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Understanding the spatial pattern of human fishing activity is very important for fisheries
resource monitoring and spatial management. To understand the spatial distribution of
tuna purse seiner operations in the western and central Pacific Ocean and its relationship
with the marine environment, this paper uses the AIS data of the western and central
Pacific Tuna purse seiners from 2015 to 2020 to excavate spatial fishing effort information,
which is combined with 24 marine environmental factors in the same period, including sea
surface and subsurface levels using the boosted regression trees (BRT) model and
general additive model (GAM) to construct the nonlinear relationship between the spatial
distribution of fishing effort and marine ecological environmental factors and to discuss
and analyse the niche of tuna purse seiners in the high seas. The results show that the
average score of cv-AUC (cross-validated area under the curve) obtained by the BRT
model training reaches 0.93, the average accuracy rate is 0.84, and the explained
deviance is 43%; the average score of AUC (area under the curve) obtained by the
GAM model training reaches 0.81, the average accuracy rate is 0.77, and the explained
deviance is 34%. The results of BRT prior to GAM model. Using the BRT model for
prediction, the results show that the average cv-AUC score for forecasting fishing effort in
2020 reaches 0.83, and the average accuracy rate of overall classification reaches 0.77.
The results of factor analysis show that the water temperature at 100 m depth and
longitude are the most important factors affecting the fishing effort of tuna purse seiners,
and their contribution rates to the fishing effort of vessels are 12.38% and 9.76%,
respectively, followed by sea surface temperature, latitude and DSH. The contribution
to the fishing effort of tuna purse seiners was also large, accounting for 9.57%, 8.75%,
and 7.11%, respectively; the 100-meter-deep chlorophyll and temperature gradient value
contributed the least, 1.44% and 1.16%, respectively; tuna purse seiners are more likely
to operate in the 100-metre water temperature of 25-29°C and sea surface temperature
of 29-31°C. In terms of space, tuna purse seiners are more likely to operate in the 5°S-5°N
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latitudinal region and near the western sea area of 180°E. It is predicted that the modelled
fishing effort of fishing vessels in 2020 and the actual fishing effort of fishing vessels have a
relatively good spatial distribution. Research helps to understand the environmental
impact of changes in the spatial distribution of tuna purse seiners and provides support
for the management of tuna purse seine vessels in the western and central Pacific.
Keywords: tuna purse seiners, BRT model, GAM model, habitats, environmental factors, spatial distribution
INTRODUCTION

As an economically important species in marine fishery resources,
tuna (Thunnini) is the most commercially valuable fish in the world.
Tuna possess high-speed and deep-water swimming abilities. Field
surveys or release data are used to analyse and understand the
habitat of tuna and its environmental choices. In fact, tuna
populations have declined, on average, by 60% over the past half
century (Juan-Jordá et al., 2011). In the context of the global decline
of tuna resources (Costello, 2016), protection and sustainable
development and utilization of tuna fishery resources are highly
valued by countries and organizations around the world.

Marine environmental factors are important external factors
that affect tuna activities and distribution. Researchers have
carried out a large number of related studies. Studies have
shown that the vertical structure of variables such as
temperature and dissolved oxygen profoundly influence the
swimming distribution and survivability of tuna in the water
column (Lan et al., 2017; Abascal et al., 2018; Yang et al., 2021).
The salinity, SSH, chlorophyll-a, and primary production also
have important effects on the spatial distribution of tuna (Briand
et al., 2011; Arrizabalaga et al., 2015; Nataniel et al., 2021).
Environmental changes will alter the horizontal and vertical
spatial distribution patterns of suitable habitat environment for
tuna (Nicol, 2014). But most studies are based on commercial
fishing data for research and analysis. The spatial and temporal
resolution of regional tuna tissue data is too coarse, and the
commercial log data of various countries are not complete
enough, and contain errors. There are space limitations and
time discontinuities in survey data or sign data, especially in the
high seas (Taconet et al., 2019) which limits the results of
the research.

