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In order to investigate the effects of razor clams (Sinonovacula constricta) on the food
composition and isotopic niches of swimming crabs (Portunus trituberculatus) and
kuruma shrimp (Marsupenaeus japonicus) in polyculture systems, this study analyzed
60 P. trituberculatus, 60 M. japonicus and 30 S. constricta to quantify the food sources,
food source contributions, and isotopic niches of cultured organisms using 18S rDNA
barcoding and stable isotope techniques. The results were as follows: (1) In the P.
trituberculatus-M. japonicus (PM) polyculture system, the Sobs and Shannon-Wiener
indices of the stomach contents of P. trituberculatus and M. japonicus were not
significantly different (P > 0.05). In the P. trituberculatus-M. japonicus-S. constricta
polyculture (PMS) system, the Sobs and Shannon-Wiener indices of the stomach
contents of P. trituberculatus and M. japonicus were also not significantly different (P >
0.05), but the Sobs indices of P. trituberculatus in the PMS system were significantly
higher than those in the PM system (P < 0.05), M. japonicus shows a similar pattern. (2)
18S rDNA barcoding analysis showed the dominant taxa in the stomach contents of both
P. trituberculatus and M. japonicus in the PM system were Trebouxiophyceae,
Embryophyta and Rotifera, and the food overlap between them was 0.8992, which
was significant (Q > 0.6). In the PMS system, the dominant taxa in the stomach contents of
P. trituberculatus were Chrysophyceae, Intramacronucleata, and Embryophyta, and inM.
japonicus were Chrysophyceae, Embryophyta, and Bacillariophyceae, in this system the
food overlap was 0.2061, which was not significant (Q < 0.6). (3) Stable isotope analysis
suggested, in both systems, the main food sources of P. trituberculatus andM. japonicus
were iced trash fish, zooplankton, phytoplankton, and organic particulate matter (POM).
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Iced trash fish accounted 77.67% of food sources for P. trituberculatus and 69.42% forM.
japonicus in the PM system, and 60.82% and 57.60% in the PMS system. (4) The isotopic
niche overlap between P. trituberculatus and M. japonicus was 5.69% in the PM system
and 1.21% in the PMS system. These results suggested food competition between P.
trituberculatus and M. japonicus, and S. constricta can reduce the competition and
isotopic niche overlap, improve the contribution of food sources such as phytoplankton.
Razor clams also serve to purify the water and improve the utilization of iced trash fish by
filtering phytoplankton (51.10%), POM (32.25%), SOM (7.47%), and iced trash fish
(9.18%). Thus, P. trituberculatus-M. japonicus-S. constricta is a healthy and sustainable
culture model.
Keywords: Portunus trituberculatus, integrated pond culture, 18S rDNA barcoding, stable isotope,
food composition
INTRODUCTION

Portunus trituberculatus, commonly known as the swimming
crab, belongs to Crustacea, Decapoda, and Portunidae, and is
widely distributed in the Yellow and Bohai Seas and the East
China Sea (Dai et al., 1986). Farm production of P.
trituberculatus in China reached 113,800 t in 2019, accounting
for 41.5% of the farm production of marine crabs (The Ministry
of Agriculture Fishery and Fishery Administration, 2021). P.
trituberculatus is an important seawater pond cultured species,
and is usually polycultured with Pacific white shrimp
(Litopenaeus Vannamei), kuruma shrimp (Marsupenaeus
japonicus), razor clams (Sinonovacula constricta), Manila clams
(Ruditapes phil ippinarum) , and redlip mullet (Liza
haematocheila) (Wang et al., 2009; Zhou et al., 2010; Wang,
2011). P. trituberculatus and M. japonicus can co-exist well in a
system due to their different physiological characteristics and
food processing methods (Dai et al., 1986; Pérez-Farfante and
Kensley, 1997; Buck et al., 2003; Wang et al., 2009; Wang, 2011),
improving space utilization and production, iced trash fish are
fed in production. Most of the studies about polyculturing P.
trituberculatus and M. japonicus have focused on the effects of
environmental factors or microbial communities on the
ecosystem (Dong, 2013; Ban, 2015). The food habits and
trophic niches of P. trituberculatus and M. japonicus are
similar (Brzeski and Newkirk, 1997; Yang, 2001; Gao et al.,
2020; Tao et al., 2020), but there is a lack of quantitative food
source analysis between them in polyculture systems.

