported in different research fields.
However, it has rarely been applied to soil salinity inversion on
a regional scale, especially in coastal wetlands. More importantly,
studies based on the traditional random forest model have not
considered the key effects of temporal information and saltwater
and freshwater hydrological changes on soil salinity (Vermeulen
and Van Niekerk, 2017; Yu et al., 2019; Wei et al., 2020). Soil
salinity is most significantly characterized by its spatial and
temporal heterogeneity and hydrological sensitivity, and many
May 2022 | Volume 9 | Article 895172

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Sui et al. Salinity Estimation Over Coastal Wetlands
efforts have focused on the development of regression models to
solve these problems [e.g., MLR model (Scudiero et al., 2015),
GWR model (Yang et al., 2019), and PLSR model (Liang
et al., 2019)].

To improve the accuracy of soil salinity inversion, a random
forest model based on hydrological connectivity metric was
developed in this study. The schematic diagram of the
proposed RF model is illustrated in Figure 1. This model
makes use of rich information contained in certain auxiliary
variables, such as the remotely sensed spectral data on vegetation
and soil as well as the terrain and meteorological attributes. It
also benefits from the hydrological connectivity metric extracted
and calculated as the minimum Euclidean distance of each pixel
from the freshwater body pixel and the saltwater body pixel as
well as the temporal information of ground-based salinity
measurements on a monthly scale (Dt).

The hydrological characteristics of pixel affected by
freshwater (Df) and saltwater (Ds) sources are expressed by the
following equations:

Df = min
xf ,xfð Þ∈Rf

x0 − xf
� �2+ y0 − yf

� �2h i1
2

(2)

and

Ds = min
xs ,xsð Þ∈Rs

x0 − xsð Þ2+ y0 − ysð Þ2� �1
2, (3)

where (x0, y0), (xf, yf) and (xs, ys) were the metric latitude and
longitude coordinates of the target pixel, freshwater source pixel,
and saltwater source pixel, respectively; Rf and Rs were
collections of all fresh and saltwater source pixel metric
coordinates separately.

Predictions with low accuracy may result from a single model
which attempts to consider all factors driving soil salinity in
different types of coastal wetlands. Thus, the study area was
divided into NR (dominated by natural factors) and IAA
(dominated by anthropogenic factors) according to the land
use coverage map in Figure 2C. Two sub-models were
developed by applying the random forest algorithm to NR and
IAA separately.

For NR:

SAL ¼ f WIN, SSD,NDVI, PC2, S1, S4, TCfou, CNBL, CD, CI, TWI, VD,Df , Ds, Dtð Þ½ �

For IAA:

SAL ¼ f PC1, S2, S4, SI1, TCbri, TCfif , CNBL, Df , Ds, Dtð Þ½ �

Based on Python programming language, the two sub-models
were each trained by splitting the dataset into two subsets on the
basis of random sampling. Each subset is divided into 10 parts,
nine of which were rotated to train and build the model, and one
was used to validate the performance of the model. Finally, a
dataset comprised of the prepared input variables was utilized to
the trained model. The output was surface soil salinity estimation
over a 30 × 30-m grid at 0–10-cm depths. The methodology flow
chart of the models is shown in Figure 3.
Frontiers in Marine Science | www.frontiersin.org 6
3.2.2 Permutation Importance and Variable Selection
The random forest model provides the permutation importance
measures for all predictor variables and an estimation of the
importance of each predictor variable and can determine the
mean difference between the predictor accuracy of each tree (Hu
et al., 2017) before and after the random permutation of
predictor variables. Higher estimated importance values
indicate stronger correlations between predictor variables and
response variables (Strobl et al., 2008). In this study, the random
forest model provided two types of variable importance measure
methods [the increase in MSE and node purities (hereafter
referred to as Inc.MSE and Inc.NP, respectively) (Hu et al.,
2017)] in the training process to improve the prediction
accuracy. Since not all satisfied variables of condition can be
used to predict the output variable, some unrelated variables may
reduce the accuracy of the model. Thus, the variable selection
was significant to eliminate the unrelated variables to improve
the accuracy of the model and avoid overfitting. In general,
models with less variables tend to be more interpretable; thus, a
grid research method was used in this study on Linux server
(Batten et al., 2019). First, based on the default parameter values,
the best variable combination is identified by comparing the 10-
fold cross-validation results of the models (i.e., the RF, MLR,
PLSR, and GWR models) with different variable combinations
(for the best variable combinations of the four models, see
Supplementary Table S8 for details). Then, we determine the
best parameter combinations using the same approaches based
on the best variable combination.