Fishermen tracks fish populations based on their experience
and the marine environment conditions and catch them. Fishing
vessels adjust their fishing space position and fishing method
according to the spatial change of tuna resources, in order to
obtained the maximum economic benefit. Changes in the
distribution patterns of tuna in horizontal space and
swimming layers will ultimately affect the spatial distribution
and fishing efficiency of surface fishing vessels (Arnaud et al.,
2002). Meanwhile, Ecosystem-based fisheries management must
understand the impact of fishing activities, such as habitat
destruction or ecological community changes related to fishing
activities. Monitoring tuna vessels fishing activity and predicting
and managing the future are also important to ecosystem-based
tuna fisheries management (Guillermo et al., 2018). Therefore,
understanding the relationship between tuna fishing vessels
in.org 2
operation and environmental could provide more realistic
fishery information for fishery fishing intensity and fishery
resource management.

The Automatic Identification System (AIS) trajectory
information of vessels contains the unique attributes, states
and spatial behavior characteristics of vessels. To a certain
extent, it reflects the direct interaction between the fishing
behavior of vessels and various elements in the environment.
Based on the trajectory of the vessel, it is possible to mine the
time and space high-precision fishing effort information, which
provides a new avenue for fishery analysis (Hsu et al., 2021). In
recent years, this information has been used to analyse and
understand the characteristics of fishing vessel behaviours and
the impact of the marine environment (Wang et al., 2016;
Debrah et al., 2018; Guillermo et al., 2018; Megan et al., 2019).
The above studies indicate that the distribution of fishing effort
(FE) is environmentally structured and can be explained and
projected using species distribution models together with
information on the environment surrounding the fishing
observations (Guillermo et al., 2018).

Two species distribution models, boosted regression trees
(BRT) and generalised additive models (GAM), which have
been used to explore the distribution of marine species related
to environmental factors (Melomerino and Fath, 2020). The
GAM model is a semi-parametric extension of the generalized
linear model that not only smoothes the predictors
independently, but also calculates the magnitude of the
response change in an additive way (Wood and Augustin,
2002). The BRT model combines two algorithms in statistics
and machine learning, namely classification regression and
boosting technology, and makes predictions by establishing
and combining a large number of simple decision tree models
to avoid overfitting (Elith et al., 2008). Both models can directly
handle the nonlinear relationship between the response variable
and multiple explanatory variables, have been successfully used
for environmental niche analysis of offshore fishing fleets (Wang
et al., 2016; Debrah et al., 2018) and pelagic longline tuna fleets
(Guillermo et al., 2018; Megan et al., 2019). However, there is
evidence that BRT performs better and handles spatial
autocorrelation in a better fashion (Susana and Cabral, 2015).

Tuna production mainly comes from tuna purse seiners and
tuna longline vessels, of which tuna purse seiners dominate. At
present, from the perspective of global tuna purse seine fishing,
there are few studies on the utilization of high seas resources by
human fishing activities, especially for regional reports. The western
and central Pacific are the primary operating areas of tuna purse
seiners, the relationship between tuna purse seiners distribution and
June 2022 | Volume 9 | Article 881036
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environmental factors have not been discussed. In this paper, by
mining the fishing effort information of tuna purse seiners in the
Central and Western Pacific, based on GAM and BRT in deep
learning, environmental impact models of the distribution of vessel
operations are constructed, and the accuracy are compared and
predicted to extract fishery information. Exploring the
environmental driving factors of the spatial distribution of tuna
purse seine fleets in the Western and Central Pacific, provide
support for the management of tuna fishery resources.
MATERIALS AND METHODS

Data Source and Data Pre-Processing
Environmental Data
According to the literature (Deary et al., 2015; Zhou et al., 2021;
Yang et al., 2022), the living environment of tuna is affected by
environmental variables such as temperature, sea surface height,
salinity, chlorophyll, dissolved oxygen, and primary productivity.
The spatial distribution of vertical activities has a certain
relationship with subsurface environmental factors. Therefore,
this research is based on the official website of the Copernicus
Marine Environment Monitoring Service (CMEMS) (https://
resources.marine.copernicus.eu/?option=com_csw&task=results
%3Foption%3Dcom_csw&task=results) to download marine
remote sensing environmental data.

Several geographic variables, such as distance to shore (DSH)
and distance to port (DPT), as well as bathymetry (depth), may
influence the operation of vessels. The above three variables were
selected as model input variables in this paper and downloaded
from https://globalfishingwatch.org/data-download/.

