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Acanthogobius ommaturus is a large, fast-growing annual fish widely distributed in coastal
and estuarine areas. The adults will die after breeding, and its life cycle is only 1 year. The
first chromosome-level genome assembly of A. ommaturus was obtained by PacBio and
Hi-C sequencing in this study. The final genome assembly after Hi-C correction was
921.49 Mb, with contig N50 and scaffold N50 values of 15.70 Mb and 40.99 Mb,
respectively. The assembled sequences were anchored to 22 chromosomes by using Hi-
C data. A total of 18,752 protein-coding genes were predicted, 97.90% of which were
successfully annotated. Benchmarking Universal Single-Copy Orthologs (BUSCO)
assessment results for genome and gene annotations were 93.6% and 84.6%,
respectively. A. ommaturus is phylogenetically closely related to Periophthalmodon
magnuspinnatus and Boleophthalmus pectinirostris, diverging approximately 31.9 MYA
with the two goby species. The A. ommaturus genome displayed 597 expanded and
3,094 contracted gene families compared with the common ancestor. A total of 1,155
positive selected genes (PSGs) (p < 0.05) were identified. Based on comparative genomic
analyses, we obtained several expanded genes such as acsbg2, lrp1, lrp6, and znf638
involved in lipid metabolism. A total of twenty candidate genes were identified under
positive selection, which associated with lifespan including ercc6, igf1, polg, and tert.
Interspecific collinearity analysis showed a high genomic synteny between A. ommaturus
and P. magnuspinnatus. The effective population size of A. ommaturus decreased
drastically during 200–100 Ka because of Guxiang ice age and then increased
gradually following warm periods. This study provides pivotal genetic resources for in-
depth biological and evolutionary studies, and underlies the molecular basis for
lipid metabolism.

Keywords: Acanthogobius ommaturus, genome sequencing, chromosomal assembly, comparative genomics,
PSMC (pairwise sequentially Markovian coalescent) analysis
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INTRODUCTION

The Gobiidae is the largest family of marine fishes, which
consists of more than 200 genera and nearly 2,000 species, and
is characterized by wide distribution, high diversity, and strong
adaptability (Tassell, 2011). Acanthogobius ommaturus is a large,
demersal, and fast-growing annual fish in the family of Gobiidae,
which is widely distributed in coastal waters or brackish waters of
the Northwest Pacific Ocean surrounding China, Korea, Japan,
and Indonesia (Wu and Zhong, 2008). Individuals of this species
grow rapidly, and have a nearly linear growth curve in the first 6
months during the year of its life cycle, and then the growth rate
slows down. The standard length and body weight will continue
to increase for spawning by the next April, after which the
parents die (Wang et al., 2011). Studies have shown that annual
fish species usually have rapid growth and sexual maturation to
maximize reproduction (Lanés et al., 2014; Lanés et al., 2016).
Annual fish, whether male or female, need to invest a large
amount of energy for reproduction (Berois et al., 2015; Godoy
et al., 2019). The body weight of A. ommaturus can reach more
than 450 g in 1 year (Chen, 1978), which is completely rare in
annual fish (Jakub et al., 2021). This suggests that the species has
a strong growth potential and energy storage capacity. In
addition, as a demersal fish inhabiting coastal region and
estuaries, A. ommaturus often faces environmental changes,
such as light, temperature, salinity, and other factors. To cope
with complex and changing living environments, A. ommaturus
needs to store energy and allocate energy reasonably. However,
the energy metabolism or storage of A. ommaturus, especially in
molecular level, has not been well studied.