3.3 Contrast Models
The MLR model is a traditional parameter regression model,
expressed as detailed below:
For NR:

SAL1 = a1WIN + a2PRE + a3RHU … +anDt + b, (4)

For IAA:

SAL2 = a1SSD+a2S2 + a3S4 +…anDs + b, (5)

where a1, …, an are the regression coefficients, and b is
the intercept.

The GWR model allows a parameter estimated from a linear
regression model to vary locally (Yu et al., 2020). This can reduce
the change in relationship of variables due to geographical
location change.

The GWR model is expressed as detailed below:
For NR:

SAL1l = b0 i,jð Þ + b1 i, jð ÞWIN+b2 i, jð ÞPRE+b3 i, jð ÞSSD +…

+ bn i, jð ÞDt + el , (6)

For IAA:

SAL2l = b0 i, jð Þ + b1 i, jð Þ + SSD+b2 i, jð ÞPC1 + b3 i, jð Þ + SI1

+…bn i, jð ÞDt + el , (7)
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where SAL1 is the soil salinity at location l (i, j), b0 is the intercept,
b1–bn are the slopes for each independent variable, and ϵ is for
the error term.

The PLSR model is the most commonly used method of
building a multi-independent model that can handle data with
strong collinearity and noise and has been widely used in satellite
remote sensing monitoring of soil salinization (Fan et al., 2015;
Peng et al., 2019), expressed as detailed below:
For NR:

SAL1p = f WIN, PRE, RHU, SSD, PC2, PC3, S5,

TCfif ,TCfou, CNBL, CI, CSC, VD,Ds,Dt

0
BB@

1
CCA

2
664

3
775

(8)

For IAA:

SAL2p = f SSD, S2,TCbri, CNBL, GEO,Dsð Þ� �
(9)

3.4 Model Performance Evaluation
In this study, the 10-fold cross-validation approach is selected to
validate soil salinity estimated by the proposed RF model, MLR
model, GWR model, and PLSR model. Moreover, we use four
indexes, i.e., the coefficient of determination (R2), the root mean
Frontiers in Marine Science | www.frontiersin.org 7
square error (RMSE), the mean absolute error (MAE), and the
ratio of performance to deviation (RPD), to evaluate the
performance of the above-mentioned models. A well-
performed model will have higher R2 and RPD values, with
lower RMSE and MAE. Additionally, Pearson’s correlation
coefficient is used to evaluate the sensitivity of the models to
hydrological changes. A model that is sensitive to hydrological
changes will have a high Pearson’s correlation coefficient.
4 RESULTS

4.1 Descriptive Statistics
The results of bivariate correlation analysis (Supplementary
Tables S4, S5) show that all the independent variables used to
fit both models are significantly related to soil salinity, especially
CNBL (r = 0.27, p<0.01), Df (r = 0.21, p < 0.01), and Ds (r = -0.20,
p < 0.01) in the NR and TCfif (r = -0.18, p < 0.01) andDf (r = 0.2, p
< 0.01) in the IAA. Additionally, the multi-collinearity analysis
for variables in both models indicates that, in all cases, the extent
of collinearity is relatively low, with the highest VIF of variables
in NR and IAA sub-models at 11.62 and 5.63, respectively
(Supplementary Tables S6, S7).

The overall descriptive statistics of the final variable datasets
for the NR and IAA sub-models are shown in Supplementary
FIGURE 3 | Flow chart of the methodology used for soil salinity estimation in this study.
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Tables S9, S10. There is significant difference in the statistics of
soil salinity datasets between NR and IAA, and the soil salinity of
both areas show a high spatial variation with variation
coefficients (VC) of 0.99 and 0.81. Moreover, many variables
also show a high spatial variation in more than 50% of the VC,
including Df, Ds,TCfou, NDVI, CD, and CI variables in the NR
sub-model and Df, Ds, and S2 in the IAA sub-model
(Supplementary Tables S9, S10).