Filter-feeding bivalves have become the main species in
polyculture seawater ponds due to their ability to improve
water quality (Dong et al., 1999), increase nutrient utilization
efficiency (Vaughn and Hakenkamp, 2010; Guo et al, 2017),
improved survival rate of co-cultured animals (Mckindsey et al.,
2007; Vaughn and Hakenkamp, 2010), and enhance the stability
of culture systems (Wang, 2011). The effects of filter-feeding
bivalves on plankton community structure in pond water and
nitrogen and phosphorus budgets in culture systems have been
reported (Yang, 1998; Dong et al., 1999; Zhang et al., 2015; Guo
et al., 2017), but their effects on food resources of cultured
organisms in polyculture systems have rarely been addressed.
in.org 2
In this study, we combined 18S rDNA barcoding and stable
isotope techniques with samples collected at the middle of the
culture period (October) as experimental material to quantify the
food sources, contributions, and isotopic niches of cultured
organisms in a P. trituberculatus-M. japonicu (PM) system and
a P. trituberculatus-M. japonicu-S. constricta (PMS) system,
investigate the feasibility of polyculturing P. trituberculatus
with M. japonicu and the effect of S. constricta on their food
sources and isotopic niches. Our objectives were to (1) describe
food competition between P. trituberculatus and M. japonicu,
and (2) determine whether polyculturing S. constricta affected
food competition between P. trituberculatus and M. japonicu.
The results of this study can provide a scientific basis for rational
combination of cultured organisms in integrated ponds with
P. trituberculatus.
MATERIALS AND METHODS

Pond Management
The experiment was conducted on Changbai Island (30°11′
15.22″N, 122°2′40.95″E), Zhoushan, Zhejiang Province, China,
which has a subtropical monsoon climate with an annual average
temperature of 16.1 ~ 16.4 °C and an average precipitation of
1442.9 mm. The experimental pond covered an area of 1.33 ha
with an average water depth of 1.2 m. The culture models are P.
trituberculatus-M. japonicu (PM) and P. trituberculatus-M.
japonicu-S. constricta (PMS). In July 2020, 50 kg of healthy S.
constricta (shell length: SL = 1.85 ± 0.14 cm, mean ± SD, n = 53)
with uniform size were stocked, 10 kg of vigorous juvenile P.
trituberculatus (carapace width: CW = 0.41 ± 0.02cm, mean ±
SD, n = 82) and 26 kg of energeticM. japonicus (body length: BL
= 1.02 ± 0.07cm, mean ± SD, n = 64) with sound appendages
were stocked after half a month (Dong et al., 2021). 40kg of iced
trash fish, including fish (Nibea albiflora and Trachinotus
blochii), shrimp (Oratosquilla oratoria and Solenocera
crassicornis), and crab (Portunus pelagicus) were provided daily
at 17:00. Water was changed 1-2 times per month, 30% each
time. Sediment consists mainly of mud, with very low levels of
benthic microalgae and benthos. The experimental period was
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from July 2020 to January 2021, and the ranges of water
temperature, salinity, dissolved oxygen and transparency
during the period were 6.5 ~ 34.0°C, 14.5 ~ 19.0, 6.0 ~ 12.3
mg/L and 40~100 cm, respectively.

