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Saltmarshes can sequester atmospheric CO2 in sediments, but limited studies have
quantified porewater-derived carbon exports and identified related carbon sources. Here,
we estimated porewater exchange, carbon outwelling, and greenhouse gas emissions in
a subtropical multi-species saltmarsh. The radon-based porewater exchange rate was
estimated to be 5.60 ± 2.78 cm d-1. As the most dominant (~90%) carbon species,
dissolved inorganic carbon (DIC) fluxes through porewater exchange and outwelling were
447 ± 227 and 1200 ± 61mmol m-2 d-1, respectively, which were 1.2 and 3.2 times that of
carbon burial. As most DIC can remain in the ocean for a long time, porewater-derived DIC
outwelling represents another important carbon sink, in addition to carbon burial. CO2 and
CH4 emissions from creek water were 54.6 ± 0.5 and 0.19 ± 0.01 mmol m-2 d-1,
respectively, which could offset 16% of carbon burial. The d13C and C/N ratios suggest
that saltmarsh organic carbon mainly originates from the C3 plant Scirpus mariqueter
rather than the C4 plant Spartina alterniflora. Overall, we suggest that porewater-derived
DIC outwelling is an important long-term carbon sink in multi-species saltmarshes,
providing a scientific basis for the protection and restoration of saltmarshes in the
context of global climate change.

Keywords: saltmarsh biodiversity, carbon sequestration, coastal blue carbon, lateral carbon exports, carbon
budget, C3 and C4 plant species, carbon isotope d13C, Hangzhou Bay
1 INTRODUCTION

Vegetated saltmarshes are crucial coastal blue carbon ecosystems with high carbon stocks and
sequestration (McLeod et al., 2011). Atmospheric CO2 photosynthetically sequestered via saltmarsh
vegetation can be stored in biomass and then buried in sediments (Duarte et al., 2005; Lo Iacono
et al., 2008). Although saltmarshes and other coastal wetlands, such as mangroves and seagrasses,
cover only 0.2% of the global ocean surface, 50% of the carbon burial in ocean sediments originates
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from these coastal wetlands (Duarte et al., 2013). While
saltmarshes are considered an important carbon sink, sediment
carbon would potentially release from soil (Herrmann et al.,
2015; Najjar et al., 2018). Microorganisms can cause
decomposition of some sediment carbon into greenhouse gases
(e.g., CO2 and CH4) and organic/inorganic carbon matter (Tang
et al., 2018; Chen et al., 2020b). Then, these decomposed carbon
species can be partially released into the adjacent ocean through
porewater exchange (Santos et al., 2019; Liu et al., 2021;
Tamborski et al., 2021; Chen et al., 2022; He et al., 2022).
Globally, considerable amounts of carbon were transported
into coastal waters through mangrove groundwater flow, which
accounts for 29–48% of global riverine export to the ocean (Chen
et al., 2018). However, limited studies focus on porewater-
derived carbon exports and greenhouse gas emissions in
saltmarsh ecosystems.

The flow of water through continental and insular margins,
from the seabed to the coastal ocean, was defined as submarine
groundwater discharge (Taniguchi et al., 2019). In saltmarshes,
submarine groundwater discharge mainly relates to processes
with sub-meter length scale (i.e., tidal and wave pumping, shear
flow, and ripple migration), which can be more specific to
porewater exchange (Taniguchi et al., 2019; Garcia-Orellana
et al., 2021). As the surface water-groundwater exchange in
coastal wetlands is mainly seawater circulation rather than
fresh groundwater discharge, to emphasize the seawater
circulation process in the root zone of coastal wetlands, the
surface water-groundwater exchange is usually expressed by
porewater exchange (e.g., Tait et al., 2016; Santos et al., 2019;
Chen et al., 2021b; Chen et al., 2022; Wang et al., 2022). The
interaction between porewater/groundwater and surface water is
significantly affected by bioturbations, such as crab burrows (Xin
et al., 2009; Xiao et al., 2020; Santos et al., 2021b; Xin et al., 2022).
Quantifying the porewater exchange rate is essential to
determine the transportation of carbon species across the
sediment-water interface. Radon (222Rn) is a useful natural
radioisotope for quantifying carbon exports associated with
porewater exchange by integrating 222Rn fluxes that occur
within a broad area of influence (Correa et al., 2021). 222Rn
has been employed to estimate porewater exchange rates and
related carbon fluxes in mangroves (Chen et al., 2018; Taillardat
et al., 2018; Chen et al., 2021a; Wu et al., 2021) and saltmarshes
(Chen et al., 2021b; Correa et al., 2021; Liu et al., 2021).