Previous research also suggest that the temperature gradient
value, the thermocline temperature and the eddy kinetic energy
(EKE), have an important influence on tuna activities and fishing
by fishing boats (Yang et al., 2012; Hsu et al., 2021). This paper
adopted the three variables as input variables. The three variables
were calculated based on download remote sensing
environmental data (Pratt et al., 1991; Igor and O’Reilly, 2009;
Paul, 2010). At last, 25 environmental factors were considered as
the model input variables and the symbolic representation and
meaning of input variables are shown in Table 1.

Vessels Position Data
Use information on the fishing operations of tuna purse seiners
in the western and central Pacific was gathered. The vessel fishing
types and AIS-based fishing effort information are all from the
global fishing watch (https://globalfishingwatch.org/). The data
provide the global vessel sailing time and fishing operation time
from 2000 to 2020. The fishing effort information in this paper
uses the daily operating time data of each Maritime Mobile
Service Identify (MMSI) number provided by the organization
with a spatial accuracy of 0.1°. The data include date, latitude and
longitude, MMSI, sailing time and fishing time. Of these, the
fishing operation time data of vessels are recognized by the
convolutional neural network model (Kroodsma et al., 2018a).
Tuna Seine fishing effort and the number of fishing vessels
Frontiers in Marine Science | www.frontiersin.org 3
operating in the central and western Pacific in 2012-2020 are
shown in the Figure 1.

The fishing effort and the number of vessels in operation
clearly present two stages, namely, before 2015 and after 2015.
After 2015, the spatial distribution of tuna purse seine vessels in
TABLE 1 | List of environmental data.

Abbreviation Variable explained Unit

sst Temperature degrees_C
ssh Sea surface height m
sss salinity 1e-3
mld Mixed layer depth m
u Geostrophic zonal velocity m/s
v Geostrophic meridional velocity m/s
DO Dissolved Oxygen mmol/m-3

pp0 Total Primary Production mg/m-3

chl0 Total Chlorophyll mg/m-3

tem100 Temperature(100 m) degrees_C
salt100 Salinity(100 m) 1e-3
DO100 Dissolved Oxygen(100 m) mmol/m-3

pp100 Total Primary Production (100 m) mg/m-3

chl100 Total Chlorophyll(100 m) mg/m-3

tem200 Temperature(200 m) degrees_C
salt200 Salinity(200 m) 1e-3
DO200 Dissolved Oxygen(200 m) mmol/m-3

pp200 Total Primary Production of Phyto(200 m) mg/m-3

chl200 Total Chlorophyll(200 m) mg/m-3

DSH Distance to shore km
DPT Distance to port km
Depth Bathymetry m
sstf sea surface temperature front degrees_C
therm the temperature of the thermocline degrees_C
EKE eddy kinetic energy J
June 2022 | Volume 9 | Arti
Among them, the time resolution is a monthly average. The data space coverage is from
130°E to 150°W, 15°S to 10°N, and the time coverage is from January 2015 to
December 2020.
FIGURE 1 | The fishing effort and number of fishing vessels during 2012-2020.(FE,
Fishing effort; Num, Number of vessels).
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the western and central Pacific Oceans is shown in the figure (see
Figure 2). The fishing effort information is mainly distributed on
both sides of the equator, so the study area in this paper is
defined as (130°-210°E; 15°S-10°N). According to (Kroodsma
et al., 2018a; Kroodsma et al., 2018b), the spatial resolution is
defined as 0.5°×0.5°.We pre-processed environmental data and
the fishing effort information with a spatial resolution of
0.5°×0.5°. This article uses fishing effort of vessels after 2015,
with a total of 519,676 pieces of data.

Methods
Multicollinearity
In multiple regression, if two or more independent variables may
be correlated with each other, the occurrence of multicollinearity
will affect the stability of the model. If the variables have an
approximately linear relationship with each other, that is,
multicollinearity, the accuracy of the model will be seriously
affected. Therefore, we evaluated multicollinearity by calculating
the score of the variance inflation factor (VIF). The larger the
VIF is, the greater the possibility of collinearity between the
Frontiers in Marine Science | www.frontiersin.org 4
independent variables. If the VIF exceeds 10, the regression
model has serious multicollinearity. We take the method of
deleting related variables to reduce the VIF value, here, one is
deleted and the other enters the model.