Sample Collection and Treatment
Samples of cultured organisms (P. trituberculatus, M. japonicus
and S. constricta) and potential food sources (iced trash fish,
zooplankton, phytoplankton, POM and SOM) were collected on
October 13, 2020. 30 each of P.trituberculatus (carapace width:
CW = 14.76 ± 1.74 cm, mean ± SD, n = 60) and M. japonicus
(body length: BL = 11.02 ± 1.13 cm, mean ± SD, n = 60) in the
PM system, and 30 each of P.trituberculatus (carapace width:
CW = 20.07 ± 3.55 cm, mean ± SD, n = 60), M. japonicus (body
length: BL = 12.05 ± 1.78 cm, mean ± SD, n = 60) and S.
constricta (shell length: SL = 8.94 ± 1.44 cm, mean ± SD, n = 90)
were collected. The pond is divided into 5 points according to the
diagonal line to collect mixed water samples of 10 L each,
zooplankton and phytoplankton were collected by filtering 50
L water through No. 13 (20 cm mouth diameter, 112 mm mesh
size) and No. 25 (20 cm mouth diameter, 64 mm mesh size)
plankton nets, respectively, and the filtrate was extracted onto
pre-cauterized (500°C, 5 h) Whatman GF/F membranes for
POM. SOM were collected from 1–2 cm of the sediment
surface with a column collector. All samples were stored on
dry ice for rapid transport back to the laboratory.

Stomach contents were collected in 5 mL lyophilized tubes
and transferred to -80°C storage for subsequent 18S rDNA
analysis. The foot muscles of S. constricta, cheliped muscles of
P. trituberculatus, abdomen muscles of M. japonicus (Hill and
Mcquaid, 2009), and all muscles of iced trash fish were treated
with 1 mol/L hydrochloric acid and then rinsed with distilled
water. Muscles and filter membranes containing samples were
dried in a 60 °C oven (DGG-9140A) to constant weight. Muscle
samples were ground into powder and collected in 1.5 mL
centrifuge tubes, and then stored in a desiccator for subsequent
stable isotope analysis.

18S rDNA Barcoding Analysis
Genomic DNA extraction from stomach contents was performed
using the E.Z.N.A.® soil DNA kit, the quality of extraction was
detected using 1% agarose gel electrophoresis, and DNA
concentration and purity were evaluated using NanoDrop2000.
PCR amplification of the variable V4 region of the 18S rDNA
gene was performed using the universal primers TAREF (5′-
CCAGCASCYGCGGTAATTCC-3 ′) and TARER (5 ′-
ACTTTCGTTCTTGATYRA-3 ′ ) wi th the fo l lowing
amplification procedure: 95°C pre-denaturation for 3 min, 27
cycles (95°C denaturation for 30 s, 55°C). The PCR reaction
system was as follows: 5 × TransStart FastPfu buffer 4 mL, 2.5
mM dNTPs 2 mL, upstream primer (5 uM) 0.8 mL, downstream
primer (5 uM) 0.8 mL, TransStart FastPfu DNA polymerase 0.4
mL, template DNA 10 ng, made up to 20 mL for three replicates
per sample. The PCR products were mixed and recovered on 2%
agarose gels, purified using the AxyPrep DNA Gel Extraction Kit
(Axygen BioPMiences, Union City, CA, USA), and detected
using 2% agarose gel electrophoresis. The recovered products
Frontiers in Marine Science | www.frontiersin.org 3
were quantified using a Quantus™ Fluorometer (Promega,
USA). Libraries were built using NEXTFLEX Rapid DNA-Seq
Kit and sequenced using Illumina’s Miseq PE300 platform.

Stable Isotope Analysis
All samples were wrapped in aluminum foil and sent to the stable
isotope ratio mass spectrometer (Delta V Advantage, Thermo
Fisher PMientific, Inc.) for analysis. The carbon and nitrogen
stable isotope values were based on the international reference
materials PDB (Pee Dee Belemnite) and atmospheric N2,
respectively. Stable isotope abundances were expressed in delta
(d) notation as the deviation from the standards in parts per
thousand according to the following equation:

d  X  = Rsample=Rstandard

� �
− 1

� �� 1000‰

where X is the isotope (13C or 15N), Rsample is the stable isotope
ratio 13C/12C or 15N/14N of the sample, and Rstandard is the
isotope ratio of the standard.