Lipids with their constituent fatty acids (FAs) and proteins
are the major organic constituents in fish, while carbohydrates
are much less abundant in fish. Actually, the protein content is
much less than the lipid content, which reflects that lipids are
usually the major source of metabolism energy in fish for growth,
reproduction, and movement (Tocher, 2003). Notably, FAs are
an important composition of lipids, participating in a wide
variety of metabolic pathways (Watkins et al., 2007). NADPH
(nicotinamide adenine dinucleotide phosphate) produced by the
FA oxidation can provide metabolism energy in the form of ATP
through the oxidation phosphorylation process (FrOyland,
2015). The capelin, herring, and salmonids prove that FAs are
the preferred source of metabolic energy (Henderson et al.,
1984a; Henderson et al., 1984b; Henderson and Almatar, 1989;
Tocher, 2003). Lipid homeostasis is the balance between lipid
uptake, storage, biosynthesis, transportation, metabolism, and
catabolism (Tocher, 2003), which plays an important role in
maintaining normal life activities of fish. The lipids are only
stored in the liver in the majority of gobiids (Akiyoshi and Inoue,
2004; Cuevas et al., 2016; Louiz et al., 2018), and gobies can
maintain a lifelong high level of fat storage without pathological
changes caused by abnormal lipid metabolism, suggesting that
there may be a special mechanism to maintain lipid homeostasis
in these fishes. Hence, elucidating the lipid metabolism of A.
ommaturus is of great value for understanding the evolution of
energy metabolism in teleost and the pathogenesis of abnormal
lipid metabolism.
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A high-quality, complete, and contiguous genome is essential
to analyze the biological characteristics of ecology and evolution
(Ravi and Venkatesh, 2018; Bian et al., 2019). Examples are sex-
determination mechanisms (Cai et al., 2021), loss of pelvic fin
(Lin et al., 2016), loss of adaptive immunity (Star et al., 2011),
and genome compaction (Aparicio et al., 2002). Although many
fish genome data were previously released at NCBI, most of them
were assembled based on short reads with limited contiguity and
quality. Compared to second-generation sequencing
technologies, third-generation sequencing technologies, such as
PacBio (Pacific Biosciences, Menlo Park, CA, USA) and
Nanopore (ONT, Oxford, UK), can produce long reads and
avoid many gaps (Ge et al., 2019). These long-read assembly
approaches can improve contiguity and span repetitive regions,
which provides a path forward for genome assembly at a high
level (Gordon et al., 2016). Additionally, the high-throughput
chromosome conformation capture (Hi-C)-assisted genome
assembly technique has been used to assemble chromosome-
level genome for many fishes, such as Epinephelus lanceolatus
(Zhou et al., 2019), Oplegnathus fasciatus (Xiao et al., 2019), Lota
lota (Han et al., 2021), Micropterus salmoides (Sun C. et al.,
2021), and Mugilogobius chulae (Cai et al., 2021).

The high-quality complete genomes of fish have proliferated in
recent years. Gobies are an important group in the ecosystem as the
bait of many fish, and are one of the most diverse families of
vertebrates on earth (Tassell, 2011). Unfortunately, little genomic
information on gobies is available, and only a few goby genomes
reach chromosomal level. In this study, the chromosome-level
genome assembly of A. ommaturus was constructed by
combining Illumina short reads, Pacbio long reads, and Hi-C
sequencing data, and its phylogenic relationships with other fishes
were elucidated by comparative genome analysis. Based on genome
data, we aimed to identify the lipid metabolism and candidate aging
genes. This work may provide important resources to study the
mapping of traits with economic importance, evolutionary position,
and it provides an accurate reference sequence for related species.
MATERIALS AND METHODS

Ethics Statement
All animal experiments were conducted in accordance with the
guidelines and approval of the respective Animal Research and
Ethics Committees of Ocean University of China. In addition,
frost anesthesia was used to minimize the suffering of A.
ommaturus specimens.

Genomic DNA Extraction
One male A. ommaturus fish (Figure 1A) was sampled in
October 2020 from offshore of Qingdao, China with a body
weight of 142.10 g and a body length of 26.70 cm. Fresh muscle
was collected and quickly frozen in liquid nitrogen before storage
at −80°. Total genomic DNA was extracted from fresh muscle of
A. ommaturus with the standard phenol/chloroform method
(Sambrock and Russel, 2001). The extracted DNA was measured
using a Nanodrop 2000 (Thermo Scientific, USA) and a Qubit
2.0 (Invitrogen, USA) bioanalyzer system.
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Library Construction and Sequencing
The Illumina sequencing libraries were prepared to estimate the
genome size and correct the genome assembly. The paired-end
library with an insert size of 350 was prepared using the Illumina
Truseq Nano DNA Library Prep Kit (Illumina, United States)
and then sequenced by the Illumina NovaSeq-6000 platform
using 2 × 150 bp in paired-end mode. To obtain the clean reads,
the reads with more than 10% N bases or low-quality bases ≤ 5,
adapter sequences, and duplicated sequences were discarded.
The clean reads were used for subsequent analysis.

An SMRTbell library with a fragment size of 20 kb was
constructed for long-read sequencing by an SMRTbell Express
Template Prep Kit (PacBio). PacBio Sequel II system was used to
sequence the library to generate the data from the SMRT cell.

To obtain a chromosome-level genome assembly, the muscle
tissue of A. ommaturus was used for Hi-C library construction.
The method of Rao et al. (2014) was followed for library
preparation. High-quality Hi-C fragment libraries were
sequenced for the Illumina NovaSeq-6000 platform.

Genome Size Estimation and Genome
Assembling
K-mer analysis was used to estimate the genome size,
heterozygosity, and repeat content of A. ommaturus.
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The Jellyfish approach (Marçais and Kingsford, 2011) was used
to obtain the k-mer depth distribution and the peak depth from
the distribution from Jellyfish. The genome size estimation
formula was applied: G = k-mer_number/k-mer_depth, where
G is genome size, k-mer_number is total numbers of k-mers, and
kmer_depth is peak depth. SOAPdenovo (Li et al., 2009) was
applied for de novo pre-assembly of the A. ommaturus genome.
The A. ommaturus genome was assembled by Next Denove
package v2.3.1 (https://github.com/Nextomics/NextDenovo)
with PacBio long reads. After the primary assembly, we
applied the Illumina paired-end reads to polish the assembled
genome by operating NextPolish v1.5 (Hu et al., 2020).