The Construction of the BRT Model
Boosted regression trees (BRTs) are a tree prediction model that is a
hierarchical structure composed of nodes and directed branches.
Boosting is a machine learning algorithm that can promote a weak
learner to a strong learner and can also be used to reduce the bias in
supervised learning. It is an adaptive method used to combine
simple linear models to improve prediction performance.
Regression trees are a type of decision tree that finds the most
reliable branch basis by minimizing variance. The regression
decision tree uses the maximum mean square error to divide the
nodes, and the mean of each node sample is used as the regression
prediction value of the test sample. A boosted regression tree
randomly selects a certain amount of data multiple times during
the calculation process, analyses the degree of influence of the
independent variable on the dependent variable, and uses the
FIGURE 2 | Spatial distribution of tuna purse seiners.
June 2022 | Volume 9 | Article 881036
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remaining data to test the fitting result. Finally, the generated
multiple regression is averaged and output. The BRT model can
be written as the sum of R classification regression trees:

The training model in this article mainly determines three
parameters: tree complexity (tc), learning rate (lr), and bagging
fraction. According to the literature (Elith and Leathwick, 2010;
Gao, 2016), the complexity of a single tree is set to 3, the learning
rate is 0.01, and the bagging fraction is 0.5. We use the Bernoulli
Distribution. A grid fishing effort greater than 0 is recorded as
“1”, and a fishing effort with a null value is recorded as “0”. The
study uses the gbm.step function of the dismo package in R for
BRT model training. Return cv-AUC (cross-validated area under
the curve) and explained variance to a large extent verify the
accuracy of model training. The cross-validation method used to
determine the optimal number of trees to select the final
BRT model.

The Construction of the GAM Model
The generalized additive model (GAM) is a nonparametric
analytical model that describes the nonlinear relationship
between response variables and multiple explanatory variables.
In this paper, a GAM model is also constructed to discuss the
effects of spatiotemporal and environmental variables on fishing
effort. The research uses the mgcv program package in R to build
a GAM model for calculation. Here, all variables are added to
build the model monthly, which is consistent with the BRT
model. The GAM model also uses the Bernoulli distribution
function to classify all fishing efforts into two categories. The
GAM model is selected with the smallest Akaike information
criterion (AIC) value, and the optimal function is selected
automatically by the model.

Model Selection
The BRTmodel returns cv-AUC and explained deviance, which to a
large extent verifies the accuracy of model training. The GAM
model also returns AUC and explained deviance. Different model
training results are used for prediction. Here, the predicted response
variable values are dichotomized with the mean value as the
boundary. Values smaller than the predicted mean are recorded
as “0”, and values larger than the predicted mean are recorded as
“1”. We establish a two-category confusion matrix between the
actual value and the predicted value. The confusion Matrix function
of the caret package in R was used to obtain the two classification
matrices to determine the accuracy, TPR (true positive rate) and
TNR (true negative rate).

The prediction results returned by the model training can be
compared with the actual data to calculate the model training
accuracy. In this study, predicted presence and absence were
separated by the mean probability distribution thresholds.
Generally, accuracy is the most commonly used empirical
measurement parameter to measure whether a model is
effective, and it is an index to measure classification accuracy.
A better model was selected according to the accuracy and
explained deviance. The research uses the better model trained
on the 2015-2019 data to predict the fishing effort in 2020, and
the calculated accuracy can directly reflect the overall accuracy of
the model’s prediction.
Frontiers in Marine Science | www.frontiersin.org 5
RESULTS

Correlation Results
This study processes the 19 dynamic environmental factors and
the calculated temperature gradient, thermocline temperature
and 22 EKE variables in total to establish a regression model for
the fishing effort of the vessel and calculate the score of the
variance inflation factor. The results show that the highest score
is therm, and the VIF score reached 55. There was a serious
multicollinearity problem among the 22 independent variables
obtained. The correlation coefficients between 22 independent
variables were calculated, and the results are shown in
Supplementary Material.