Carbon burial rates in saltmarshes have been quantified 1–3
orders of magnitude higher than those in terrestrial forests
(McLeod et al., 2011; Duarte et al., 2013). Saltmarshes provide
habitats for a diversity of salt- and/or saturation-tolerant plant
species with high productivity (Guimond and Tamborski, 2021).
However, plant biomass varies with species; thus, succession and
invasion of saltmarsh vegetation can directly affect carbon
composition and content in sediments (Seyfferth et al., 2020).
In 1979, Spartina alterniflora, originally North America, was
introduced into China for sediment accumulation due to strong
root systems (Gao et al., 2012) and then rapidly spread in the
eastern Chinese coastal region (Gao et al., 2014). Previous studies
have found that sediment carbon burial rates change with
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different vegetation cover, such as Scirpus mariqueter and
Spartina alterniflora (Xia et al., 2019). However, the
mechanism and extent of porewater-derived carbon outwelling
and greenhouse gas emissions in multi-species saltmarshes
remain unknown.

Here, we hypothesized that porewater exchange is the major
driving force of carbon outwelling and greenhouse gas emissions
in multi-species salt marshes. We investigated spatial 222Rn,
carbon (dissolved inorganic carbon (DIC) and dissolved
organic carbon (DOC)), and greenhouse gas (CO2 and CH4)
distributions for both intertidal porewater and surface water in a
subtropical multi-species saltmarsh (Andong Shoal, China). In
addition, we analyzed the contents of organic carbon, nitrogen,
and d13C isotopes in different saltmarsh vegetation. The
objectives of this study were to (1) trace the origin of organic
carbon in saltmarsh sediments, surface water, and porewater
using the d13C carbon isotope signature; (2) quantify the
porewater exchange rate using a 222Rn mass balance model;
and (3) estimate the fluxes of porewater-derived carbon
outwelling and greenhouse gas emissions.
2 MATERIALS AND METHODS

2.1 Study Region
Field investigations were performed in a multi-species saltmarsh,
Andong Shoal, located on the protruding section of the tidal
shoal on the south bank of Hangzhou Bay, China (Figure 1).
Andong Shoal is an alluvial coast and has a subtropical monsoon
climate with a mean annual temperature of 17.1°C and mean
annual rainfall of 1381 mm (Cao et al., 2020). It is formed by the
accumulation of sediments from the Yangtze and Qiantang River
(Wu et al., 2008). The intertidal zone of Andong Shoal is 7–8 km
wide (Song et al., 2014), with a developed creek system due to
macrotidal conditions (Li and Xie, 1993). An irregular
semidiurnal tide exists in this region, with a mean tidal range
of 5.5 m (Huang et al., 2020). The vegetation in the saltmarsh
includes not only local species such as Scirpus mariqueter,
Suaeda glauca, and Phragmites australis (C3 plant species), but
also invasive species such as Spartina alterniflora (C4 plant
species) (Wang et al., 2015).

2.2 Sampling and Analytical Methods
2.2.1 Surface Water and Porewater
Field work was performed in saltmarsh tidal creeks along the
Andong Shoal (Figure 1) during the wet season (May 2021) due
to its obvious porewater flow (Young et al., 2005; Chen et al.,
2018). Surface water samples (n=36) were directly pumped into 2
L polyethylene bottles using the overflow method (Chen et al.,
2018). Then, the sampling bottle was connected in a close air
loop with a RAD-7 detector (Durridge) and a Picarro G4301 for
measuring 222Rn and greenhouse gases (including CO2 and
CH4), respectively (Santos et al., 2012). In addition, each water
sample was filtered through 0.45-mm nylon filters into 60 mL
polyethylene bottles without headspace, in triplicate for DIC/
DOC, organic nitrogen, and stable carbon isotope (d13C)
May 2022 | Volume 9 | Article 884951
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measurements. These filtrates were preserved by a saturated
HgCl2 solution (Gatland et al., 2014; Santos et al., 2019), which
can eliminate the influence on the amount of carbon species via
the microorganism process. Surface water temperature, salinity,
water depth, pH, and dissolved oxygen (DO) profiles were
recorded using an EXO3 Multiparameter Sonde automated
datalogger. Wind speed data was obtained from the China
Meteorological Data Service Center (http://data.cma.cn/). To
approach the 222Rn ingrowth from 226Ra, surface waters were
slowly passed through MnO2-impregnated acrylic fibers for
226Ra enrichment, and the fibers were then washed with Milli-
Q water to remove slats and particles (Moore and Arnold, 1996).
These 226Ra-enrichment fibers were sealed for three months and
subsequently analyzed using a RAD-7 detector (Peterson
et al., 2009).

Porewater bores (n=9) were installed along the saltmarsh
creek to capture the spatial variability in the Andong Shole
(Figure 1). Samples of porewater 222Rn, CO2, and CH4 were
collected in 2-L polyethylene bottles and analyzed using the same
methods as the surface water. The DIC/DOC, organic nitrogen,
and d13C samples were collected and treated as described earlier.
In addition, the porewater temperature, salinity, pH, and DO
were measured using a Multi 3430 WTW digital multi-
parameter meter.