Hi-C Analysis and Chromosome Assembly
Hi-C clean reads were mapped to the draft genome with BWA
v0.7.8 (Li and Durbin, 2009). ALLHIC v0.9.8 (Zhang et al., 2019)
was applied to obtain the chromosomal-level genome assembly
by using the corrected contigs. Genome completeness was
estimated using Benchmarking Universal Single-Copy
Orthologs (BUSCO v4.1.2, Manni et al., 2021) and Core
Eukaryotic Genes Mapping Approach (CEGMA v2.5, Parra
et al., 2007). Small fragment library reads were selected and
compared to assembling genomes using BWA v0.7.8 (Li and
Durbin, 2009), and the comparison rate of reads, the extent of
A D

B

C

FIGURE 1 | The genome assembly and circos atlas of A. ommaturus. (A) The figure of A. ommaturus. (B) BUSCO analysis result of the A. ommaturus genome.
(C) Statistics of the Hi-C assembly of the A. ommaturus genome. (D) Genome characteristics of A. ommaturus. From the outer circle to the inner circle: (a)
chromosome length; (b) distribution of gene density; (c) distribution of repetitive elements; (d) distribution of genomic GC content. The innermost syntenic blocks are
connected with blue lines.
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genome coverage, and the distribution of depth were counted to
evaluate assembly integrity and sequencing uniformity. Samtools
v0.1.19 (Li et al., 2009) was used to process BWA results by
chromosome coordinate sequencing and removing repetitive
reads and then calculating the genome heterozygous and
homologous SNP ratio.

Repeat Annotation
Repeated sequence annotation was obtained based on homology
alignment and de novo prediction approaches. Tandem repeat
was extracted using TRF v4.07b (Benson, 1999) by ab initio
prediction. The homolog prediction used the Repbase (Bao et al.,
2015) database employing RepeatMasker v4.0.5 (Chen, 2004)
and RepeatProteinMask v4.0.5 (Tarailo-Graovac and Chen,
2009) to extract repeat regions. RepeatModeler v1.0.8 (Tarailo-
Graovac and Chen, 2009), RepeatScout v1.0.5 (http://www.
repeatmasker.org/), and LTR_Finder v1.0.7 (Xu and Wang,
2007) were used for de novo identification of transposable
elements (TEs). All TEs and repeats were combined into a
repeat library, which was supplied for DNA-level repeat
identification in the A. ommaturus genome.

Gene Prediction and Annotation
Gene structure prediction used a combination of de novo
prediction, homology-based prediction, and transcriptome-based
strategy (transcriptome data were downloaded from NCBI
databases wi th access ion numbers PRJNA725985 ,
PRJNA628563, and PRJNA725983; the detailed information is
shown in Supplementary Table 1). Firstly, Augustus v3.2.3
(Stanke et al., 2006), GlimmerHMM v3.0.4 (Majoros et al.,
2004), SNAP 2013-11-29 (http://korflab.ucdavis.edu/software.
html), Geneid v1.4 (Blanco et al., 2007), and Genscan v1.0
(Burge and Karlin, 1997) were used for de novo predictions of
genes. Secondly, TBLASTN (E-value ≤ 1e−5) was used to align
protein sequences from Boleophthalmus pectinirostris,
Periophthalmus magnuspinnatus, Larimichthys crocea,
Collichthys lucidus, Gasterosteus aculeatus, and Danio rerio
(Supplementary Table 2) to the assembled genome for
homology-based prediction. Thirdly, transcriptomic data were
aligned to the assembled genome sequences using TopHat
v2.0.11 (Kim et al., 2013) to identify exon regions and splice
positions. The alignment results were then used as input for
Cufflinks v2.2.1 (Ghosh and Chan, 2016) for genome-based
transcript assembly. The non-redundant reference gene set was
generated by merging genes predicted by three methods with
EVM v1.1.1 (Haas et al., 2008) using PASA (Program to Assemble
Spliced Alignment) terminal exon support and including masked
transposable elements as input into gene prediction.

The Gene Ontology (GO) IDs were assigned according to the
corresponding InterPro entry. The Nr, Swissprot, Pfamily, and
KEGG were used for the functional annotation and pathway
information of protein-coding genes by using BLASTP v2.2.28
(E-value ≤ 1e-5) (McGinnis and Madden, 2004).

For non-coding RNA annotation, tRNAs were predicted
using the program tRNAscan-SE v1.3.1 (Lowe and Chan,
2016) and rRNAs were predicted using Blast relative to the
species’ rRNA sequence. Other ncRNAs, including miRNAs and
Frontiers in Marine Science | www.frontiersin.org 4
snRNAs, were identified by searching against the Rfam database
using the INFERNAL v1.1rc4 (Nawrocki and Eddy, 2013).