The results show that therm and sst, chl0 and pp0, and
tem200 and sss are all highly correlated, and the correlation
coefficients are all above 0.9. To avoid the influence of
multicollinearity on the model, according to a study of tuna
habitat conditions and marine environmental factors by relevant
scholars, we deleted chl0 and tem200 for reference and kept pp0
and salt200. Between therm and sst, related studies have shown
that sea surface temperature has an important influence on the
distribution of purse seine tuna fishing grounds. This article
chooses sst.

Spatial Distribution of Tuna Purse Seiners
Figure 2 shows the monthly distribution of the spatial trajectory
points of the tuna purse seine from 2015 to 2019. According to
the trajectory of the vessel in the image, the space coverage of the
vessel is 140°-210°E, 15°S-10°N. There was no significant change
in the area covered by vessels from January to June. Starting in
July, the concentrated area of vessels decreased and was mainly
distributed near the equator, with the lowest number of vessel
locations in September. Starting in October, the area of vessels
expanded to the south.

Model Training Results
Training Results of the BRT Model and GAM Model
The study took the fishing effort of the tuna purse seine vessel as
the dependent variable. The 19 environmental variables were
finally obtained by correlation analysis, DSH, DPT, depth, and
the spatial index longitude and latitude. A total of 24 variables
were used as independent variables for BRT modelling using the
Bernoulli distribution. The training results are shown in
Supplementary Material. The average explained deviance of
the training dataset is 43%, the average score of cv-AUC is 0.93,
the average training TPR score is 0.93, the TNR score is 0.83, and
the overall training accuracy rate is 0.84.

In this study, the same data are trained by the GAM model,
and the parameters are shown in Supplementary Material. The
average explained deviance of the training dataset is 34%, the
average score of AUC is 0.81, the average training TPR score is
0.86, the TNR score is 0.76, and the overall training accuracy rate
is 0.77.

Evaluation Index Predicted by the BRT Model
The BRT model predicts the accuracy of the new data results, as
shown in Supplementary Material. The model trained on the
June 2022 | Volume 9 | Article 881036
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2015-2019 data is used to predict the fishing effort in 2020. The
predicted value and the actual fishing effort in 2020 to establish a
two-category confusion matrix to calculate the parameter results
from January to December. According to the data in the table,
the average cv-AUC score was 0.83, the average predicted TPR
score was 0.70, the TNR score was 0.79, and the overall
prediction accuracy rate was 0.77. Among them, the average
accuracy of forecasts from July to September is above 0.8. The
above indicators indicate that the model has good
predictive performance.

Prediction Accuracy of the BRT Model
Figure 3 is a superimposed spatial map of the fishing effort
predicted by the model in 2020 and the actual fishing effort of
fishing vessels in 2020. The image shows that each month has a
good spatial distribution contrast.

Based on the results of two model, the BRT model was used
to assess the effects of key environmental parameters on
potential tuna purse seine fisheries. According to the space
map from January to June, the areas with the largest amount of
fishing effort predicted by vessels are concentrated in 150°E to
160°W and 10°S to 5°N. The images in January and February
show that there are three areas with significant fishing effort-
intensive forecasts [(1) 150°E to 170°E, south of the equator to
Frontiers in Marine Science | www.frontiersin.org 6
10°S; (2) 165°E to 180°, 5°S to 5°N; and (3) 170°W to 155°W,
south of the equator to 10°S]. The actual fishing effort of vessels
covers these three dense areas and spreads in these three areas.
The images in March and April showed that the third fishing
effort intensive area disappeared, but the first two areas
expanded and merged and concentrated at 140°E to 180°, 10°
S to 5°N, and the actual fishing effort also has the corresponding
change trend. Compared with March and April, the images in
May and June have no obvious change trend.