Furthermore, a significant seasonal variation occurs in several
of the variables used to fit both models. The average soil salinity
in the NR exhibits large seasonal variations (5.22 g·kg–1 in spring,
5.22 g·kg–1 in summer, 5.89 g·kg–1 in autumn, and 3.40 g·kg–1 in
winter). The NDVI also varies with the seasons, with the highest
value of 0.16 in winter and the lowest value of 0.12 in autumn. In
the IAA, the highest average soil salinity occurs in winter (9.91
g·kg–1) and the lowest (4.94 g·kg–1) in autumn. The seasonal
statistics for all selected variables for both models are shown in
Supplementary Tables S11 and S12.

4.2 Model Fitting and Validation
Figure 4 shows the scatterplots of the fitting results for the
proposed RF model and for currently popular regression
models, including the MLR, GWR, and PLSR models. The same
datasets of NR and IAA are used in all models. In the NR, the
proposed RF model performs relatively well at model-fitting
Frontiers in Marine Science | www.frontiersin.org 8
results (R2 = 0.97, RMSE = 0.75 g·kg–1, and MAE = 0.54 g·kg–1).
The statistical results for the MLR, GWR, and PLSR models are
relatively worse, with lower R2 and higher RMSE andMAE. In the
IAA, the proposed RF model also gives a better fitting result, with
higher R2 (0.94), lower RMSE (1.24 g·kg–1), and lower MAE (0.87
g·kg–1). The fitting results for the MLR, GWR, and PLSR models
are worse, all with R2 <0.75. In conclusion, the random forest
algorithm can give a better performance at training
approximations in bulk data with high-dimensional features
rather than the parametric (MLR) model and the non-
parametric models (GWR and PLSR).

The validation results for the proposed RF model and for the
MLR, GWR, and PLSR models are shown in Figure 5. In the NR,
the validation results of the MLR, GWR, and PLSR models are
bad (R2 = 0.49, 0.78, and 0.46 respectively), whereas the proposed
RF model shows a better performance, with R2 = 0.89, RMSE =
1.48 g·kg–1, MAE = 1.05 g·kg–1, and RPD = 3.06. Compared with
the other three models, the proposed RF model improves the
accuracy by about 11–43%. In the IAA, the proposed RF model
also has good performance, with R2 = 0.67, RMSE = 2.76 g·kg–1,
MAE = 2.07 g·kg–1, and RPD = 1.87. The validation results of the
MLR, GWR, and PLSR models are also worse than the proposed
RF model, with R2 = 0.27, 052, and 0.25, respectively.
Additionally, the predictions of the RF, MLR, GWR, and PLSR
models are less accurate than for NR by 22, 22, 26, and 21%,
A B C D

E F G H

FIGURE 4 | Scatterplots of the model fitting results of the random forest model (A, E), the multiple linear regression model (B, F), the geographically weighted
regression model (C, G), and the partial least squares regression model (D, H). The color represents the density of the point. The black dashed and red solid lines
represent the 1:1 line and the linear regression line, respectively.
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respectively. The fitted curves show that all four models have the
tendency to underestimate the salinity, for all the curve slopes are
<1, while the proposed RF model has the highest slope values
(0.86 in NR and 0.67 in IAA). The comparison illustrates that the
proposed RF model has sufficient accuracy in modeling and
estimating soil salinity due to its ability to consider both
temporal and hydrological connectivity.

4.3 Model Performance Comparison
Among Seasons
The seasonal performance of the proposed RF, MLR, GWR, and
PLSR models, respectively, are compared in this section based on
NR and IAA datasets (Table 1). In spring, the proposed RF
model in NR has the best performance among the five models,
with the highest R2 of 0.83, the lowest RMSE of 1.53 g·kg–1, and
the lowest MAE of 1.09 g·kg–1. In this season, the MLR and PLSR
models give worse validation results with R2 = 0.72 and 0.46,
respectively. The GWR model is the least accurate of the five
models (R2 = 0.07, RMSE = 15.28 g·kg–1, andMAE = 7.28 g·kg–1).
In the IAA, the proposed RF model performs well, with R2 =
0.42, RMSE = 3.35 g·kg–1, and MAE = 2.58 g·kg–1. The
performances of the other three models are inferior, with R2 <0.