DIC and DOC samples of the surface water and porewater
were analyzed using a TOC-L (Shimadzu, Japan) total organic
Frontiers in Marine Science | www.frontiersin.org 3
carbon analyzer (Chen et al., 2018). DIC concentrations were
directly measured by injecting water samples into the reactor
with spiked hydrochloric acid. DOC concentrations were
considered as the difference between the total dissolved carbon
(TDC) and DIC. To determine the TDC concentrations, water
samples were combusted in a 680°C tube with a catalyst. The
measurement errors were ±4% for DIC and ±5% for TDC, with a
precision of < ± 1%. Organic nitrogen represents the difference
between total nitrogen and dissolved inorganic nitrogen
(including NO3-N, NO2-N, NH4-N). The concentrations of
total nitrogen and dissolved inorganic nitrogen were measured
using a San++ continuous flow analyzer by adapting
spectrophotometric method (Kroon, 1993; Liu et al., 2009).
Organic 13C isotope samples were analyzed using an
ISOPRIME100 (Elementar, Germany) stable isotope mass ratio
spectrometer and calculated as d13C values referring to the
international standard Vienna Pee Dee Belemnite (VPDB)
(Degens, 1969). Replicate analysis of the laboratory standard
samples indicated a precision of ±0.16%.

2.2.2 Sediments and Saltmarsh Plants
Saltmarsh sediment samples were collected to estimate 222Rn
diffusive flux using a sediment equilibration experiment (Corbett
et al., 1998). One liter or 1.5 kg of sediment was incubated with 5
L of radium-free water in a sealed flask for three months. Once
the dissolved 222Rn had equilibrated between water and
sediment, 2 L of water was pumped into a polyethylene bottle,
and the 222Rn concentration was analyzed using a RAD-7
detector. Sediment cores and saltmarsh plant samples, such as
Scirpus mariqueter, Spartina alterniflora, Suaeda glauca, and
Phragmites australis, were collected (Figure 1). The sediment
samples were sealed in aluminum foil bags and stored at -40°C.
For saltmarsh plants, each species was cleaned, separated into
leaves, stems, and roots, and then stored using the same method
as the sediment samples. Sediment and plant samples were
analyzed for organic carbon, organic nitrogen, and d13C values
using a 253plus (Thermo Scientific, US) isotope ratio mass
spectrometer (Pérez et al., 2020). The d13C values were
calculated by referring to the VPDB. The precisions
were ±0.5% for organic carbon, ± 1% for organic nitrogen
and ±0.05% for d13C.
2.3 222Rn Mass Balance Model,
Carbon Outwelling and Greenhouse
Gas Emissions
The 222Rn mass balance model (Burnett and Dulaiova, 2003) has
been widely used to quantify advective porewater flux in
saltmarshes and mangroves (e.g., Santos et al., 2019; Correa
et al., 2021; Chen et al., 2022). The model integrates all 222Rn
sources (e.g., imports from bay water during the flood tide,
diffusion from sediments, and ingrowth from dissolved 226Ra)
and sinks (exports during the ebb tide, atmospheric evasion, and
radioactive decay). Surface water samples were collected during
the highest tide level, because the sampling boat can reach the
upstream sites at this time. Assuming all the creek water is
FIGURE 1 | (A) Location of the study area (Andong Shoal); (B) Sampling
stations for creek surface water, sediments and vegetations.
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discharged during ebb tide, the missing 222Rn represents
porewater exchange in each tidal cycle. At steady state,
integrating all of fluxes over a complete day, the porewater
exchange flux (Fpw, Bq m-2 d-1) can be estimated as follows:

Fpw =
(222Rnsw · DV) + Fatm + (l � DV �222 Rnsw) − (222Rnsea · DV) − Fsed − (l � DV �226 Rasw)

A
(1)

where 222Rnsw is the average 222Rn activity (Bq m-3) in surface
water during the flood tide, Dv is the difference of water volume
in creeks between high tide level and low tide level (m3 d-1), Fatm
is the 222Rn flux to the atmosphere (Bq m-2 d-1), which can be
calculated by concentration gradients, wind speed and current
(Chen et al., 2020a), l is the 222Rn decay constant (0.182 d-1),
222Rnsea is the

222Rn activity (Bq m-3) of seawater end-member,
Fsea is the

222Rn flux via sediment diffusion (Bq m-2 d-1), 226Rasw
is the 226Ra concentration in surface water, and A is the
inundated area (m2).

Similar to the 222Rn calculation, carbon outwelling (Foutwelling,
mmol m-2 d-1) from intertidal creeks was estimated as follows:

Foutwelling =
(Csw − Csea)� DV

A
(2)

where Csw is the concentration of carbon species in surface water
(mmol L-1) and Csea is the corresponding seawater endmember
of the carbon species (mmol L-1).
Frontiers in Marine Science | www.frontiersin.org 4
Greenhouse gas emissions at the water-air interface were
calculated from a bulk flux equation (Wanninkhof, 2014);
therefore, greenhouse gas emissions (Femissions, mmol m-2 d-1),
including CO2 and CH4, from creek water were estimated as
follows:

Femissions = ka(Csw − Cair) (3)

where Csw is the greenhouse gas concentration in surface
water (mmol L-1), Cair is the greenhouse gas concentration
in air (mmol L-1), and k is the gas transfer velocity (m d-1),
which was the mean value derived from three gas transfer
models (Borges et al., 2004; Ho et al., 2016; Rosentreter et al.,
2017), a is the solubility coefficient of greenhouse gas.
Uncertainties regarding the 222Rn mass balance model and
carbon fluxes are estimated based on the basic rules of
error propagation.
3 RESULTS AND DISCUSSION

