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The invasion of Spartina alterniflora (S. alterniflora) has changed the carbon cycle process
of local ecosystems. In order to clarify the effect of S. alterniflora invasion on coastal soil
carbon pool in Northern Beibu Gulf, the distribution characteristics and influencing factors
of soil organic carbon (SOC) and SOC storage (SOCS) at different intrusion stages were
investigated and analyzed. The results showed that the SOC content in S. alterniflora
wetlands (2.65–21.54 g/kg) was higher than that in mudflats (0.85–1.19 g/kg). SOC
content in 0–20 cm depth was highest than that in 20–40 cm and 40–60 cm depth. The
total SOCS increased by 72.11%, 78.45%, 77.56%, 80.42%, and 90.63% in 3a, 12a,
15a, 16–19a, and 26a compared with mudflats, respectively. S. alterniflora invasion
increased SOC and SOCS both in surface soil and deep soil. SOCS increased rapidly
during the initial stage of invasion, and remained in a relatively stable and continuous
growth state after 12–15 years. The distributions and accumulation of SOC and SOCS
were affected mainly by soil texture, soil bulk density, moisture content, total nitrogen and
total phosphorus. The source of SOC from S. alterniflora was increasing with invasion
ages and would be mainly input in 26a, while marine sources was mainly imported in other
invasion ages. Our data indicated that S. alterniflora continuously enhances the SOC
sequestration over the years in coastal wetland ecosystems.
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INTRODUCTION

Coastal wetlands play an important role in the global cycle by acting as a valuable carbon sink due to
their high sedimentation rates and burial of organic carbon (Drake et al., 2015), which store at least
44.6 Tg C yr−1 globally (Chmura et al., 2003). In coastal ecosystem, wetland soils were the important
carbon pool as well as the environmental media of carbon accumulation from vegetation biomass
and litter. The capacity of soil carbon sequestration in coastal wetlands is dynamically changing and
often threatened by the impacts of non-native species invasion and climate change worldwide
(Simas et al., 2001; Yang, 2019). Therefore, it is of great importance to understanding the response
mechanisms of soil organic carbon (SOC) dynamics under invasive species.
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Spartina alterniflora (S. alterniflora) is an aquatic plant that is
native to the Atlantic coast of the United States and the Gulf of
Mexico. In the late 1970s, S. alterniflora was introduced into
China for coastal restoration and sediment stabilization (Lu and
Zhang, 2013; Ge et al., 2015; Pan et al., 2015), then spread in
coastal areas and replaced native plants rapidly due to its strong
adaptability and competitiveness. Its distribution area has
reached 546 km2 in 2015 (Mao et al., 2019), and its invasion
scale in China is much larger than that in other area worldwide
(An et al., 2007). After years of ecological succession, it has
rapidly expanded in many introduced areas and become a
dominant species that has an important impact on the
structure and function of intertidal ecosystems (Adams
et al., 2016).

There has been extensive research to determine the impact by
S. alterniflora invasion on soil carbon sequestration in coastal
wetlands (Yang et al., 2013; Kulawardhana et al., 2015; Li et al.,
2016), indicating that S. alterniflora invasion would induce more
SOC storage (SOCS) in coastal wetlands (Yang, 2019; Zhang
et al., 2021a). This process is influenced by S. alterniflora biomass
input in soils, the deposition rate of the tidal salt marsh, carbon
turnover, and organic carbon stability in coastal wetlands, which
are generally reported to be associated with the accumulation
and decomposition of organic carbon (Negrin et al., 2011;
Snedden et al., 2015; Gao et al., 2016; Unger et al., 2016; Yang
et al. , 2016). Previous researches indicate that soil
physicochemical properties, such as bulk density (BD), pH,
moisture content and salinity, as well as soil texture played
crucial roles in changing surface SOC variation (Bai et al.,
2016; Wang et al., 2016; Yang and Guo, 2018). However, the
major control mechanism of SOC vertical distribution in
response to S. alterniflora invasion may be different and
complex in coastal wetlands (Yang, 2019). Therefore, it is
necessary to address the driving mechanism of SOC both in
surface and in depth soils in order to understand the multiple
interactions of carbon dynamics between invasive species
and soils.