From July to December, the concentrated area of the spatial
image decreased significantly. The images in July, August, and
September show that starting in July, the predicted fishing effort
area has decreased and become more discrete, extending
eastward as a whole, and the actual fishing effort of vessels has
also decreased. Until October, the forecasted fishing effort area of
vessels in October and November became larger and
concentrated in 140°E to 170°W, 10°S to 5°N, and the actual
fishing effort of vessels increased. By December, the image
predicts that the fishing effort of vessels will be less spatially
distributed mainly in some small areas from the south of the
equator to 10°S. The actual fishing effort of the vessels, that is, the
staying time of the vessels in the unit grid, is more consistent
with the area where the fishing effort of the vessels is
concentrated every month.
FIGURE 3 | Fishing effort superimposed comparison.
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FIGURE 4 | Partial dependence plots showing the relationship between the environmental changes and fishing behaviour. (A–L) here refers to the months from
January to December.
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Contribution Rate of Environmental Factors
The average contribution rate of the variable value to the fishing
effort of the vessel see Supplementary Material for details. It
can be seen from the bar chart as a whole that tem100 and lon
are the most important factors affecting the fishing effort of
tuna purse seiners, and their contribution rates to the fishing
effort of vessels are 12.38% and 9.76%, respectively; second, sst,
lat and DSH have an effect on tuna. The fishing effort of purse
seine vessels also contributed significantly, accounting for
9.57%, 8.75%, and 7.11%, respectively. The cumulative
contribution rate of 5 variables, including tem100, sst,
latitude and longitude and DSH, reached 47.56%. Among
them, sss, pp0, ssh, salt200, DO, and DO200 also have a
certain influence, and the contribution rate is basically
approximately 4%. The contribution rate of salt100, DPT,
mld, and u is relatively small, basically approximately 3%; the
contribution rate of DO100, pp200, pp100, chl200, v to the
fishing effort of vessels is approximately 2%; and Depth, EKE,
chl100, and sstf have the smallest contribution rates, basically
approximately 1%.

Figure 4 is an image of the relationship between important
environmental variables and predictive factors in each month.
The figure reflects the range of environmental factors
corresponding to the most likely fishing effort and the specific
contribution rate of environmental factors. The first four
important environmental variables in each month explain the
contribution rate to the predictive factors. Figures (a) to (l) are,
respectively January to December. Among them, the monthly
results of Figures (a), (b), (c), (d), (e), (i), (j), (k), (l) show that the
contribution of tem100 to the fishing effort of fishing vessels are
all between 10% and 20%, tem100 is concentrated at 25-29°C,
and the curve fluctuates greatly. Second, the explanation rate of
sst and DSH is also high, sst is mainly concentrated in 29-31°C,
and DSH is mainly concentrated in 100-300 km; in addition to
Figure (i), lon is in the first four important environmental
variables of each month, mainly concentrated in the sea west
of 180°E. In addition to Figures (a), (j), (k), and (l), lat is also in
the first four important environmental variables of each month;
it is more concentrated in the 5°S-5°N region, and the
contribution rate of lon and lat is relatively large.
DISCUSSION

Environmental Factors and Vessel Data
Previous studies on purse seine tuna mostly used environmental
variables at the surface of the ocean, but studies have shown that
bonito, yellowfin tuna and bigeye tuna mostly caught by purse seine
tuna live in the water layer of 50-100 m underwater. Purse seine
tuna is mostly operated in economic exclusivity, and the distance
from the vessel to the coastline has a certain impact on fishing
options. This paper uses 24 variables, including dynamic variables of
the ocean environment, spatial variables and static variables such as
the distance to the coastline, and it uses the BRTmodel to clarify the
impact of different variables on the spatial distribution of
fishing operations.
Frontiers in Marine Science | www.frontiersin.org 8
Related research scholars have carried out many studies on the
preferred habitat of tuna (Candan et al., 2014; Huang et al., 2020;
Wang, 2020). These studies mainly used the collected fishery log
data combined with environmental values to describe the tuna
habitat. Few analyses of tuna fish habitats are based on satellite AIS
data. Therefore, compared with previous work, this study uses AIS
data to extract the fishing effort of the vessels as a predictor
variable of the BRT model and GAM model, which is a more true
and effective response to the behaviour of the vessels than
traditional fishery data. The purpose of the tuna purse seiner on
the sea is to fish, and every time it stays on the sea for a period of
time, it will spend a corresponding or additional cost value.