For the summer season in both of NR and IAA, the proposed
RF model produces the best results of the five (for NR, R2 = 0.76,
RMSE = 1.27 g·kg–1, and MAE = 0.86 g·kg–1; for IAA, R2 = 0.46,
Frontiers in Marine Science | www.frontiersin.org 9
RMSE = 3.02 g·kg–1, and MAE = 2.38 g·kg–1). The MLR, GWR,
and PLSR models give less acceptable validation results [for NR,
R2 (MLR) = 0.28, R2 (GWR) = 0.61, and R2 (PLSR) = 0.30; for
IAA, R2 (MLR) = 0.18, R2 (GWR) = 0.26, and R2 (PLSR) = 0.12].

For the autumn season, in the NR, the validation accuracy of
MLR, GWR, and PLSR gave a poor performance (R2 = 0.47, 0.72,
and 0.45, respectively). In comparison, the proposed RF model
performance is better (R2 = 0.92, RMSE = 1.42 g·kg–1, and MAE =
0.98 g·kg–1). In the IAA, the proposed RF model and the MLR and
PLSRmodels all perform poorly, withR2 <0. In addition, due to the
distribution of sampling sites and the scarcity of observational data,
the GWR model cannot be constructed in the IAA.

In winter, the performance of the proposed sub-model is the
best of the four models in the NR (R2 = 0.78, RMSE = 1.05 g·kg–1,
and MAE = 0.80 g·kg–1). The validation results of the MLR and
PLSR models (R2 = 0.51 and -2.33, respectively) are both worse
than for the proposed RF model. Moreover, the observational
data in winter for both areas cannot be used again to build the
GWR model in the NR and the four models used in IAA.

The predictions of the proposed RF model overall are more
accurate than for the other three models in each season, except
for autumn and winter in the IAA. Especially in the NR, the soil
salinity prediction accuracy of the proposed RF model is
improved by 11, 15, 20, and 27% at least in spring, summer,
autumn, and winter, respectively.
A B C D

E F G H

FIGURE 5 | Scatterplots of the model cross-validation results of the random forest model (A, E), the multiple linear regression model (B, F), the geographically
weighted regression model (C, G), and the partial least squares regression model (D, H). The color represents the density of the point. The black dashed and solid
lines represent the 1:1 line and the linear regression line, respectively.
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4.4 Spatiotemporal Distribution of
Estimated Salinity
4.4.1 Spatial Distribution of Estimated Salinity
Figure 6 shows that the proposed RF model can provide a
complete 30-m grid spatial coverage of soil salinity, except in
water-covered areas (i.e., aquaculture areas and rivers). The
spatial distributions of the estimated mean salinity using the
proposed RF model at different seasons from 2006 to 2018 in
the NR and IAA of YRD is highly heterogeneous spatially and
varies with time. In the NR, the annual mean salinity from 2006
to 2018 is 5.75 ± 1.73 g·kg–1. Areas with the lowest salinity values
(<4 g·kg–1) are mainly near a freshwater body, such as the river
channel and the freshwater restoration areas (Figure 6A).
However, the soil salinity in the southern and northwestern
NR, in which tidal creeks are densely distributed, is generally
high (>8 g·kg–1; Figure 6A). Moreover, regions of high (>8 g·kg–
1) and low (<4 g·kg–1) salinity have more areas in warm seasons
(Figure 6B) than in cold seasons (November –April; Figure 6C).
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This might suggest the seasonal variation of soil salinity in
the NR.

In the IAA, the annual mean salinity from 2006 to 2018 is higher
than in the NR, with a value of 6.52 ± 1.07 g·kg–1. The regions with
high soil salinity (>8 g·kg–1; Figure 6D) are mainly found near a
saltwater body, mainly the coastline. It was also found that some
urban areas have relatively higher soil salinity, whereas the salinity
near the river channel is generally low (<4 g·kg–1; Figure 6D).
Generally, the soil salinity distribution in the IAA varies less
between warm and cold seasons (Figures 6E, F).