Moreover, the research on the S. alterniflora SOC pool in the
coastal wetlands of China mostly focuses on the areas with a
concentrated distribution of S. alterniflora, mainly in Yangtze
River estuary, and the coastal areas of Jiangsu, Zhejiang, and
Fujian provinces, but few in Guangxi province. After introducing
into Guangxi, the distribution area of S. alterniflora had spread
from 0.94 hm2 to 686.48 hm2 with rapid invasion ratio (Pan
et al., 2016), but the respond characteristics and mechanism of
S. alterniflora invasion on SOC and SOCS has not been known
well yet in this process. Thus, the aims of the present work are:
(1) to determine the changing characteristics of SOC contents
and SOCS both in surface and depth samples among different
S. alterniflora invasion stages; (2) to explore the effects of
multiple environmental factors on the distributions and
accumulations of SOC and SOCS among different S.
alterniflora invasion stages. We hope to provide a theoretical
basis for an in-depth understanding of the ecological role of S.
alterniflora in soil improvement and the carbon cycle in
coastal wetlands.
Frontiers in Marine Science | www.frontiersin.org 2
MATERIALS AND METHODS

Study Area
The Beihai coastal wetlands are located north of Beibu Gulf, China.
Beibu Gulf is a closed bay with a total coastline of 1628 km that
experiences a subtropical marine monsoon climate, with an annual
average temperature of 22.0–23.4°C, annual sunshine of 1406–2050
h, and annual precipitationof1250–2755mm.Adiurnal tideoccurs
with an average tidal range of 2–3 m. S. alterniflora was first
introduced into the Dandou Bay wetlands in Beibu Gulf, Guangxi
in 1979, and gradually spread along the adjacent coastline to cover
an increasing area (Pan et al., 2016). S. alterniflora wetlands with
different invasion years in Dandouhai and Yingpan Town in Beibu
Gulf were selected in this study area, and their invasion age range
was determined through Google Earth, Landsat5/6/7 image data,
and GPS positioning. A basic overview of the sample plot obtained
through fieldwork is shown in Table 1.

Sediment Sampling and Sample Treatment
Sample plots of the S. alterniflora community comprising the Beibu
Gulf coastal wetlands at different invasion stages were established in
June 2020 (Figure 1). The plots of SA3, SA12, SA15, SA16-19,
SA26, and MF represent the area of S. alterniflora and mudflats
invading 3a, 12a, 15a, 16-19a, and 26a respectively. Six small sample
plots of 0.25 m2 were established for each year. Then, the entire S.
alterniflora plant was harvested in the small sample plots, the soil
impurities were removed, and the samples were placed into
polyethylene bags that were sealed and immediately transported
to the laboratory to determine their fresh and dry weights. In each
sample plot, 0–60 cm soil columns were collected with a soil
sampler, consisting of 0–20 cm, 20–40 cm, and 40–60 cm
samples that were sealed in polyethylene bags and immediately
transported to the laboratory. Some samples were dried in a cool
and ventilated place indoors, and then, indexes such as SOC,
particle size, total nitrogen (TN), and total phosphorus (TP) were
measured. A portion of the sample was preserved in the refrigerator
for determining the microbial biomass carbon.

The SOC content was determined by the potassium
dichromate external heating oxidation method (NY/T 1121.6-
2006, Ministry of Agriculture, PRC, 2006). The TN and TP were
determined by the Kjeldahl method and molybdenum antimony
resistance spectrophotometry (ly/T 1228-2015 and GB/T 9837-
1988). Soil particle size was determined by an a-weight
hydrometer (NY/T 1121.3-2006, Ministry of Agriculture, PRC,
2006). The classification of particle size is based on the
international soil particle size classification standard, with 3–2
TABLE 1 | The average plant height, density and biomass of Spartina alterniflora
sample plots in different invasive ages.

Invasive ages (a) Plant height (m) Plant density (n/m2) Biomass (g/m2)

3a 0.88 173 2464
12a 1.27 188 3084
15a 0.94 214 5744
16-19a 0.95 169 7632
26a 1.55 141 4484
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mm designated for gravel, 2–0.2 mm for coarse sand, 0.2–0.02
mm for fine sand, 0.020–0.002 mm for silt, and < 0.002 mm for
clay (Tsukada et al., 2008). Microbial biomass carbon was
determined by chloroform fumigation extraction (CFE).

Data Analysis
Soil bulk density (BD, g/cm3) is computed using the following
equation:

BD = g � 100
v

� 100 +MCð Þ (1)

Where g denotes the fresh weight of ring knife soil (g); v denotes
the ring knife volume (100 cm³); MC denotes the moisture
content of the sample (%), which is expressed as:

MC = 100� FW − DWð Þ=FW (2)
Frontiers in Marine Science | www.frontiersin.org 3
Where FW denotes the soil fresh weight; DW denotes the soil
dry weight.