Nicolas et al. (2011) used vessel monitoring system (VMS) data
to study and quantify the spatial dynamics of Seschel tuna purse
seine fishing activities in the Indian Ocean. The Bayesian state
space model is used to divide movement on the sea into three
situations: sailing, tracking and fishing. The spatial trajectory
distribution described by the length of stay of the vessel is
discussed from a statistical perspective. Zhang et al. (2021)
analysed the spatial analysis of the fishing behaviour of tuna
purse seiners in the western and central Pacific based on the
AIS trajectory data of vessels and used the vessel’s residence time
on the sea as the fishing effort, which was correlated with the data
of the western and central Pacific tuna purse seine production and
net times. The test results show that there is a high degree of
positive correlation (r>0.8). Therefore, it is reasonable to define the
time spent by vessels on the sea for catching tuna as fishing effort.
Fishing effort is a measure of the degree of accumulation of tuna
fish stocks and changes in the spatial behaviour of purse seining
tuna vessels. Hsu et al. (2021) used the fishing effort of longline
vessels to construct a habitat index model and successfully
predicted the high-precision spatial and temporal distribution
map of skipjack fisheries in the western and central Pacific, and
the comparison results showed that fishing effort data were better
than catch data. This indicates that the environmental factor
response model constructed based on the fishing effort
information of vessels can be used to understand the spatial
distribution of fishery resources and environmental impacts.

Models Goodness-of-Fit
In research on the prediction of marine environmental factors and
fishery resource distribution, researchers mostly use the habitat
suitability index (HSI), support vector machine (SVM) and other
models to conduct research, which easily leads to overfitting,
thereby reducing the prediction accuracy of the model. At
present, research scholars (Chen et al., 2013; Megan et al., 2019;
Hou et al., 2020) have applied methods such as random forests and
gradient boosting trees in ensemble learning to fishery forecast
research, but these methods are all combined with fishery data.
Boosted regression trees (BRTs) are a self-learning method based on
the classification and regression tree algorithm (CART) in the
ensemble learning method, and the model reduces the risk of
overfitting. Megan et al. (2019), in order to understand the
temporal and spatial fishing trends of vessels, considered marine
environmental factors and used the boosted regression treemodel to
analyse the internal relationship between vessel fishing behaviour
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and environmental factors and to identify the fishing behaviour of
vessels and their dependence on the environment.

With the gradual increase in the number of training decision
trees, the fitting of the boosted regression tree model to the training
data will become increasingly better, but if the number of decision
trees exceeds a certain number, overfitting may occur, resulting in a
decrease in the prediction accuracy of the model. In this study, a 10-
fold cross-validation method was used to establish a boosted
regression tree model, and the number of decision trees with the
smallest average estimation deviation was taken as the optimal
number. We used all the training data to build a fishery forecast
model that contains the optimal number of decision trees. Binary
classification is carried out based on the presence or absence of
fishing effort in the unit grid (recorded as “1” and nonrecorded as
“0”); the predicted fishing effort ranges between 0 and 1, and the
predicted fishing effort is calculated based on the average value. Two
categories (≥average value is recorded as “1”, <average value is
recorded as “0”), verify the accuracy of the model’s prediction.

Elith and Leathwick (2010) explained that among the
parameter results returned by the “dismo” and “gbm” packages
of model training, cv-AUC in the model prediction accuracy
evaluation index is the most suitable parameter statistic for
evaluating the quality of the model. Derville et al. (2016) stated
that the explained deviance corresponds to the percentage of
deviation shown by the fitted model, which to a large extent
verified the accuracy of model training.

The results of the model training parameters all verify the
high accuracy of model training. By comparing the parameters
obtained from the BRT model and GAM model, a more
appropriate BRT model was selected for prediction. The BRT
model predicts the fishing effort of vessels in 2020, which is more
consistent with the actual fishing effort of vessels in the spatial
distribution area. The accuracy of the prediction of the binary
classification reaches 77%, and the training and prediction
results of the model have been verified.

Influence of Environmental Factors on
Vessel Operation
The habitat of tuna is closely related to the marine environment.
Huang et al. (2020) selected latitude, longitude, depth of mixed
layer, month and sea surface temperature and used the second-
order boosted regression tree model to establish a habitat model of a
free-swimming school of bigeye tuna in the East Pacific to explore
its temporal and spatial distribution characteristics. The result is that
latitude, longitude, depth of the mixed layer, month and sea surface
temperature are themain factors that affect the success rate of bigeye
tuna. Nataniel et al. (2021) showed that the catchability of tuna
biomass accumulation is related to factors such as sea temperature,
productivity, sea level height, and geostrophic flow in addition to the
interaction of temporal and spatial variables. This corresponds to
several of the environmental factors used in this article.