3.1 Surface Water and Porewater
Observations
During the surface water observation, temperature and salinity
were found with spatial gradients, whereas DO and pH were
A B

DC

FIGURE 2 | Spatial distributions of (A) temperature, (B) salinity, (C) DO and (D) pH in surface water and porewater.
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relatively stable (Figure 2 and Table 1). The surface water
temperature increased from downstream (20.4°C) to upstream
(28.7°C) while the salinity showed a contrasting trend
decreasing from 13.7 to 0.5. Surface water DO and pH were
irregularly distributed in ranges of 54–107% (4.7–8.6 mg L-1)
(mean: 94 ± 10%, 7.6 ± 0.7 mg L-1) and 7.1–8.2 (mean: 7.9 ±
0.3), respectively, and the lowest pH were measured at
upstream of creeks. 222Rn, carbon, and greenhouse gases
showed large spatial heterogeneity, indicating the necessity
for spatial investigation (Figure 3). Surface water parameters
varied over a range of 10–521 (mean: 81 ± 103) Bq m-3 for
222Rn, 1.54–7.90 (mean: 2.31 ± 1.36) mmol L-1 for DIC, 0.23–
0.79 (mean: 0.45 ± 0.14) mmol L-1 for DOC, 29–179 (mean: 51
± 32) mmol L-1 for CO2 and 94–939 (mean: 235 ± 140) nmol L-1

for CH4. Carbon species in surface water were dominated by
DIC with various DOC proportions (12%–26%) and negligible
greenhouse gases (Figure 4).

All hydrological parameters in porewater samples showed
spatial heterogeneity (Figures 2, 3 and Table 2). Temperature,
salinity, DO and pH changed from 22.6 to 26.3°C, 4.7 to 11.7,
Frontiers in Marine Science | www.frontiersin.org 5
0.5 to 58.6% (0.03 to 4.73 mg L-1) and 7.04 to 7.54, with
mean values of 24.6 ± 1.2°C, 8.71 ± 2.46, 13.8 ± 19.3%
(1.2 ± 1.5 mg L-1) and 7.32 ± 0.16, respectively. Porewater
222Rn activities varied from 1.01×103 Bq m-3 to 4.91×103 Bq m-3

with the mean value of (1.95 ± 2.02)×103 Bq m-3, which was
approximately 24-fold higher than that in surface water.
Carbon and greenhouse gases displayed considerable
variability in porewater. As expected, DIC (range: 5.6–15.4
mmol L-1, mean: 10.1 ± 3.0 mmol L-1), DOC (range: 0.28–
1.78 mmol L-1, mean: 0.85 ± 0.41 mmol L-1), CO2 (range: 325–
1280 mmol L-1, mean: 709 ± 277 mmol L-1) and CH4 (range:
551–138400 nmol L-1, mean: 6580 ± 4510 nmol L-1) were highly
enriched in porewater, which were approximately 4.5, 1.9, 14.2
and 28.1 times their respective concentrations in surface water.
Similarly, in porewater, the major carbon species was also DIC,
while DOC and greenhouse gases were minor components
(Figure 4). This is because sulfate reduction coupled to pyrite
formation effectively convert sediment organic carbon into
bicarbonate (the main component of DIC) (Reithmaier
et al., 2021).
TABLE 1 | Summary of surface water observations.

Sample ID Temperature Salinity DO pH Radon CO2 CH4 DIC DOC
°C % (mg L-1) Bq m–3 mmol L-1 nmol L-1 mmol L-1 mmol L-1