SOCS (t/hm2) is expressed as:

SOCS =on
i Ci � Di � Ei � 0:1 (3)

Where Ci denotes carbon mass fraction in i soil depth (g/kg); Di

denotes the soil BD in i soil depth (g/cm3); Ei denotes thickness
of soil in i soil depth (cm); n denotes the number of soil
depth layers.

Microsoft Excel 2010 and SPSS v23.0 statistical software were
utilized for the data analysis, ANOVA with Tukey HSD post hoc
test was used to analyze the differences of SOC and SOCS among
different soil depth and invasion ages (a = 0.05), and Pearson
correlation analysis was used to determine the correlation among
different indicators (a = 0.05).
FIGURE 1 | Locations of study sites and sampling areas in the Spartina alterniflora wetlands (number behind SA means the invasion ages; MF, mudflat).
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RESULTS

SOC Content in S. alterniflora Wetlands at
Different Invasion Ages
SOC content in the S. alterniflora wetlands (2.65–21.54 g/kg) in
all years was higher than that those in mudflats (0.85–1.19 g/kg).
In 0-20 cm depth, SOC content in S. alterniflora wetlands in 3-
26a was higher than that in mudflats with significantly difference,
and the SOC content increased with the years except for 12a
(Figure 2). SOC content in 20–40 cm depth increased with years
in different stages except for 3a, and there was a significant
difference between 26a and the mudflats, 3a, 12a, and 15a. There
was an obvious accumulation of SOC content over time in soil in
40–60 cm depth, and there was a significant difference between
26a and the mudflats, 3a, 12a, and 15a.

In each invasion age, SOC content in surface was the highest
with significantly difference among 3a, 12a, 15a versus 16–19a,
respectively (Figure 2). The content of SOC in 3a, 15a, and 26a
decreased with increasing soil depth. There was a significant
difference between SOC content in 0–20 cm and those in 20–40
cm, 40–60 cm depth at 12a, 15a, and 16–19a.

SOCS in S. alterniflora Wetlands at
Different Invasion Ages
After 3, 12, 15, 16–19, and 26 years of invasion, the total SOCS
increased by 72.11%, 78.45%, 77.56%, 80.42%, and 90.63%
compared with those in mudflats, respectively, In 0-20 cm
depth, SOCS at five different S. alterniflora invasion ages was
higher than those in the mudflats with significantly difference
(Figure 3). SOCS in 20–40 cm and 40–60 cm showed an
increasing trend with invasion ages except for those in 20–40
Frontiers in Marine Science | www.frontiersin.org 4
cm of 12a. There were significant differences among SOCS in 20–
40 cm and 40–60 cm depth of mudflats, 3a, and 12a versus those
of 15a, 16–19a and 26a.

Vertically, there was an apparent aggregation trend in the soil
surface for the SOCS in each invasion age except for 26a
(Figure 3). The lowest SOCS were found in 20–40 cm depth of
12a, 15a, and 16–19a but not in those of 0–20 cm or 40–60 cm.
Moreover, the highest SOCS in 26a were in 20–40 cm, followed
by those in 0–20 cm and 40–60 cm. There were significant
differences among SOCS in 0–20 cm versus those in 20–40 cm
and 40–60 cm of 12a and 15a.

Correlation Between SOCS
and Physical And Chemical Factors in
S. alterniflora Wetlands
The physical and chemical properties for the soils and their
correlations with SOC, SPCS were displayed in Table 2 and
Table 3 respectively. There was a significant positive correlation
between the SOCS in S. alterniflora wetlands and the MC and
SOC content, total nitrogen (TN), total phosphorus (TP), the
molar ratio of soil organic carbon to total nitrogen (C/N), silt,
and clay, and a significant negative correlation with BD and CS.
The SOC content had significant positive correlation with the
MC, TP, C/N, FS, silt, clay and SOCS, and significant negative
correlation with BD and CS (Table 3).