Comparative Genomic Analyses
The protein sequences of 14 species of teleost fish (Supplementary
Table 2) were downloaded from NCBI or Ensemble. The longest
coding region transcript was selected from each gene locus. The
genes that encode proteins with fewer than 50 amino acids were
excluded. OrthoMCL v1.4 (Li et al., 2003) was used to construct
the orthologous groups. The single-copy orthologous genes shared
by all 15 species were aligned using MUSCLE v3.8.31 (Edgar,
2004), and alignment results were combined to form a super
alignment matrix. We used RAXML v8.2.12 (Stamatakis, 2014) to
construct a phylogenetic tree based on CDS (method: ML TREE;
model: GTRGAMMA). The divergence time was estimated using
memctree v4.9 of the PAML software package (Xu and Yang,
2013) and r8s v1.81 (Sanderson, 2003); the calibration time was
selected from the TimeTree database (Kumar et al., 2017) and
published articles. CAFÉ v3.1 was used in gene family expansion
and contraction analyses (De Bie et al., 2006); p < 0.05 was used to
screen out the significantly changed gene families. GO and KEGG
were used to perform the enrichment of expanded and contracted
gene families.

Positively selected genes (PSGs) in the A. ommaturus genome
were detected using single-copy orthologous genes, in which A.
ommaturus was used as a foreground branch, and D. rerio,
Xiphias gladius, Seriola dorsalis, and Seriola dumerili were used
as background branches. Muscle v3.8.31 (Edgar, 2004) was
applied to perform multiple sequence alignment in positive
selection analysis, and Gblocks (Castresana, 2000) was used to
polish alignments. The branch-site model of the codeml program
in PAML v4.9 (Xu and Yang, 2013) was applied to detect PSGs.
The two-hypothesis likelihood ratio test was used to determine
whether there was positive selection, rather than simply
searching for genes with Ka/Ks > 1. p-values were adjusted for
multiple testing using the false discovery rate (FDR) method.
Genes with FDR < 0.05 were PSGs. Then, GO and KEGG
enrichment were performed using Fisher’s exact test with FDR
< 0.05. In addition, the candidate aging-related genes were
identified by human and model organisms from GenAge and
LongevityMap databases (de Magalhães et al., 2005). The tert
gene associated with aging was selected for further analysis. The
sequences of A. ommaturus (Ao),D. rerio (Dr), X. gladius (Xg), S.
dorsalis (Sl), and S. dumerili (Sd) were obtained from this study.
The sequences of Oryzias melastigma (Om, DQ286654), Oryzias
latipes (Ol, DQ870623), and Epinephelus coioides (Ec,
DQ317442) were downloaded from the NCBI database. The
multiple sequences were aligned by ClustalX, and the conserved
motif and domain regions were determined by MEME (https://
meme-suite.org/meme/) and SMART (http://smart.embl-
heidelberg.de/), respectively. Prediction of the functional
impact of tert gene variants was analyzed by PROVEAN
(http://provean.jcvi.org/seq_submit.php). The query sequence
was obtained from the above comparison of multiple sequences.

To investigate the genomic collinearity of A. ommaturus with
relative species, JCVI (Tang et al., 2015) was used to carry out the
collinearity of A. ommaturus and P. magnuspinnatus.
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Analysis of Population History of
A. ommaturus
A total of 50.50 Gb data (Coverage 54×) (Chen et al., 2020) about
A. ommaturus genome survey sequencing were downloaded from
NCBI (PRJNA658176). The Q20 and Q30 values of these data
were over 96% and 90%, respectively. The sequencing quality is
good and can be used for PSMC (pairwise sequentially Markovian
coalescent) analysis. Therefore, these data were used to generate
diploid consensus by bcftools v0.1.19 (Danecek et al., 2021). To
obtain the input file for PSMC modeling, the “fq2pamcfa” and
“splitfa” from the PSMC package (Li and Durbin, 2011) were used
for analysis. Then, the parameter code was as follows: “seq 100 |
xargs -i echo psmc -N25 -t15 -r5 -b -p “4+25*2+4+6” -o round-
{}.psmc split.fa | sh “. The maturing age of A. ommaturus was set
as 1 year, and the substitution rate was set as 2.5 × 10-8 per year for
PSMC analysis.
RESULTS

Genome Size Estimation and Initial
Characterization of the Genome
In this study, a total of 63 Gb offiltered short-read sequencing data
were obtained from the Illumina library, representing the 64.15-
fold coverage of A. ommaturus (Supplementary Tables 3, 4). The
size of the A. ommaturus genome was estimated to be about
982.02 Mb with a heterozygosity of 0.32% and a repeat content of
51.02%. The depth of k-mers peak was 47, and the total number of
k-mers was 46,869,592,867 (Supplementary Figure 1 and
Supplementary Table 5).