Calculation of the Competition
The competition between cultured organisms can be expressed
by food overlap with the following equation:

Qxy =
o Pxk · Pyk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oP2

xk ·oP2
yk

q

where Qxy denotes the food overlap of organisms x and y and
values range from 0 (no overlap) to 1 (complete overlap). k is the
common food of both organisms, and Pxk and Pyk are the weight
(or volume, quantity) percentages of food k in the food
composition of organisms x and y, respectively (all are
calculated as quantity percentages in this paper). When Qxy >
0.6, food overlap is significant and there is serious competition
(Wallace, 1981). DNA barcoding results are presented in the
form of sequences and divided into different OTUs (Operational
taxonomic units), then compared OTU representative sequences
with the NCBI database to annotate the species classification
information. The proportion of each representative OTUs to the
total OTUs is the abundance, in accordance with the formula.

The competition between cultured organisms can also be
expressed by the overlap of isotopic niches with the following
equation:

Overlap % =
A0

Ax + Ay − AO
� 100

where Overlap % indicates the similarity of resource utilization
and potential competition of organisms x and y, Ax and Ay are
the isotopic niche area of organisms x and y, and AO is the
overlapping area of isotopic niches of organisms x and y (Ogloff
et al., 2019).

Data Analysis
Owing to the presence of interference data, the original data were
spliced and filtered to generate more accurate and reliable data
for analysis. Sequences were classified as operational taxonomic
units (OTUs) at 97% sequence similarity level by UPASE
April 2022 | Volume 9 | Article 884968
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(version 7.1). The taxonomy of each OTU representative
sequence was analyzed using RDP Classifier against the Silva
database with a confidence threshold of 0.7.

An SIAR (stable isotope analysis in R) linear mixed model
was used to analyze the contribution of different food sources to
consumers, and benthos were not considered in the calculation
due to their low abundance in the sediment. Aquatic omnivores
took muscle tissue, and D13C was taken as 1.3‰ ± 0.3‰ without
lipid removal. The value of D13C was taken as 1.5‰ and D15N as
2.5‰ for S. constricta (Mccutchan et al., 2003). The stable
isotope Bayesian ellipses in R (SIBER) were used to calculate
the isotopic niche (standard elliptical area, SEA; convex hull area,
TA) of cultured organisms and their overlapping area (OA)
(Jackson et al., 2011). In this paper, we calculate the
proportion of the overlap to the niche, and to keep the sample
size consistent, the niche is calculated using the standard ellipse
area (SEA). The data obtained were analyzed using the MATLAB
software. The anova1 function was used for one-way ANOVA to
check whether the stable isotope values had the same mean
values at a significance level of P < 0.05. The plotting software
was ORIGIN2020.
RESULTS

a-Diversity of the Stomach Contents of
Cultured Organisms
The Sobs index and Shannon-Wiener index reflect the
abundance and diversity of species communities, respectively
(Beck, 2010). In the PM system, the Sobs indices of the stomach
contents of P. trituberculatus and M. japonicus were 30.5 and
31.0 (Figure 1A), and the Shannon-Wiener indices were 2.09
and 1.95 (Figure 1B), respectively, none of these differences were
statistically significant (P > 0.05). In the PMS system, the Sobs
indices of the stomach contents of P. trituberculatus and M.
japonicus were 51.6 and 50, and the Shannon-Wiener indices
were 2.04 and 1.87, respectively. Likewise, none of these
differences were statistically significant (P > 0.05). There were,
however, significant differences between the Sobs indices of the
stomach contents of both P. trituberculatus and M. japonicus in
the two systems (P < 0.05). There was no significant difference
between the Shannon-Wiener indices (P > 0.05). The Sobs index
of the stomach contents of S. constricta was 48.7 and the
Shannon-Wiener index was 0.80.