Further principal component analysis (PCA) showed that the
first and second principal components contributed 60.9% and
12.8% of the cumulative variance, respectively (Figure 4). In the
first principal component, the factor loads of SOC content, silt,
clay and MC were higher. In the second principal component,
the factor loads of pH, FS, and microbial biomass carbon (MBC)
FIGURE 2 | Distribution characteristics of organic carbon content in the soils from different Spartina alterniflora wetlands. Different lowercase letters indicate that
there are significant differences at the same soil depth in different invasion ages. Different capital letters indicate that there are significant differences among different
soil depths in the same invasion age (P < 0.05).
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were higher. Figure 4 shows that physical and chemical factors
such as silt, clay, MC, TN, TP, and C/N in the soil have an
obvious driving effect on the distribution of SOCS in the area
with the longest invasion age (26a). BD and CS play important
roles in driving the change in SOCS in the 3-15a area with a short
invasion age.

Discussion
Effects of S. alterniflora Invasion on
SOC and SOCS
Compared with previous researches, SOC content in S.
alterniflora wetlands in this study was significantly higher than
those in Yancheng, and the Yangtze River Estuary (Liu et al.,
2007; Zhang et al., 2010) in similar invasion ages, and lower than
that in Minjiang River estuary wetlands (Tong et al., 2011; Jin
et al., 2016a). SOC content in surface soil of S. alterniflora in 3a
(6.43 g/kg) was much larger than that in Xinyang port, Yancheng
(1.55 g/kg) (Wang et al., 2013), but smaller than that in Minjiang
estuary (16.9–14.3 g/kg) (Jin et al., 2016a).

The invasion of S. alterniflora changes the carbon cycle
process of the ecosystem (He et al., 2016). In this study, SOCS
in 12a was 4.63 times that in mudflats, and the mean and total
reserves of SOCS in this study exhibited a cumulative effect with
the extension of invasion age except for 12a, which is consistent
with the research results of the SOCS in S. alterniflora in
wetlands at Galveston Island, Texas (Kulawardhana et al.,
2015), USA, and the Yellow River Estuary (Zhang et al., 2018).
SOCS increased at the initial stage of S. alterniflora invasion and
remained in a relatively stable and continuous growth state after
12–15a in this study, which is consistent with the results reported
by Zhang et al. (2010) and Jin et al. (2016a). But the stable time of
Frontiers in Marine Science | www.frontiersin.org 5
SOCS is different due to the regional differences of accumulation
of SOC is different study areas. SOCS reached the highest value
in 26a but did not attain the saturation state in this study. Craft
et al. (1999) reported that saturation of SOCS had not been
reached over 25 years with S. alterniflora invasion in North
Carolina, USA. But in Yancheng, China, Wang et al. (2013)
reported that SOCS tended to be saturated only for 5 years with
S. alterniflora invasion.

Although the sedimentation rate of S. alterniflora wetlands in
this study was not determined, but it could be inferred still that
the depth of 0-20 cm soil were deposited in the study area over
past 20-30 years (Xia et al., 2011; Gan et al., 2013; Xu et al., 2019).
Therefore, surface accumulation history of SOC was consist with
the invasion years of S. alterniflora basically. Generally, surface
soil is greatly affected by the disturbance caused by human
disturbance, while deep soilcan reflect the time accumulation
characteristics of SOC reserves because of less disturbing of
human beings (Feng et al., 2015). The results from most
sample plots in this study showed that the SOCS first
decreased and then increased with the soil depth. The SOCS in
soil with a depth of 40–60 cm in 12a, 15a, and 16–19a was higher
than that in 20–40 cm.

The SOC of S. alterniflora is derived from the periodic
withered organs of plants and floating particles in the sea. The
root system of S. alterniflora is deeply distributed and can even
reach a depth of 100 cm, and the biomass of deep roots provides
the source of SOC for deep soil (Liao et al., 2007). Additionally,
the influence of tidal hydrodynamic forces and the anoxic state
of the bottom environment are not conducive to the
decomposition of SOC by aerobic microorganisms, and the
deep soil is less disturbed by human beings, which promotes
FIGURE 3 | Distribution characteristics of organic carbon storage in the soils from different Spartina alterniflora wetlands. Different lowercase letters indicate that
there are significant differences at the same soil depth in different invasion ages. Different capital letters indicate that there are significant differences among different
soil depths in the same invasion age (P < 0.05).
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the more stable storage of bottom soil carbon (Feng et al., 2015).
The SOCS in topsoil for each year was high (except for 26a), and
the accumulation of SOC in the surface soil was the highest. This
is related to the rich source of topsoil SOC, including the input of
endogenous carbon from plants and exogenous carbon from
seawater (Zhang et al., 2008; Feng et al., 2016).