The distribution of fishery resources changes in response to
changes in the marine environment, as does the tracking of fish
stocks by vessels. Therefore, vessel operating space changes also
reveal information about the spatial changes in fishery resources.
The research in this paper shows that tem100 and lon are the
Frontiers in Marine Science | www.frontiersin.org 9
most important factors affecting the fishing effort of tuna purse
seiners. Second, sst, lat and DSH have the greatest impact on
tuna purse seine fishing operations. The importance of tem100,
sst, latitude and longitude and DSH totalled 47.56%, and five
variables contributed nearly half of the impact.

These important results indicate that temperature, spatial
factors and the distance from the vessel to the coastline are the
key environmental variables that affect the operation of tuna
purse seiners in the western and central Pacific. Although tuna
has a thermal regulation function, temperature still has an
important influence on its distribution. Studies show that the
active water layer where the tuna seine are captured is in the
shallow area of 200 m underwater, and the daytime swimming
depth mode is 100 m (Takayuki et al., 2016), so the shallow water
temperature of the 100 m water layer has an important influence
on the fish. This may be the reason why the water temperature of
100 metres and the temperature of the surface water have an
important influence on the fishing operations of the purse seine.

Longitude and latitude have a high contribution rate, indicating
that tuna purse seiner operations are also spatially selective, and
fishing vessels tend to operate in certain areas. Zhang et al. (2021)
found that the fishing behaviour of tuna purse seiners in the western
and central Pacific Oceans showed a clustering pattern and clustered
tightly. This spatial clustering of fishing vessels was related to the
fishing objects. Yang et al. (2014) found that bonito resources in the
western and central Pacific showed a strong aggregation and
distribution, with strong local spatial autocorrelation.

The results of labelling tuna with DTs and ATs in the
subtropical Pacific Ocean and equatorial regions showed that
tuna is active in related areas (Kurt and Fuller, 2013). Most of the
time, bonito is within 25 kilometres of favourable foraging
habitat (Druon et al., 2017).

The distance from the purse seiner to the coastline also has a
greater impact on the choice of fishing operations. The partial
distribution map shows that most fishing vessels operate 100-
300 km from the coast, indicating that purse seiners mostly operate
within economic exclusives. Therefore, the management of purse
seiners is of great significance to individual Pacific Island countries.

The primary productivity of the sea surface and the oxygen
content at a depth of 200 metres also contribute more than 5%.
Primary productivity is an important part of the ecosystem and
has an important impact on tuna spawning habitat, survival rate,
and supplementary biomass. Tuna has a dissolved oxygen
demand. The purse seine catches small tuna fish, which have
poor ability to withstand hypoxia. Salinity and sea surface height
also have a certain degree of influence on tuna purse seine fishing
operations, while ocean currents, chlorophyll, and the depth of
the mixed layer have little effect, and temperature gradients have
almost no effect on tuna purse seine fishing operations.

The partial distribution diagram of the influence of 100-metre
water temperature and sea surface temperature on vessel
operations shows that tuna purse seiners appear more in areas
where the 100-metre water temperature is 25-29 °C and the sea
surface temperature is 29-31 °C. The suitable area for sea surface
temperature and 100-metre water temperature is consistent with
the results obtained in the literature (Tang et al., 2014). The curve
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of the latitude and longitude distribution map shows that the
tuna purse seiners are more likely to operate in the 5°S-5°N zonal
area; in the longitude direction, the vessels are more likely to
appear west of 180°E. This result is similar to the statistical
results of Tang et al. (2014) and Kurt and Fuller (2013) based on
purse seine data.

Changes in the marine environment have a greater impact
on the distribution of tuna species and the spatial behaviour of
fishing vessels. Tuna purse seine fishing aims to find and track
fish stocks. The impact of the above environmental factors on
the fishing operations of tuna purse fishing vessels can also
reveal its impact on tuna purse seine fishery resources.
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