AS-01 23.8 12.7 94.4 (8.00) 7.95 31 ± 10 30 139 1.78 0.41
AS-02 23.5 12.5 94.7 (8.01) 8.04 10 ± 6 35 161 1.74 0.37
AS-03 24.7 11.5 95 (7.88) 8.05 41 ± 14 30 208 1.81 0.32
AS-04 25.1 11.1 96.1 (7.87) 8.07 26 ± 11 35 257 1.81 0.32
AS-05 25.1 10.7 94.7 (7.76) 8.07 25 ± 12 31 233 1.69 0.35
AS-06 25.7 10.2 96.6 (7.85) 8.09 26 ± 12 36 216 1.69 0.50
AS-07 23.6 13.2 95.1 (8.02) 8.12 32 ± 13 33 165 1.74 0.45
AS-08 24.2 12.4 95.1 (7.93) 8.12 46 ± 16 37 189 1.73 0.40
AS-09 24.6 11.7 95.3 (7.88) 8.11 21 ± 11 30 189 1.81 0.30
AS-10 25.5 11.1 95.2 (7.75) 8.09 36 ± 17 37 295 1.93 0.23
AS-11 26.6 10.6 94.6 (7.54) 8.05 47 ± 18 46 291 2.14 0.45
AS-12 23.1 12.0 99.8 (8.00) 8.15 32 ± 13 35 182 1.71 0.36
AS-13 23.5 11.0 99.1 (7.90) 8.14 15 ± 8 33 180 1.70 0.46
AS-14 24.0 11.0 98.7 (7.84) 8.11 19 ± 9 37 201 1.69 0.47
AS-15 24.5 10.3 95.3 (7.56) 8.08 40 ± 14 33 189 1.68 0.44
AS-16 25.4 9.0 99.8 (7.79) 8.10 19 ± 9 34 189 1.68 0.36
AS-17 25.8 9.1 71.1 (5.53) 8.09 20 ± 10 29 176 1.61 0.52
AS-18 26.5 8.6 105 (8.06) 8.13 23 ± 11 29 115 1.69 0.35
AS-19 25.6 9.3 100.9 (7.84) 8.10 44 ± 17 35 209 1.66 0.33
AS-20 26.0 9.2 103 (7.95) 8.12 27 ± 11 32 183 1.64 0.34
AS-21 27.4 0.5 92.7 (7.08) 8.03 96 ± 25 49 161 1.54 0.57
AS-22 27.1 2.2 101.5 (7.67) 8.12 105 ± 26 45 137 1.96 0.55
AS-23 24.9 11.1 101.7 (7.91) 8.15 28 ± 12 34 200 1.71 0.35
AS-24 23.3 12.5 100.3 (7.98) 8.15 23 ± 10 44 249 1.74 0.33
AS-25 23.1 12.9 101.6 (8.08) 8.11 32 ± 15 35 173 1.75 0.30
AS-X-01 25.4 4.5 91.5 (7.52) 8.08 521 ± 64 105 939 5.01 0.75
AS-X-02 22.3 12.0 78.3 (6.81) 7.11 94 ± 23 71 313 2.52 0.51
AS-X-03 24.1 12.0 82.7 (6.94) 7.35 122 ± 27 70 248 2.66 0.58
AS-X-04 26.4 13.7 106.7 (8.61) 7.42 98 ± 25 34 94 1.98 0.39
AS-X-05 24.9 12.4 84.2 (6.98) 7.63 144 ± 30 92 442 3.11 0.60
AS-X-06 20.4 5.8 – 7.48 114 ± 26 92 346 2.97 0.79
AS-X-07 20.5 6.2 83.2 (7.46) 7.19 82 ± 22 82 273 2.62 0.67
AS-X-08 21.2 10.9 53.6 (4.71) 7.21 325 ± 50 179 236 2.38 0.29
AS-X-09 24.1 11.8 92.5 (7.79) 7.91 238 ± 10 – – 6.55 0.63
AS-X-10 28.7 10.6 95.2 (7.49) 7.92 249 ± 47 – – 7.90 0.70
AS-X-11 24.7 9.0 93.9 (7.76) 7.82 51 ± 17 110 195 1.84 0.31
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3.2 Source Identification of Organic
Carbon in Sediments and Porewater
According to different photosynthetic processes, plants can be
divided into C3 and C4 plants, with distinct differences in the
proportion of 13C isotopes. Generally, the d13C values of C3
plants (range from -34‰ to -23‰) were more negative than
those of C4 plants (range from -17‰ to -9‰) (Chmura and
Aharon, 1995). In the Andong Shoal, local saltmarsh species,
Scirpus mariqueter, Suaeda glauca, and Phragmites australis,
were typical C3 plants with d13C in range from -29‰ to
-27‰, but the C4 plant Spartina alterniflora had a much
higher d13C of approximately -14‰ (Table 3 and Figure 5).
For each plant species, d13C values were relatively constant for
various C/N ratios in the different organs (Figure 5).

Combining organic d13C values with C/N ratios in sediments
and porewater can trace the source of organic carbon (Meyers,
1994). In sediment samples, results of d13C (range from -25.0‰
to -23.8‰) and C/N ratio (range from 9.79 to 11.42) implied that
the C3 plant Scirpus mariqueter was the major source of
sediment organic carbon (Figure 5 and Tables 3, 4). A low C/
N ratio (<10) may indicate that organic carbon was provided by
lake or marine algae (Meyers, 1994). While lake algae would not
be the source of organic carbon as no direct connection with lake
ecosystems, marine algae can be a potential source because of
frequent algal blooms around Hangzhou Bay (Liu et al., 2013).
Sediment organic carbon was not influenced by the invasion of
Spartina alterniflora, because of the low density in our study
region. Furthermore, in the porewater samples, d13C values
of DOC were relatively constant at -26‰, but C/N ratios
varied from 22.28 to 79.48 (Table 4). Here, we suggest that
porewater-derived DOC flux was mainly provided by the
A

B

D

E

C

FIGURE 3 | Spatial distributions of (A) 222Rn, (B) DIC, (C) DOC, (D) CO2
and (E) CH4 in surface water and porewater.
FIGURE 4 | Ternary diagram illustrating the percentage of different carbon
species [DIC, DOC and greenhouse gases (GHGs)] in surface water and
porewater.
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TABLE 2 | Summary of porewater observations.