The Main Eukaryotic Composition of the
Stomach Contents of Cultured Organisms
In the PM system, 39 phyla and 68 classes were identified in the
stomach contents of P. trituberculatus, and the dominant taxa were
Trebouxiophyceae, Embryophyta and Rotifera with relative
abundances of 30.88%, 19.46% and 11.95%, respectively
(Figure 2A). A total of 25 phyla and 40 classes were identified in
the stomach contents of M. japonicus. Trebouxiophyceae,
Embryophyta and Rotifera were the dominant taxa, with relative
abundances of 47.66%, 18.38% and 13.46%, respectively
(Figure 2B). In the PMS system, 32 phyla and 58 classes were
Frontiers in Marine Science | www.frontiersin.org 4
identified in the stomach contents of P. trituberculatus, and the
dominant taxa were Chrysophyceae, Intramacronucleata and
Embryophyta, with relative abundances of 61.37%, 15.70% and
11.81%, respectively (Figure 2C). 36 phyla and 61 classes were
identified in the stomach contents ofM. japonicus. Chrysophyceae,
Embryophyta and Bacillariophyceae were the dominant taxa, with
relative abundances of 38.99%, 28.32% and 13.30%, respectively
(Figure 2D). 36 phyla and 70 classes were identified in the stomach
contents of S. constricta, and the dominant taxa were Dinophyceae,
Trebouxiophyceae and Chrysophyceaewith relative abundances of
48.32%, 26.18% and 14.57%, respectively (Figure 2E).

In the PM system, the stomach contents of P. trituberculatus
andM. japonicus had a total of 199 OTUs and 38 common OTUs
(Figure 3), and the food overlap was 0.8992, indicating severe
competition (Q > 0.6). In the PMS system, the stomach contents
of P. trituberculatus and M. japonicus had a total of 191 OTUs
and 19 common OTUs, with a non-significant food overlap of
0.2061 (Q < 0.6).

Stable Isotope Characteristics of
Cultured Organisms
The d13C and d15N of P. trituberculatus in the PMS system were
-16.54 ± 0.86‰ and 11.18 ± 0.59‰, respectively, and were
significantly lower than those of P. trituberculatus in the PM
A

B

FIGURE 1 | Sobs (A) and Shannon-Wiener (B) indices of stomach contents
of cultured organisms. Dark Gray represents the PM system and light gray
represents the PMS system; P represents P. trituberculatus; M represents
M. japonicus; S represents S. constricta; * indicates significant difference
among groups (P < 0.05).
April 2022 | Volume 9 | Article 884968

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Xu et al. Roles of Bivalves on Crustaceans
system (d13C = -15.78 ± 0.36‰ and d15N = 12.05 ± 0.62‰) (P <
0.05, Table 1). The d13C and d15N of M. japonicus in the two
systems were not significantly different (P > 0.05), and the d13C
and d15N of S. constricta were -26.85 ± 0.75‰ and 4.07 ±
0.38‰, respectively.

Contributions of Different Food Sources to
Cultured Organisms
An SIAR linear mixed model was used to analyze the
contributions of different food sources to the cultured
organisms (Figure 4) and showed that the main food sources
of P. trituberculatus and M. japonicus included iced trash fish,
zooplankton, phytoplankton, and POM. Their contributions to
P. trituberculatus in the PM system were 77.67%, 3.78%, 8.22%,
and 10.34%, respectively, and their contributions toM. japonicus
in the PM system were 69.42%, 1.86%, 6.76%, and 21.97%,
respectively. Their contributions to P. trituberculatus in the
PMS system were 60.82%, 2.40%, 17.54%, and 19.24%,
respectively, and their contributions to M. japonicus in the
Frontiers in Marine Science | www.frontiersin.org 5
PMS system were 57.60%, 2.03%, 18.62%, and 21.74%,
respectively. The main food sources of S. constricta included
phytoplankton (51.10%), POM (32.25%), SOM (7.47%), and iced
trash fish (9.18%).

Isotopic Niches of Cultured Organisms
In both culture systems, each cultured organism occupied a
unique niche space (Figure 5). In the PM system, SEA and
Overlap for P. trituberculatus and M. japonicus were 0.687,
0.197, and 0.046, with a niche overlap of 5.69%. In the PMS
system, SEA and Overlap for P. trituberculatus and M. japonicus
were 1.658, 0.343, and 0.024, with a niche overlap of 1.21%. The
SEA of S. constricta was 0.888, and did not overlap with either P.
trituberculatus orM. japonicus. It is noteworthy that the width of
the isotopic niches of both P. trituberculatus andM. japonicus in
the PMS system expanded relative to the PM system, and the
isotopic niche of P. trituberculatus shifted down obviously.
DISCUSSION