4.4.2 Monthly Variation of Estimated Salinity
The monthly mean salinity of YRD fluctuates with time in
different regions (Figure 7). For the overall study area, the
maximum and minimum soil salinity values appear in January
(mean = 7.56 g·kg–1, s = 3.09) and April (mean = 5.13 g·kg–1, s =
1.95). The monthly variation in the NR also shows a similar
trend, but with more fluctuation. The maximum and minimum
FIGURE 6 | Spatial distribution of the estimated mean salinity from 2006 to 2018 in (A) the nature reserves (NR) all year round, (B) the NR in warm seasons (from
May to October), (C) the NR in cold seasons (from November to April), (D) the industrial and agricultural areas (IAA) all year round, (E) the IAA in warm seasons (from
May to October), and (F) the IAA in cold seasons (from November to April).
TABLE 1 | Statistics for the comparison of seasonal model cross-validation performance.

Spring Summer Autumn Winter
Region Model R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Natural reserve RF 0.83 1.53 1.09 0.76 1.27 0.86 0.92 1.42 0.98 0.78 1.05 0.80
MLR 0.72 1.76 1.38 0.28 2.04 1.51 0.47 3.53 2.78 0.51 1.21 0.99
GWR 0.07 15.28 7.28 0.61 1.69 1.19 0.72 2.56 1.80 \ \ \
PLSR 0.46 2.93 2.32 0.30 2.28 1.66 0.45 3.72 2.86 -2.33 2.57 2.29

Industrial and agricultural area RF 0.42 3.35 2.58 0.46 3.02 2.38 -0.72 2.51 1.71 \ \ \
MLR -0.49 5.03 3.96 0.18 3.49 2.79 -16.13 3.21 2.56 \ \ \
GWR -0.37 \ \ 0.26 3.51 2.69 \ \ \ \ \ \
PLSR -1.02 5.25 4.15 0.12 3.77 3.06 -39.46 3.87 3.08 \ \ \
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salinity values appear in December (mean = 7.14 g·kg–1, s = 2.14)
and April (mean = 3.53 g·kg–1, s = 1.76). The monthly mean soil
salinity in the IAA varies only slightly compared with NR and the
overall YRD, with mean salinity range of less than ± 1.15 g·kg–1

in different months.

4.5 Hydrological Sensitivity of the
Proposed RF Model
The results of the variable importance evaluation for predicting
variables in the proposed RF models of the NR and IAA are shown
in Figure 8. Two indicators are used to evaluate the sensitivity of the
proposed RF model: the increase in mean square errors (Inc.MSE)
Frontiers in Marine Science | www.frontiersin.org 11
and the increase in node purities (Inc.NP). The permutation from
both evaluation indicators revealed that, in NR,Dt andDf are two of
the most sensitive variables (Figures 8A, C). This might illustrate
that the spatial distribution of freshwater and the time variation are
both the key factors affecting the soil salinity distribution in this
area. In IAA, the CNBL variable is the most important predictor
variable from both evaluation indicators (Figures 8B, D). In
contrast to the NR, the soil salinity of this region might be
affected more by the topography. Df is the second most important
predictor from both evaluation indicators (Figures 8B, D), which
means that the spatial distribution of freshwater is still the key factor
to soil salinity distribution, while Dt is ranked lower by both
important measures than in NR. Totally speaking, the freshwater
hydrological variations are the key factors determining the
distribution and variation of the surface soil salinity in the whole
Yellow River Delta.

To further examine the sensitivity to hydrological variations
of the monthly mean salinity generated by different models, the
correlations between the monthly mean salinity generated by the
models and the monthly runoff of Yellow River at Lijin station
are analyzed. The result shows that the monthly mean salinity of
the proposed RF model (r = 0.46, p < 0.01) is significantly
correlated with the runoff at Lijin station, while the values of
other models have no significant correlation with runoff (MLR
model, r = 0.31, p = 0.08; PLSR model, r = –0.03, p = 0.86). This
might indicate that the monthly mean salinity values estimated
by the proposed RF model are more sensitive to the monthly
hydrological variations than by the other models.
5 DISCUSSION

In this study, a combination of random forest algorithm and
hydrological connectivity metric is used for the first time in a soil
FIGURE 7 | Monthly mean variation of the estimated salinity from 2006 to
2018 in the nature reserves, the industrial and agricultural areas, and the
overall Yellow River Delta.
A B