The C/N of soil can be utilized to assess the source of organic
carbon in wetland soil (Thornton and McManus, 1994). In this
study, the C/N in 26a of this study (15.72–16.18) is greater than
15, which indicates that the SOC source in S. alterniflora
wetlands is mainly from self-input after years of colonization.
In contrast, the C/N in other invasion years was between 2.8–13,
indicating marine sources, which is consistent with the results of
source apportionment of SOC in S. alterniflora wetland by
isotope method in Yangtze Estuary (Wang et al., 2015). The
SOCmainly originated from marine sources at the initial stage of
S. alterniflora settlement. With the extension of invasion age, the
SOC accumulation from the plants themselves was gradually
strengthened. Withering and decay from the roots, stems, and
leaves of S. alterniflora become an important source of SOC,
which also shows that the longer the plant settlement time, the
more conducive the area is to the accumulation of soil nutrients.

Totally, S. alterniflora invasion increased SOCS both in
surface soil and deep soil due to the fast reproduction speed,
high biomass, high vegetation coverage and fast carbon
sequestration effect (Hou et al., 2016; Liu et al., 2017; Bu et al.,
2018). Many domestic scholars have reported that the SOCS in S.
alterniflora wetland is higher than those in native salt marsh
plants (Hang et al., 2014; Zhang et al., 2012; Zhang et al., 2014),
such as Phragmites and Suaeda salsa in the Yellow River Delta
(Du et al., 2022) and Liaohe River (Zhang et al., 2021c). But in
our work, the average SOCS of S. alterniflora (63.75 t/hm2) and
the maximum SOCS of 26a (119.48 t/hm2) are lower than those
in mangrove in Qinglan port, Hainan (302.81 t/hm2) (Lin et al.,
2015) and Qinzhou Bay, Guangxi (181.03 t/hm2) (Tao et al.,
2020). Therefore, it is still necessary to control S. alterniflora
invasion and strengthening native mangrove protection in
northern Beibu Gulf, China.

Effects of Soil Physicochemical Factors on
Soil Carbon Storage in the S. alterniflora
Wetlands at Different Invasion Stages
The SOC in wetlands is derived from siltation, soil humus, plant
litter, and microbial and root exudates, and is the result of the
dynamic balance between input and output under the influence
of various environmental factors (Jin et al., 2016a). In this study,
BD and coarse sand play an important role in driving the change
in SOCS in the early stage of S. alterniflora invasion while TN,
TP, C/N, silt, clay, and water content have an obvious driving
effect on the distribution of SOCS with the extension of
settlement time.

BD is used to measure soil compactness and a reference for
the calculation of SOCS. When there is a high amount of
decomposed and semi-decomposed products from roots and
other withered organs and the granules decompose and promote
siltation, then BD is lower, indicating that the soil is loose,
porous, and higher permeable (Jin et al., 2016a). Then, BD affects
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the decomposition of organic matter by affecting the
permeability of the soil, thus further affecting the SOC content.
In this study, especially with the development process of S.
alterniflora plants and soil, the permeability of the surface soil
was higher than that in the deep soil (Hou et al., 2016). Besides,
BD is significantly correlation with soil texture in our study,
indicating that the higher BD would be with fewer fine-grained
soils. Some studies have shown that the SOCS of S. alterniflora is
affected by the particle size effect, which increases with the
increase in fine-grained sediments because of their large
surface area (Gao et al., 2016). Usually, there is high
adsorption in small particles, and it is easier for them to bind
to root exudates and humus products, which will increase SOCS
(Xia et al., 2021).
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Wetland soil has a high water-holding capacity, which is 2–8
times that of general soil (Xu et al., 2015). In this study, the MC
gradually increases with the years of S. alterniflorain invasion but
decreased with the soil depth. The MC affected the
mineralization and decomposition of organic carbon by
affecting the permeability of the soil, which subsequently
affected the SOC content (Zhao et al., 2018). With the increase
of water in the soil, the activity of aerobic microorganisms was
inhibited, and thus, the decomposition of SOC was inhibited
which is conducive to the accumulation of SOC (Chen et al.,
2018; Ren et al., 2022).

There is a significant positive correlation between SOC
reserves and TN and TP as shown in Table 3, which indicated
that there is a certain growth and decline relationship between
TABLE 3 | Correlation matrix of soil organic carbon storage with other soil physical and chemical factors of Spartina alterniflora.