Genome Assembly and Completeness of
the Assembled Genome
A total of 210 Gb of high-quality data were generated from the
PacBio Sequel II platform, covering 213.85-fold of genome
assembly (Supplementary Table 3). The size of the assembled
genome was 921.47Mb with a contig N50 of 17.37 Mb (Table 1).
This result was consistent with k-mer analysis. To evaluate the
quality of initial genome assembly, the Illumina short reads and
PacBio long reads were aligned to the A. ommaturus assembly. A
total of 99.36% of Illumina reads and 95.89% of PacBio long
reads were successfully mapped to the assembled genome
(Supplementary Tables 6, 7).

The BUSCO analysis is based on actinopterygii_odb10. A
total of 93.6% (3,407/3,640) of the complete BUSCO were found
in the genome assembly (Figure 1B). There were 243 CEGMA-
identified core genes with 94.35% completeness (Supplementary
Table 8) and a 0.1964% heterozygous SNP rate and a 0.0018%
homologous SNP rate (Supplementary Table 9).

A total of ~98 Gb with 99.80× coverage (Supplementary
Table 10) clean reads were obtained from the Hi-C library. The
Q20 and Q30 of Hi-C data were 96.95% and 92.12%, respectively.
The sequencing quality is good and can be used for subsequent
analysis. Hi-C scaffolding approach was used to anchor and
orient the draft assembly contigs into a chromosomal-scale
assembly. A total of 90 assembled scaffolds were used for
Frontiers in Marine Science | www.frontiersin.org 5
chromosomal-scale assembly, of which 22 assembled scaffolds
were placed to chromosomes. The total length of placed scaffolds
is 906.51 Mb; 98.38% of the assembled sequences were
successfully clustered into 22 chromosome groups with
chromosome lengths ranging from 31.13 Mb to 52.27 Mb
(Supplementary Table 11, Figure 1C). The final genome
assembly was 921.49 Mb in chromosomal scale, with contig
N50 and scaffold N50 values of 15.70 Mb and 40.99 Mb,
respectively (Table 2).

Genome Annotation
In this study, the size of repeat sequences was 418.38 Mb,
accounting for 45.40% of the assembly genome (Table 3). The
transposable elements mainly consisted of the long terminal
repeats (LTR) (371.56 Mb; 40.32%), long interspersed elements
(LINE) (64.28 Mb; 6.98%), and DNA transposable elements
(DNA TE) in 4.70 Mb (0.51%) (Supplementary Table 12).

A total of 18,752 protein-coding genes were predicted in this
study. The average transcript length and average CDS length was
19,348.84 bp and 1,747.18, respectively. The average exon length
and average intro length was 167.09 bp and 1,861.37 bp,
respectively (Supplementary Table 13). Six other teleost
species were used to compare with A. ommaturus to obtain the
statistics of the predicted gene model, showing similar
distribution patterns in CDS length, exon length, exon
number, gene length, and intro length (Supplementary
Figure 2). The summary of the genome characteristics of A.
ommaturus is shown in Figure 1D. A total of 18,350 genes
(97.90%) were successfully annotated by alignment to the
nucleotide, protein, and annotation databases (Table 4). The
statistics of the noncoding RNA of A. ommaturus is shown in
Supplementary Table 14. Based on actinopterygii_odb10,
BUSCO analysis showed that 84.6% (3,078/3,640) of the
complete BUSCO were found in genome annotation
(Supplementary Table 15).

Comparative Genome Analysis of
A. ommaturus
Phylogenetic Relationships of A. ommaturus
In this study, gene family was identified among 15 selected
species. A total of 14,371 gene families were identified in A.
ommaturus, including 167 unique gene families (Supplementary
Table 16). On the basis of single-copy genes, the ML
phylogenetic tree was constructed to investigate the
phylogenetic evolutionary relationships of A. ommaturus with
other species. A. ommaturus is phylogenetically closely related to
P. magnuspinnatus and B. pectinirostris, diverging ~31.9 MYA
with two goby species (Figure 2).

Gene Family Expansion and Contraction
The A. ommaturus genome displayed 597 expanded and 3,094
contracted gene families compared with a common ancestor
(Figure 2). Among these families, 64 expanded and 68
contracted gene families were significantly (p < 0.05) changed
(Supplementary Figure 3). Notably, A. ommaturus exhibited the
expansion of genes related to FA biosynthesis (ko00061), FA
May 2022 | Volume 9 | Article 894821
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degradation (ko00071), FA metabolism (ko01212), PPAR
signaling pathway (ko03320), and adipocytokine signaling
pathway (ko04920) (Supplementary Figure 4). There were
eight copies of the Acyl-CoA synthetase bubblegum family
member 2 (acsbg2) gene (Supplementary Table 17). Eight
acsbg2 genes were localized on two chromosomes (Chr9 and
Chr11) (Figure 3A). The low-density lipoprotein receptor (ldlr)
gene family and Zinc finger protein 638 (znf638) gene were
expanded. The KEGG enrichment analysis of contracted gene
families is shown in Supplementary Figure 5.