Sample ID Temperature Salinity DO pH Radon CO2 CH4 DIC DOC
°C % (mg L-1) Bq m-3 mmol L-1 nmol L-1 mmol L-1 mmol L-1

APW1 26.3 9.5 1.0 (0.07) 7.54 1006 ± 118 403 11062 5.55 1.78
APW2 23.4 10.1 0.5 (0.03) 7.20 4906 ± 327 922 8031 15.38 0.71
APW3 24.9 7.1 36.6 (3.00) 7.44 2226 ± 146 612 3369 9.12 0.92
APW4 24.5 4.8 1.9 (0.14) 7.34 4513 ± 393 849 12092 14.44 1.02
APW5 23.3 4.7 1.1 (0.84) 7.43 4474 ± 308 750 13836 6.43 0.79
APW6 25.5 9.4 7.6 (0.62) 7.12 3540 ± 175 755 4552 10.40 0.35
APW7 24.8 9.6 1.9 (0.14) 7.49 1259 ± 127 325 551 9.73 0.94
APW8 22.6 11.5 15.0 (1.30) 7.04 478 ± 202 1278 2946 9.55 0.84
APW9 25.8 11.7 58.6 (4.73) 7.27 1217 ± 99 487 282 10.05 0.28
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biomass of Scirpus mariqueter due to approximate d13C
value (Figure 5).
3.3 222Rn-Based Porewater Exchange Rate
and Associated Carbon and Greenhouse
Gas Fluxes
To access the 222Rn fluxes via porewater exchange in the
saltmarsh, all 222Rn sources and sinks were quantified
Frontiers in Marine Science | www.frontiersin.org 7
(Figure 6). According to the 222Rn mass balance model
(Equation 1), the 222Rn flux via porewater exchange was 196 ±
87 (Bq m-2 d-1), which accounted for 64% of the total 222Rn
sources. In contrast, 222Rn fluxes (Bq m-2 d-1) via influx during
flood tide, sediment diffusion, and 226Ra decay accounted for
22%, 13%, and 0.1% of 222Rn sources, respectively. Similar results
of sediment diffusion and 226Ra decay were found in other
coastal wetlands (Santos et al., 2019; Chen et al., 2021a; Chen
et al., 2021b; Wu et al., 2021). In terms of the 222Rn sinks, outflux
TABLE 3 | C/N molar ratio and d13C value of vegetations in Andong Shoal.

Vegetations Root Stem Leaf
C/N d13C (‰) C/N d13C (‰) C/N d13C (‰)

Scirpus mariqueter 18.10 -27.50 42.29 -27.42 23.60 -28.37
Spartina alterniflora 98.81 -13.88 22.06 -13.46 52.37 -13.80
Suaeda glauca 42.33 -29.34 31.23 -29.33 15.23 -29.37
Phragmites australis 106.63 -28.77 118.39 -29.17 33.18 -29.48
May 20
22 | Volume 9 | Artic
FIGURE 5 | Stable carbon isotope of organic carbon in surface water, porewater, sediment and vegetations (including Scirpus mariqueter, Spartina alterniflora,
Suaeda glauca and Phragmites australis), and corresponding C/N molar ratio.
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TABLE 4 | C/N molar ratio and d13C value in sediment, surface water and porewater samples.

Sample ID Description C/N d13C

S1-1 Sediment in depth 0-2cm 9.79 -24.07
S1-2 Sediment in depth 42-44cm 9.91 -24.23
S1-3 Sediment in depth 54-56cm 11.25 -24.95
S2 Surface sediment sample 11.42 -24.19
S3-1 Sediment in depth 10-12cm 10.42 -23.84
S3-2 Sediment in depth 26-28cm 10.94 -24.15
S3-3 Sediment in depth 54-56cm 10.39 -23.92
AS-01 Surface water 17.97 -26.77
AS-06 Surface water 25.91 -26.31
AS-12 Surface water 21.77 -25.55
AS-15 Surface water 22.47 -25.71
AS-X-10 Surface water 99.15 -25.94
APW-03 Porewater 71.82 -25.82
APW-05 Porewater 79.48 -26.39
APW-06 Porewater 26.76 -26.50
APW-07 Porewater 38.52 -25.88
APW-09 Porewater 22.28 -26.40

Zhu et al. Saltmarsh Blue Carbon Flux
during the ebb tide, atmospheric evasion, and 222Rn decay
accounted for 55%, 41%, and 4%, respectively. 226Ra decay and
222Rn decay were minor components in the 222Rn mass balance
model and were negligible because of the relatively low
percentage of 222Rn sources or sinks.