SOCS BD MC SOC pH TN TP MBC C/N Biomass CS FS Silt

BD -0.689**
MC 0.737** -0.961**
SOC 0.964** -0.834** 0.866**
pH 0.07 -0.046 0.201 0.059
TN 0.845** -0.768** 0.807** 0.870** 0.15
TP 0.794** -0.681** 0.718**· 0.796** 0.469 0.763**
MBC 0.223 -0.258 0.149 0.2 0.044 0.424 0.421
C/N 0.938** -0.717** 0.759** 0.930** 0.04 0.671** 0.735** 0.042
Biomass -0.214 0.278 -0.285 -0.252 0.45 -0.276 0.059 0.034 -0.197
CS -0.689** 0.860** -0.903** -0.815** -0.187 -0.664** -0.691** -0.161 -0.767** 0.081
FS 0.402 -0.672** 0.705** 0.528* 0.345 0.436 0.576* 0.309 0.492 0.167 -0.897**
Silt 0.790** -0.883** 0.925** 0.904** 0.061 0.715** 0.674** 0.014 0.860** -0.215 -0.956** 0.731**
Clay 0.759** -0.872** 0.924** 0.876** 0.085 0.752** 0.658** 0.052 0.796** -0.161 -0.955** 0.753** 0.982**
June 20
22 | Volume
 9 | Article
**, P < 0.01; *, P < 0.05.
FIGURE 4 | Results of PCA analysis of soil organic carbon and other physical and chemical factors among different soils from Spartina alterniflora wetlands with
different invasion age.
890811

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Huang et al. Invasive Spartina Alterniflora Enhances SOCS
SOC, nitrogen, and phosphorus. The increase in nitrogen and
phosphorus can promote the primary productivity of plants, thus
increasing the accumulation of SOC, and the decomposition
process of SOC can promote the release of nitrogen and
phosphorus in soil (Shi et al., 2019). The high C/N will reduce
soil microbial activity, reduce the turnover rate of the activated
carbon pool, reduce the oxidation and loss of SOC, and finally
accelerate the accumulation of SOC and improve the quality of
SOC (Wang et al., 2014).

Most previous studies indicated that SOC derived from plant
biomass of S. alterniflora could increase SOC pool in coastal
wetlands (Li et al., 2009; Jin et al., 2016b; Gao et al., 2016; Yang
et al., 2017). But in this study, there was no significant correlation
between S. alterniflora biomass and SOC (Table 3). Although the
invasion of S. alternifolia would enhance soil dissolved organic
matter (DOM) due to the greater amount of biomass (Zhang
et al., 2019), the contribution of S. alterniflora biomass triggering
SOC pool improvement is site-specific and depends on multiple
environmental factors (Zhang et al., 2021a). Estuary and coast
has the complex environment with periodic hydrological and
hydrodynamic conditions, which would carry organic matter
from both the terrestrial and marine sources (Dong et al., 2020).
In northern Beibu Gulf, suspended and sedimentary organic
matter (OM) mainly derive from freshwater and marine
phytoplankton (Kaiser et al., 2014), while terrestrial matter,
autochthonous inputs include roots and litters of S. alternifolia,
and marine phytoplankton can be considered as the potential
endmembers of the sedimentary OC sources (Zhang et al.,
2021b). Therefore, it is necessary to clear the sources and their
corresponding contribution in order to better understand the
carbon sequestration capacity of S. alterniflora in coastal
wetland ecosystem.
CONCLUSION

The changes of SOC and SOCS in S. alterniflora wetlands at
different invasion stages in northern Beibu Gulf was studied by
substituting space for time in this study. The total SOCS
increased with the years, which showed that it rapidly
increased in the early stage of invasion with a relatively stable
and continuous growth state after 12–15 years of invasion. The
SOC located below 20 cm increased with the years, which
illustrated that the invasion of S. alterniflora not only increased
Frontiers in Marine Science | www.frontiersin.org 8
the surface soil but also the SOCS of deep soil. Soil physical and
chemical properties, including MC, TN, TP, C/N, silt, and clay,
were the main driving factors for the occurrence of SOC and
SOCS in different depth and invasion ages. The SOC source
would be mainly input by plants themselves in 26a but was
imported by marine sources in other invasion ages. Conclusions
derived from this study are limited by the lack of sources of SOC,
including DOM and POM, and accurate sedimentation rates.
Therefore, it is necessary to establish long-term and
comprehensive observation to track the succession and
development process of S. alterniflora, and focus on the action
mechanism of factors relevant to SOC.
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