Positive Selection Analysis
Using A. ommaturus as the foreground branch and D. rerio, X.
gladius, S. dorsalis, and S. dumerili as the background branches, we
incorporated the branch-site model of PAML package to detect
positively selected genes (PSGs). A total of 1,155 PSGs (p < 0.05)
were identified in A. ommaturus, which were related to
autophagy–animal (ko04140), p53 signaling pathway (ko04115),
cellular senescence (ko04218), cell cycle (ko04110), and apoptosis
(ko04210) (Supplementary Figure 6). Nine PSGs (acsl6, acsf3,
hrasls, stard3, fads2, fabp6, pparg, acat1, and apoe) were related to
lipid metabolism. Based on the GenAge and LongevityMap
databases, 20 PSGs were identified as being associated with
aging (Figure 3B). The multiple sequence alignments of tert are
Frontiers in Marine Science | www.frontiersin.org 6
shown in Supplementary Figure 7. The conserved motif and
domain results are shown in Supplementary Figures 8, 9. The
prediction of the functional impact of tert gene variants is shown
in Supplementary Table 19.

Interspecific Collinearity Analysis
Interspecific collinearity analysis showed that there were high
collinearity in A. ommaturus and P. magnuspinnatus (Figure 4A).
Compared with P. magnuspinnatus, A. ommaturus has 22
chromosomes. The Chr6 of A. ommaturus corresponds to two
chromosomes Chr12 and Chr23 of P. magnuspinnatus, and Chr22
corresponds to Chr2 and Chr24 as shown in Figure 4A.

Population History of A. ommaturus
The effective population size (Ne) of A. ommaturus varied in the
range of ~1.75×104–3.6×104 from 400 to 10 Ka. The effective
population size of A. ommaturus experienced a bottleneck event
from 200 to 100 Ka (Figure 4B).
DISCUSSION

In the present study, the whole genome of A. ommaturus was
generated by PacBio sequencing combined with the Hi-C
approach, yielding high-quality genome annotations and a
chromosome-level genome for this economically important
species. A total of 33 million Hi-C raw reads were finally
clustered into 22 chromosomes, which is consistent with a
previous karyotype study of A. ommaturus (Wang and Zhao,
1993). In addition, we sorted out the chromosome number of
some fishes in Gobiidae based on literature, the NCBI database,
and the Fish Karyome database. The chromosome number of
Gobiidae fish varies from 22 to 38 (Supplementary Table 20).
The chromosome number of A. ommaturus is the same as its
relative species, Acanthogobius flavimanus. The genome size of
921.49 Mb of A. ommaturus was in the middle of the genome size
of its relative species (M. chulae: 1.002 Gb, Neogobius
melanostomus : 1.00 Gb, B. pectinirostris : 955.75 Mb,
Rhinogobius similis: 890.10 Mb). We identified 18,752 protein-
coding genes in A. ommaturus, which was similar to those in
Scartelaos histophorus (18,156) (You et al., 2014) and Lepisosteus
oculatus (18,328) (Braasch et al., 2016), but lower than those in
M. chulae (20,531) (Cai et al., 2021), B. pectinirostris (20,798)
(You et al., 2014), and D. rerio (26,260) (Howe et al., 2013). The
annotation data of relative species in databases were less, which
may affect the homology prediction results. Moreover, the gene
copy number of this species may decrease during evolution. A
previous study has shown that the functions of genes are
redundant after gene and genome duplications during
evolution. Therefore, a single-copy gene is sufficient to perform
its function, while the sub-copies of gene may accumulate
TABLE 4 | Summary of functional annotations for predicted genes.

Number Percentage (%)

Total 18,752 –

SwissProt 17,229 91.90
Nr 18,007 96.00
KEGG 15,864 84.60
InterPro 18,659 99.50
GO 17,549 93.60
Pfam 159,54 85.10
Annotated 18,350 97.90
Unannotated 402 2.10
TABLE 1 | Summary of the assembled genome.

Title Total length Total number Average length Max_length (bp) Min_length (bp) N50 length (bp) N90 length (bp)

Contig 921,468,260 230 17,370,448 41,968,829 31,043 17,370,448 2,205,592
May 2022 | Volume 9
TABLE 2 | Statistics of the Hi-C assembly of the A. ommaturus genome.

Genome
size (Mb)

Percent
assembled

Contig
number

Contig
N50 (Mb)

Scaffold
number

Scaffold
N50 (Mb)

921.49 98.38% 266 15.70 90 40.99
TABLE 3 | Statistics of repetitive sequences in A. ommaturus genome.

Type Repeat size (bp) Percentage of genome (%)

Trf 90,477,133 9.82
Repeatmasker 389,197,653 42.24
Proteinmask 77,624,827 8.42
Total 418,377,037 45.40
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harmful mutations and loss (Meyer and Schartl, 1999). Notably,
the functionality and number of genes have to be further
confirmed, and the current finding could only be the first
preliminary step towards identifying key genes.