Determining the porewater endmember is the key step in
estimating the porewater exchange rate, which has been
considered a major source of uncertainty (Moore and Arnold,
1996). As the large spatial variation of natural tracer
concentrations in aquifers (Peterson et al., 2009), collecting
numbers of representative sample can help deal with
Frontiers in Marine Science | www.frontiersin.org 8
uncertainty (Correa et al., 2021). In this study, to reduce the
uncertainty caused by porewater endmember, we conducted a
spatial investigation of porewater samples (n=9, Figure 1). Here,
the porewater endmember was defined as the difference between
the median porewater concentration and the median
concentration of surface water at the creek mouth (Taillardat
et al., 2018). Hence, the radon-derived porewater exchange rate
was estimated to be 5.60 ± 2.78 cm d-1 using 222Rn flux via
porewater exchange divided by the porewater 222Rn endmember.
This porewater exchange rate is in the range (3.4–12 cm d-1) of
other saltmarsh studies, as summarized by Liu et al. (2021).
FIGURE 6 | The 222Rn sources and sinks (Bq m-2 d-1) in Andong Shoal.
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Porewater exchange drives the transport of carbon species
from the sediment to surface water. This can be proven by the
significant positive correlations (Figure 7) between 222Rn and
DIC (R2 = 0.49, p<0.001), DOC (R2 = 0.27, p<0.001), CO2 (R

2 =

0.60, p<0.001), and CH4 (R
2 = 0.62, p<0.001) in surface water and

higher concentrations of 222Rn and carbon species in porewater
than those in surface water (Figure 7). Therefore, we used the
difference in median carbon or greenhouse gas values between
porewater and surface water as the porewater endmember. By
multiplying the porewater exchange rate with the corresponding
carbon and greenhouse gas concentrations of porewater
endmembers, the porewater-derived carbon and greenhouse gas
fluxes (mmol m-2 d-1) were estimated to be 447 ± 227 (DIC), 26 ±
20 (DOC), 40 ± 21 (CO2), and 0.25 ± 0.13 (CH4) (Table 5). Most
of the porewater-derived carbon flux was contributed by DIC
(~90%) rather than DOC or greenhouse gases. Similar results for
DIC, DOC, and CO2 were obtained from a saltmarsh in the USA
(Correa et al., 2021). However, porewater-derived carbon flux is
mainly sourced from DOC in some other saltmarshes (Santos
et al., 2019; Chen et al., 2022). This may be due to their dominant
species having higher net primary productivity, leading to the
rapid accumulation of organic carbon that can be enriched in
porewater (Chen et al., 2022).
Frontiers in Marine Science | www.frontiersin.org 9
3.4 Implications of Porewater–Derived
Carbon Outwelling and Greenhouse
Gas Emissions on Saltmarsh Blue
Carbon Budget
3.4.1 Carbon Outwelling and Greenhouse
Gas Emissions
The outwelling fluxes of DIC, DOC, CO2 and CH4 were
estimated to be 1200 ± 61, 115 ± 70, 36.5 ± 0.5, and 0.13 ±
0.01 (mmol m-2 d-1) (Table 5), indicating that tidal creeks were
net exporters of DIC, DOC, and greenhouse gases. Carbon
outwelling was dominated by DIC (~90%) with minor
contributions from DOC and greenhouse gases, providing
further evidence that carbon outwelling flux is generally
dominated by DIC in saltmarshes (Santos et al., 2021). The
DIC outwelling flux (1200 mmol m-2 d-1) was very close to that
of the Chongming Dongtan saltmarsh (Yangtze River Estuary,
China) (1050 mmol m-2 d-1) in the nearby study area
investigated by Liu et al. (2021). However, this exceeded the
outwelling flux range (9–680 mmol m-2 d-1) in other study areas
(Neubauer and Anderson, 2003; Wang and Cai, 2004; Wang
et al., 2016; Chu et al., 2018; Czapla et al., 2020; Chen et al., 2022),
which may be due to the macrotidal environment at our
study site.
FIGURE 7 | Correlations of DIC, DOC, CO2 and CH4 with
222Rn for surface water samples. Porewater samples are included for comparison.
TABLE 5 | Carbon outwelling and greenhouse gas emissions (mmol m-2 d-1) in Andong Shoal.

Carbon species Porewater exchange Carbon outwelling Greenhouse gas emissions

DIC 447 ± 227 1200 ± 61 –

DOC 26 ± 20 115 ± 70 –

CO2 40.1 ± 20.7 36.5 ± 0.5 54.6 ± 0.5
CH4 0.25 ± 0.13 0.13 ± 0.01 0.19 ± 0.01
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CO2 and CH4 emission fluxes through the water-air interface
were estimated to be 54.63 ± 0.45 and 0.19 ± 0.01 (mmol m-2 d-1)
(Table 5), implying that tidal creeks of saltmarsh are greenhouse
gas sources for atmosphere. The CO2 emission flux (54 mmol m-

2 d-1) was within the emission flux range (2–288 mmol m-2 d-1)
reported in previous studies (Neubauer and Anderson, 2003;
Wang and Cai, 2004; Chmura et al., 2016; Chen et al., 2022).
Meanwhile, the CH4 emission rate (0.19 mmol m-2 d-1) in our
study area (multi-species saltmarsh) was lower than the emission
rate range (0.23–1.29 mmol m-2 d-1) of other saltmarshes covered
by Spartina patens (Chmura et al., 2016; Chen et al., 2022).
Methylamines released by decaying Spartina alterniflora (Wang
and Lee, 1994) can be converted to CH4 via microorganisms
(Yuan et al., 2019; Seyfferth et al., 2020) and stored in
the sediment.
3.4.2 Role of Porewater-Derived Carbon Fluxes
Organic carbon from in situ primary production can be buried in
sediments because of the accumulation of detritus and roots
(Alongi, 2020; Correa et al., 2021). As carbon burial is a function
of mitigating climate change (Duarte et al., 2013; Wang et al.,
2021), many previous studies relating to saltmarshes have
focused on carbon burial rates (Herrmann et al., 2015; Najjar
et al., 2018). The carbon burial rate in Andong Shoal was 140 g
m-2 yr-1 (Xia et al., 2019). However, we found that part of the
sediment carbon could be flushed out via porewater exchange,
which may lead to an important revision of the saltmarsh blue
carbon budget.