C D

FIGURE 8 | Variable importance permutation of (A) the nature reserves (NR) by Inc.MSE, (B) the industrial and agricultural areas (IAA) by Inc.MSE, (C) the NR by
Inc.NP, and (D) the IAA by Inc.NP.
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salinity-predicting model. The assessment result (Figures 4, 5)
shows that the RF model has a higher prediction accuracy than
the other current models (i.e., MLR, GWR, and PLSR models). In
comparison with former studies in arid regions or inland salt
marshes, the 10-fold cross-validation R2 from the proposed RF
model is comparable with the traditional validation results of the
cubist model (Peng et al., 2019), the bootstrap-BP neural
network model (Wang et al., 2018), and the supported vector
regression model (Aldabaa et al., 2015). Similar to the proposed
RF model, the former models used similar predictor variables,
such as vegetation spectral index, salinity spectral index, terrain
attributions, and meteorological data (Allbed et al., 2014;
Scudiero et al., 2015; Peng et al., 2019).

However, the variables with low importance are not included
in the final proposed RF model, such as brightness index,
enhanced vegetation index, normalized differential salinity
index, elevation, aspect, ground surface temperature, etc. In
fact, the inclusion of those variables is found to reduce the
prediction accuracy. Other variables, including the time (Dt),
minimum distance from freshwater source (Df), and minimum
distance from saltwater source (Ds), have not been used in
previous studies. These variables are proven to increase the
prediction accuracy in the final model (Figure 8).

The random forest algorithm provides two categories of
importance measures for variables during the training process:
increase of mean square error and node purities (Hu et al., 2017).
Those categories can bring additional insights into the predictor
variables and greatest improvements into the prediction accuracy.

In addition, this algorithm can also generate a monthly soil
salinity dataset and provide a higher prediction accuracy than the
MLR, GWR, and PLSR models among seasons (Table 1). Even
though the proposed RF model is optimized for all seasons rather
than for each season individually, on the seasonal scale, compared
with the other studies, the predictive accuracy of this model based
on 10-fold CV is similar with those of the studies conducted by
Wang et al. (2018) in spring and Taghizadeh-Mehrjardi et al. (2014)
in summer based on traditional validation.

In most previous studies, a regression relationship was
established between the observed salinity and the input
variables for a single point—for instance, Fan et al. (2015);
Peng et al. (2019), and Masoud (2014) utilized the soil sample
data, in different time periods, to establish the regression model
for predicting salinity distribution. Those models can give
relatively accurate predictions at those specific periods, while
the predictions often face the problem of overfitting at other
periods. To solve this problem, the model we established in this
research considers the rationality of the spatial distribution of
sample sites and the diversity of sampling seasons. The
spatiotemporal information is used as input variable for the
proposed RF model, which can improve the spatiotemporal
sensitivity of the model and the predicting accuracy among
seasons. Moreover, the model established in this research is
more sensitive to variation in hydrological conditions, such as
the distance to freshwater and saltwater sources.

Our results show that the surface soil salinity values near
freshwater sources, including river channels and freshwater
Frontiers in Marine Science | www.frontiersin.org 12
restoration areas, are generally low (<4 g·kg–1, Figures 6A, D).
The results are similar with those of the former studies, such that
the direct or indirect restoration projects of freshwater resources
are effective to the relief of soil salinization (Fan et al., 2011; Yu
et al., 2014; Yang et al., 2015; Chi et al., 2019). However, the high
salinity values (>8 g·kg–1) are mainly found near saltwater
sources, including the coastline, tidal creeks, and aquaculture
areas (Figures 6A, D), which are consistent with former studies.
Seawater is the main source of soil salinity in those areas, and
some physical processes, such as seawater intrusion,
precipitation, evaporation, and plant evapotranspiration, can
affect the soil salinization of adjacent regions (Russak et al.,
2015; Chi et al., 2019). Those processes affect the salinity by soil
capillarity and groundwater level (Fan et al., 2012; Jin
et al., 2019).