We discovered that the effective population size of A.
ommaturus experienced a bottleneck event from 200 to 100
Ka, which may be related to the Guxiang Glacial Stage
(ShangZhe et al., 2007). Glacial stage can affect atmospheric
circulation, monsoon strength, animal and plant changes, soil
development, and sea level rise and fall, resulting in a decline in
population size. The population size of A. ommaturus gradually
increased from 70 to 30 Ka, which may have something to do
with several warm periods during this time and the influence of
the Kuroshio (Hu et al., 2021).

Annual fish often demand great energy for rapid growth and
sexual maturity in the juvenile stage. A. ommaturus feeds on a
variety of shrimps in the juvenile stage (Sun et al., 1996), which
may be associated with energy requirements. Previous studies
have shown that A. ommaturus enhanced energy metabolism to
increase their ability to survive in salinity changes (Sun et al.,
2020), and the energy-related pathways were significantly
enriched in response to temperature changes (Sun Z. et al.,
2021). To facilitate rapid energy mobilization, A. ommaturus
may have evolved a regulatory mechanism. In the A. ommaturus
genome, acsbg2, znf638, and the ldlr gene family were expanded
compared to 14 other fishes, and there were eight copies of the
Frontiers in Marine Science | www.frontiersin.org 7
acsbg2 gene. Nine genes (acsl6, acsf3, hrasls, stard3, fads2, fabp6,
pparg, acat1, and apoe) with essential roles in lipid metabolism
were identified as PSGs.

Lipids play important roles in numerous biological processes,
such as inflammation response, biofilms, reproduction, and
energy source and storage (Lopes-Marques et al., 2018). FAs
are important components of many lipids, including structural
lipids, storage molecules, and signaling molecules. By now, FA
catabolism is the main energy source of many fish (Tocher,
2003). They can be degraded for energy production to serve
many essential functions in living organisms (Watkins et al.,
2007). Notably, any anabolic and catabolic process of FA
participation has a critical initial step, the “activation” of FAs.
The activation reaction is catalyzed by ACS to produce a
thioester with CoA (Watkins, 1997). The ACS is essential to
lipid metabolism (Figure 4C). The acsbg2 gene has been
demonstrated to convert FAs to active Acyl-CoA using C18:1
and C18:2 as substrates (Pei et al., 2006). acsls typically activate
C16:0 and C18:1 (Watkins, 1997). Huang et al. (2014) have
researched the FAs in the muscle of A. ommaturus, and the
results showed that the FAs were mainly C22:6 (~24.77%), C16:0
(~20.62%), C18:1 (~17.31%), C20:5 (~14.78%), C18:0 (~7.74%),
and C18:2 (~3.84%) (Huang et al., 2014). The total content of
these six FAs is up to 90%, which shows that the acsbg2 and acsl6
genes play an important role in A. ommaturus FA metabolism
and synthesis.
FIGURE 2 | Phylogenetic analysis and divergence time tree of A. ommaturus with 14 other fish species. Each branch site shows the estimated species divergence
time (million years ago). Each branch shows the number of expanded (+, green) and contracted (−, red) gene families. The source of species images were shown in
Supplementary Table 2.
May 2022 | Volume 9 | Article 894821

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Pan et al. Acanthogobius ommaturus Whole Genome Sequencing
The most important simple lipid is cholesterol (Tocher, 2003).
ldlr is a kind of lipoprotein-carrying cholesterol, which plays a role
for essential energy production, cell membrane, and cholesterol
homeostasis (Brown and Goldstein, 1986; Go and Mani, 2012).
ldlr gene variants with impaired function result in early-onset
atherosclerosis known as familial hypercholesterolemia (FH) (Go
and Mani, 2012). The ldlr gene knockout zebrafish showed
moderate hypercholesterolemia when fed a normal diet (Liu
et al., 2017). The ldlr gene family including lrp1, lrp2, lrp4, and
lrp6 were expanded in A. ommaturus. lrp1 is involved in FA
uptake, and lrp6 is involved in the synthesis of TG and FAs, which
both suggested that this species has a strong ability to regulate lipid
homeostasis. In addition, znf638 is a key regulator of adipogenic
differentiation (Meruvu et al., 2011). Pparg and apoe are also
essential to lipid metabolism (Ren et al., 2002; Huang and Mahley,
2014). The expansion of lipid metabolism genes in A. ommaturus
may help it to adapt to the complex environment, for instance, by
allocating energy properly to respond to changes in external
environmental factors.

Aging is broadly defined as the time-dependent irreversible
physiological decline that affects most organisms, which has been
demonstrated into nine hallmarks. These hallmarks are as follows:
Frontiers in Marine Science | www.frontiersin.org 8
loss of proteostasis, telomere attrition, stem cell exhaustion,
epigenetic alterations, mitochondrial dysfunction, cellular
senescence, genomic instability, deregulated nutrient sensing, and
altered intercellular communication (López-Otıń et al., 2013). A.
ommaturus that has a life span of 1 year may be a good model for
aging studies. Analysis of positive selection in the genome of A.
ommaturus identified 20 genes associated with aging, such as ercc6,
hspd1, igf1, polg, taf1, and tert. These genes can be mainly divided
into two categories based on the characteristics of aging.