Food Sources of P. trituberculatus and
M. japonicus
Currently, DNA barcoding technologies such as COI
(mitochondrial cytochrome oxidase subunit I gene), ITS
(internal transcribed spacer region within ribosomal rRNA
gene) and 18S rDNA (DNA encoding the small subunit RNA
of eukaryotic ribosomes) are widely used to analyze the diets of
aquatic animals. 18S rDNA is the most commonly used
technology due to its more complete database and better
classification ability (Bachy et al., 2013; Leray et al., 2013). 18S
rDNA can solve the problem of indistinguishable food fragments
from morphological identification, leading to more
comprehensive identification of the diets of study subjects
(Redmond et al., 2013) and the discovery of easily-overlooked
A

B

FIGURE 3 | Distribution of OTUs of the stomach contents of P.trituberculatus
and M.japonicus in the PM (A) and PMS (B) systems. Blue circle represents
P.trituberculatus and red circle represents M.japonicus.
A B

D

E

C

FIGURE 2 | Main eukaryote compositions of stomach contents of cultured
organisms. (A) Main eukaryote compositions of stomach contents of
P. trituberculatus in the PM system; (B) Main eukaryote compositions of
stomach contents of M. japonicus in the PM system; (C) Main eukaryote
compositions of stomach contents of P. trituberculatus in the PMS system;
(D) Main eukaryote compositions of stomach contents of M. japonicus in the
PMS system; (E) Main eukaryote compositions of stomach contents of S.
constricta in the PMS system.
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food sources (Rorke et al., 2012), with obvious advantages in
terms of data volume, sensitivity, and resolution (Liu et al., 2018).
This technique has been applied to food composition studies in
sea cucumber (Apostichopus japonicus) and red rock lobster
(Jasus edwardsii) (Rorke et al., 2012; Zhang et al., 2016). In
this study, we found that the dominant taxa in the stomach
contents of both P. trituberculatus and M. japonicus in the PM
system included Trebouxiophyceae, Embryophyta, and Rotifera,
and their total abundances were 62.29% and 79.50% (Figure 2),
respectively. The dominant taxa in the stomach contents of P.
Frontiers in Marine Science | www.frontiersin.org 6
trituberculatus and M. japonicus in the PMS system included
Chrysophyceae, Intramacronucleata, and Embryophyta, and
their total abundances were 88.88% and 79.84%, respectively.
That result differed from the stomach contents of shrimp and
crabs observed by Yang (2001) may be related to the feeding of
iced trash fish and the low abundance of benthos (not collected
in this experiment) in this experimental pond. There were no
significant differences (P > 0.05) in either the Sobs or Shannon
indices of stomach contents of P. trituberculatus or M.
japonicus between the two systems (Figure 1), indicating that
TABLE 1 | d13C and d15N of cultured organisms (‰).

Cultured organisms Stable isotopes Culture systems

PM PMS

P.trituberculatus d13C -15.78 ± 0.36a -16.54 ± 0.86b

d15N 12.05 ± 0.62a 11.18 ± 0.59b

M. japonicus d13C -16.57 ± 0.40 -16.68 ± 0.41
d15N 11.65 ± 0.16 11.57 ± 0.27

S. constricta d13C -26.85 ± 0.75
d15N 4.07 ± 0.38
April 2022 | Volume 9 |
PM represents P. trituberculatus-M. japonicus system; PMS represents P. trituberculatus-M. japonicus-S. constricta system. Significant differences (P < 0.05) between PM and PMS are
indicated by different letters.
A B

D

E

C

FIGURE 4 | Contributions of different food sources to cultured organisms. (A) Contributions of different food sources to P. trituberculatus in the PM system;
(B) Contributions of different food sources to M. japonicus in the PM system; (C) Contributions of different food sources to P. trituberculatus in the PMS system;
(D) Contributions of different food sources to M. japonicus in the PMS system; (E) Contributions of different food sources to S. constricta in the PMS system.
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their food sources are quite similar, likely due to their
omnivorous and carnivorous nature (Dai et al., 1986; Pérez-
Farfante and Kensley, 1997).