Additionally, the predicted salinity of the proposed RF model
shows a better correlation with runoff at Lijin station than the
MLR and PLSR models (Table 1). The hydrological variable (Df)
of the proposed RF models for NR and IAA is also the highest
among the three models by both importance measures
(Figure 8). This suggests that the soil salinity estimations
generated by the proposed RF model is highly sensitive to
variation in hydrological conditions, along with the
environmental factors (Rossetti and Scotton, 2017). Compared
with previous studies (Allbed et al., 2014; Bai et al., 2016; Gorji
et al., 2017; Wang et al., 2018), the proposed RF model can more
precisely match for delta regions and capture the influence of
variation more sensitively in hydrological conditions on
soil salinity.

Several certain potential limitations are also found in this
research. The spatial resolution is the first limitation of the
accuracy prediction of soil salinity. The Landsat data with 30-
m spatial resolution used in this study have a moderate difference
at the pixel level rather than data from satellites with smaller
spatial resolutions. Allbed et al. (2014) assessed the salinity in
areas using IKONOS satellite data with 1-m spatial resolution,
and Neto et al. (2017) demonstrated that the 1-m airbone
ProSpecTIR-VS hyperspectral data could give a more accurate
salinity prediction than the 30-m Landsat OLI data. Although the
30-m resolution can provide a longer time series and a
considerable reduction in computing time compared with the
1-m resolution, the 1-m resolution data will then further improve
the prediction accuracy. This will be the next step to improve
the model.

Another limitation of the model is that the systematic studies
of the mechanisms of hydrological and hydrodynamic changes in
coastal areas are not completed yet. The influence of the
hydrological and hydrodynamic changes on soil salinity
consists of a series of complex physical processes, involving
permeation fluid mechanics, hydromechanics, and capillary
action. According to a model simulation of Wang et al. (2007),
factors such as temperature, evapotranspiration, hydraulic
conductivity, tides, and seawater salinity all affect the
formation of salinity distribution of coastal tidal flats. Thus,
full understanding of the influencing mechanism of the
hydrological and hydrodynamic processes on soil salinity is the
May 2022 | Volume 9 | Article 895172
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key to an accurate prediction. This is also the part of our work
that needs to be improved in future studies. Finally, although the
proposed RF model can give relatively accurate predictions, there
is still evidence that the soil salinity is underestimated in the
study area, and the extent will be increased in high-salt areas (e.g.,
high tidal flats) and at some particular times, such as in January.
This may be a potential cause to the salinity prediction error.
6 CONCLUSIONS

The estuarine wetlands are located in the interlacing interface of
land and sea. They can be affected by the interaction of river
runoff and seawater, resulting in a complex modification of
hydrological processes and soil salinization processes, thereby
leading to the spatial and temporal heterogeneity of soil salinity
of coastal wetlands. This has become the biggest challenge to
traditional salinity estimation models based on satellite data. In
this study, we proposed a model by integrating random forest
algorithm and hydrological connectivity metric to predict the soil
surface salinity of coastal tidal flats. Several independent
spatiotemporal environmental factors are also considered in
the model as incorporating variables, including temporal
information, remote sensing spectral indices of vegetation and
soil, terrain and meteorological attributes, etc. The model
performance and response sensitivity to hydrological variations
are evaluated using 10-fold cross-validation statistical
approaches (R2, MAE, RMSE, and RPD) and Pearson’s
correlation coefficient. A comprehensive analysis is carried out
to compare the accuracy and stability with the commonly used
MLR, GWR, and PLSR models.

The model performance assessment result shows that the
performance of the proposed RF model in this work exhibits a
high and stable accuracy, with R2 = 0.89, RMSE = 1.48, and
MAE = 1.05. The accuracy of the proposed RF model can be
increased by about 11–43% over the former MLR, GWR, and
PLSR models. The prediction performance of the proposed RF
model among seasons is also better than that of the other models.
Moreover, on a monthly scale, the model is more sensitive to the
variation of the hydrological conditions than the other models.
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Detailed spatiotemporal and hydrological information is used in
the prediction to increase the predicting accuracy of surface soil
salinity under the complex condition of estuarine wetlands. In
conclusion, the proposed surface soil salinity estimation based on
random forest algorithm is satisfactory for soil salinization
studies in estuarine wetlands.
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