(I) Genomic instability. The accumulation of various types
of genetic damage throughout lifetime is the common feature of
aging (Moskalev et al., 2013). Cells may undergo a series of
phenotypic changes, from cell cycle arrest, cellular senescence, to
malignant transformation when DNA damage reaches a certain
level (Erol, 2011). Progeria aging syndromes are often the result
of increasing DNA damage accumulation (Burtner and Kennedy,
2010). ercc6, known as CSB, is involved in DNA unwinding and
DNA repair (Licht et al., 2003). A previous study showed that
ercc6 and xpa mutant mice die before weaning and display some
premature aging phenotypes, such as attenuated growth, retinal
degeneration, kyphosis, progressive neurological dysfunction,
and cachexia (Van et al., 2007). Cockayne syndrome (CS) is a
A

B

FIGURE 3 | (A) The location of expanded genes related to lipid metabolism in A. ommaturus chromosomes. (B) Candidate aging-related genes under positive
selection in A. ommaturus.
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rare progeroid syndrome caused by mutations of ercc6 (CSB)
genes (Karikkineth et al., 2017), which has characteristics of
normal aging including vision and hearing loss, early-onset
neurodegeneration, and impaired mitophagy in early life,
ultimately leading to premature death (Lee et al., 2019). Thus,
the ercc6 (FDR = 0.032) under positive selection may be a
candidate aging gene in A. ommaturus.

(II) Telomere attrition. Telomerase consists of the protein
component tert and the RNA component terc, which prolong
telomeres after replication to maintain the telomere length (Harel
et al., 2015). Telomeres are considered as a good biomarker in age
research (Boonekamp et al., 2013), because they shorten during
vertebrate aging, includingNothobranchius furzeri (Hartmann et al.,
2009; Artandi and DePinho, 2010). The syndromes of telomere
shortening, such as dyskeratosis, were caused by mutations in tert or
other genes in the telomere-protecting complex (Armanios, 2009).
The clinical presentations of dyskeratosis congenita are
characterized by premature aging, such as pulmonary fibrosis,
marrow failure (Armanios, 2009), reduced fertility (Bessler et al.,
2010), and several cancers (Alter et al., 2009). A previous study
produced tert-deficient fish by CRISPR/Cas9 technology, and the
results showed that tert-deficient fish exhibit the loss of telomerase
function, reduced fertility, and defects in highly proliferative tissues,
and have genetic ability (Harel et al., 2015). Thus, mutations in tert
could lead to a series of premature aging in fish. In this study, the
Frontiers in Marine Science | www.frontiersin.org 9
variants of F to S in the telomerase RNA binding domain might
have consequences in lifespan regulation. We speculated that tert
under positive selection may be associated with the short lifespan of
A. ommaturus. In addition, there are other candidate genes in A.
ommaturus PSGs within the hallmarks of aging pathways (López-
Otıń et al., 2013), including mitochondrial dysfunction (polg and
ppargc1a), deregulated nutrient sensing (igf1), loss of proteostasis
(hsdpd1), and cellular senescence (taf1). In summary,A. ommaturus
is an annual fish with a high-quality genome in the chromosomal
level, which will be valuable for the identification of conserved genes
important for lifespan, and the candidate genes related to aging can
provide insight into the evolutionary power of lifespan strategies.
CONCLUSION

In this study, we presented a high-quality chromosome-level
genome assembly of A. ommaturus. The final size of the A.
ommaturus genome assembly was 921.49 Mb, with a contig N50
size of 15.70 Mb. The assembled sequences were clustered into 22
chromosomes by using Hi-C data. A total of 18,752 protein-
coding genes were predicted. Phylogenetic analysis showed that
A. ommaturus is closely related to P. magnuspinnatus and B.
pectinirostris; the divergence time was appropriately 31.9 MYA.
Several genes related to lipid metabolism such as acsbg2, znf638,
A B

C

FIGURE 4 | Genome synteny between A. ommaturus and P. magnuspinnatus and population history of A. ommaturus. (A) Chromosomal syntenic relationships
between A. ommaturus and P. magnuspinnatus. (B) The effective population size of A. ommaturus. (C) Central role of acyl-CoAs in cell metabolism. Adapted from
Coleman et al. (2002).
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and the ldlr gene family were expanded in comparative genomic
analyses. Several candidate genes involved in aging were
identified in positive selection of A. ommaturus. The high-
quality genome assembly and annotation information supplied
important genomic data to further investigate the evolution of A.
ommaturus with other species, and it will be important for
conservation applications and determining the location of
important traits in this fish.
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