Although the 18S rDNA barcoding technique has clear
advantages in diet analysis of farmed animals, the degree of
digestion of food by predators can limit its detection intensity
(Albaina et al., 2010; Traugott et al., 2020). Stable isotope
techniques can reveal trophic relationships between consumers
and prey based on their isotope ratio relationships, and can
reveal the diets of organisms over a longer period of time, serving
as both a complement and correction to 18S rDNA barcoding
(Post, 2002; Boecklen et al., 2011; Nielsen et al., 2018). Nelson
et al. (2017) used DNA barcoding and stable isotope techniques
to compare the feeding habits of different fish. Georgina et al.
(2022) used both techniques, founding that the main
contribution to the diet of the green crab (Carcinus maenas)
came from phytoplankton. Combining these two methods not
only identifies the prey being ingested, but also provides
information on what is being absorbed.

In this study, the diets of P. trituberculatus and M. japonicus
in both systems consisted primarily of iced trash fish,
zooplankton, phytoplankton, and POM, with iced trash fish
contributing the most (57.60%-77.67%) (Figure 4). Iced trash
fish is nutritious, palatable, and easily available. The crustaceans
provide calcium for P. trituberculatus and M. japonicus to form
new shells during the molting period (Mykles and Skinner, 1982;
Chang et al., 1993), and the fish provide protein and essential
micronutrients (Gasco et al., 2018), therefore iced trash fish can
meet essential growth needs. POM was the second most
important food source, accounting for 10.34%-21.97% of P.
trituberculatus and M. japonicus diets. POM is an organic
particulate matter formed via microbial fermentation of
Frontiers in Marine Science | www.frontiersin.org 7
plankton, feces, and residual bait (Liu, 1999). experimental
ponds were likely too large to utilize iced trash fish fully, and
POM were formed through biological action and ingested by P.
trituberculatus andM. japonicus. In cases of excess animal-based
bait, consumers will choose plant-based bait, which is lacking in
the main diet, for nutritional supplementation, thus increasing
the palatability of food and promoting nutritional balance and
growth (Buck et al., 2003). This is likely the reason that
phytoplankton acted as the third food source for P.
trituberculatus and M. japonicus, accounting for 6.76%-18.62%
of their diets. The smallest contribution of food sources in this
study was zooplankton, perhaps due to its lower nutritional value
relative to iced trash fish and its swimming nature (Genin et al.,
2005). Isotopic niche is a means of describing trophic niche that
reflects the trophic positions of organisms and the degree of
competition for resources among populations (Abrams, 1980;
Layman et al., 2007a; Post et al., 2007). In this experiment, the
isotopic niches of P. trituberculatus and M. japonicus in both
systems overlapped, indicating competition for resource
utilization between them (Layman et al., 2007a). Therefore,
18S rDNA and stable isotope techniques analyses revealed
competition for food resources between P. trituberculatus and
M. japonicus in the ponds. Both P. trituberculatus and M.
japonicus are basically living at the bottom of the pond, and
they have similar foraging times (Dai et al., 1986; Pérez-Farfante
and Kensley, 1997). However, because their feeding methods
differ (P. trituberculatus use chelipeds to process food and then
ingest it, and some food scraps can be used byM. japonicus) and
they use the same resources in different ways (Kassen, 2002),
there is less competition for food resources, and the bait
utilization rate is improved. Thus, it is feasible to polyculture
M. japonicus in P. trituberculatus ponds.
A B
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FIGURE 5 | Stable isotopic niches of cultured organisms. (A) Stable isotopic niches of cultured organisms in the PM system; (B) Stable isotopic niches of cultured
organisms in the PMS system; (C) Stable isotopic niches of P. trituberculatus in the PM and PMS systems; (D) Stable isotopic niches of M. japonicus in the PM and
PMS systems.
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Effect of S. constricta on Food
Composition and Isotopic Niche of
P. trituberculatus and M. japonicus
In the PM system, the dominant taxa in the stomach contents of P.
trituberculatus and M. japonicus were mainly Trebouxiophyceae,
Embryophyta, and Rotifera, and the food overlap was obvious
(Figure 3, Q > 0.6). After polyculturing with S. constricta, the
dominant taxa in the stomach contents of P. trituberculatus were
Chrysophyceae, Intramacronucleata, and Embryophyta. The
abundance of Chrysophyceae in the stomach contents of M.
japonicus increased significantly, and the abundance of
Embryophyta and Bacillariophyceae decreased significantly,
resulting in a decrease in food overlap (Q < 0.6), and indicating
that adding S. constricta in the PM system could change the food
composition ofP. trituberculatus andM. japonicus and reduce food
competition. This change may be related to the growth and
metabolism of S. constricta, which changed the phytoplankton
community structure in the culture water and increased
phytoplankton diversity (Yang, 1998; Dong et al., 1999).