To approach the contribution of porewater exchange to the
saltmarsh blue carbon budget, we constructed a conceptual model
of major carbon flows (Figure 8). Some of the buried organic
carbon can be converted to DIC by sulfate/Fe-oxide reduction
(Santos et al., 2019; Santos et al., 2021; Zhu et al., 2021), whereas
DOC species are released from biomass. While porewater exchange
contributed to 60% of DIC and 36% of DOC outwelling, the DIC
outwelling flux was 10-fold that of DOC. Our estimated DIC flux
Frontiers in Marine Science | www.frontiersin.org 10
via porewater exchange and DIC outwelling were 1.2-fold and 3.2-
fold of carbon burial, respectively. These results were similar to
those of a recent investigation of Chongming Dongtan saltmarsh
(Liu et al., 2021), where DIC export was 3-fold greater than local
carbon burial. Overall, the carbon burial rate (9.42×105 mol d-1)
accounted for 74% of the porewater-related carbon fluxes
(1.27×106 mol d-1) and 28% of the carbon outwelling (3.34×106

mol d-1). Hence, porewater-derived carbon outwelling can be
considered a mechanism for long-term carbon sink because
bicarbonate (the dominant species in DIC) can remain in the
ocean for 100,000 yr under a relatively stable pH circumstance
(Santos et al., 2019; Middelburg et al., 2020; Xin et al., 2022; Yau
et al., 2022).

Greenhouse gases were minor components of porewater-
derived carbon fluxes compared with DIC fluxes (Figure 8). The
CO2 (9.92×104 mol d-1) and CH4 (6.06×102 mol d-1) fluxes via
porewater exchange contributed 75% and 100% of those fluxes in
atmospheric evasion, respectively. Although the CO2 and CH4

fluxes were at least one order of magnitude lower than the carbon
burial rate, their greenhouse effects cannot be ignored. Converting
CH4 fluxes into CO2 equivalents by global warming potential
values of 96 for emission time frames of 20 yr (Alvarez et al., 2018),
and converting molar units to mass units. Here, the CO2-
equivalent greenhouse gas emissions would be 6.7 t CO2-C d-1,
while total sediment carbon burial would be 41.4 t CO2-C d-1 in
Andong Shoal. Therefore, porewater-derived greenhouse gas
emissions may offset 16% of sediment carbon burial.
4 CONCLUSIONS

In this study, based on a spatial survey of porewater, surface
water, sediment, and saltmarsh plants in a subtropical multi-
species saltmarsh, we draw the following conclusions:

(1) The stable carbon isotope (d13C) and C/N ratio suggest
that the dominant C3 species Scirpus mariqueter, is the main
FIGURE 8 | Conceptual model of major carbon flows (including carbon burial, porewater exchange, carbon outwelling and GHG emissions, mol d-1) in Andong Shoal.
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organic carbon source for the sediment and water column when
study area is invaded by C4 species Spartina alterniflora.

(2) There was 5.60 ± 2.78 cm d-1 of 222Rn-based porewater
exchange rate, which implicated porewater-derived DIC, DOC
CO2 and CH4 fluxes (mmol m-2 d-1) at 447 ± 227, 26 ± 20, 40 ±
21 and 0.25 ± 0.13, respectively. Porewater-derived DIC and
DOC fluxes supported 60% and 36% of the corresponding
species in carbon outwelling.

(3) Combining our results (porewater exchange, carbon
outwelling, and greenhouse gas emissions) with literature data
(i.e., carbon burial), porewater-derived DIC flux and DIC
outwelling flux were 1.2-fold and 3.2-fold that of carbon burial,
respectively. In addition to saltmarsh carbon burial, the DIC
input to the ocean can be an important carbon sink because DIC
can remain for a long duration.

(4) Although CO2 and CH4 were minor components in
carbon pathways compared with DIC, their water-air
emissions contributed by porewater carbon can offset 16% of
the saltmarsh carbon sequester.

Overall, we highlight the importance of porewater exchange-
related carbon outwelling as a long-term carbon sink in multi-
species saltmarshes and the potential fate of atmospheric carbon
fixed by saltmarsh vegetation. These provide a scientific basis for
the protection and restoration of saltmarshes in the context of
global climate change. The seasonal change and the organic
carbon lability in saltmarshes deserve further studies because of
their influence on quantification of blue carbon flux and
evaluation of potential carbon sink.
Frontiers in Marine Science | www.frontiersin.org 11
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