The d13C and d15N values of P. trituberculatus were
significantly different in the two systems (Table 1, P < 0.05),
indicating that P. trituberculatus food sources differed
significantly (Deniro and Epstein, 1981). The higher d15N in
the PM system was likely a result of the consumption of more
high - d15N food (iced trash fish), while the lower d13C in the
PMS system was likely a result of the consumption of more low -
d13C food (phytoplankton). This indicates that polyculturing
with S. constricta can increase the contribution of phytoplankton
to P. trituberculatus’ diet. Salman et al. (2008) found that plant -
based sources facilitated the increase of bioflocs in the
environment, which mainly consisted of residual bait,
zooplankton, phytoplankton, and POM, and this corroborated
the explanation for increased overall contributions of
zooplankton, phytoplankton, and POM in PMS systems (Li
et al., 2018). This may be related to the fact that individuals
with higher d15N tend to be larger within the same consumer
population (Wilsona et al., 2009).

Species with wider niches are more adaptable to the
environment, and expanding niche width can improve the risk
resistance of cultured organisms and make their systems more
stable (Layman et al., 2007b; Rossi et al., 2015). In this experiment,
the contributions of different food sources to P. trituberculatus in
the two systems differed significantly; the contribution of iced
trash fish to P. trituberculatus in the PMS system decreased by
about 18%, while the total contribution of phytoplankton and
POM increased by about 18%, indicating significant reduction and
expansion of the isotopic niche of P. trituberculatus. In addition,
the isotopic niche overlap of P. trituberculatus and M. japonicus
decreased from 5.69% to 1.21% (Figure 5, Table 2), indicating that
polyculturing S. constricta in the PM system can weaken food
competition. S. constricta not only reduced food competition
between P. trituberculatus and M. japonicus, but also filtered a
total of 48.90% of POM, SOM, and iced trash fish, which had a
significant water purification effect. Therefore, the polyculture of
P. trituberculatus, M. japonicus and S. constricta is a healthy and
sustainable culture model.
Frontiers in Marine Science | www.frontiersin.org 8
CONCLUSION

The food composition of P. trituberculatus and M. japonicus in
two systems did not differ much, and both main food items were
iced trash fish, phytoplankton, zooplankton and POM.
Polyculturing S. constricta improved the contribution of plant -
based sources, reduced the food competition and isotopic niche
overlap between P. trituberculatus and M. japonicus. And S.
constricta filtered phytoplankton, POM, SOM and iced trash fish
to purify water and improve the utilization of iced trash fish.
From the food composition and isotopic niche analysis, P.
trituberculatus-M. japonicus-S. constricta integrated culture
model is healthier and more feasible.
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TABLE 2 | SEA, TA and Overlap of isotopic niches of cultured organisms.

Culture systems Cultured organisms SEA TA OA

PM P. trituberculatus 0.687 1.396 0.046
M. japonicas 0.197 0.404

PMS P. trituberculatus 1.658 3.461 0.024
M. japonicus 0.343 0.765
S. constricta 0.888 1.387
April 2022
 | Volume
 9 | Article 8
PM represents P. trituberculatus-M. japonicus system; PMS represents P. trituberculatus-
M. japonicus-S. constricta system. SEA represents standard elliptical area; TA represents
convex hull area; OA represents overlapping area.
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